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Abstract—Bayesian networks are a popular and powerful
tool in artificial intelligence. They have many applications in
commercial decision support. The point of this paper is to provide
an overview of the techniques involved from this perspective. We
will proceed by giving a simplified mathematical overview of
what Bayesian networks are and the flavors they come in. We
then look at how they can be created or learnt from data and the
situations that lead to the use of ensemble models. Then we look
at how an application of such a technology would proceed, using
the human resources example of talent retention for international
firms in China, examining the full process rather than technology
specific elements. Finally we look at the outputs that would be
generated from such an application.

Index Terms—Bayesian networks, decision assistance, business
analytics, stochastic modeling

I. INTRODUCTION

B
AYESIAN networks are a popular and powerful tool in

artificial intelligence. They have many applications in

commercial decision support. The point of this paper is to

provide an overview of the techniques involved from this per-

spective. We will proceed by giving a simplified mathematical

overview of what Bayesian networks are and the flavors they

come in. We then look at how they can be created or learnt

from data and the situations that lead to the use of ensemble

models. Then we look at how an application of such a tech-

nology would proceed, using the human resources example of

talent retention for international firms in China, examining the

full process rather than technology specific elements. Finally

we look at the outputs that would be generated from such an

application.

II. BAYESIAN NETWORKS

Recall from probability theory that two random variables, X

and Y , are independent if and only if P (X,Y ) = P (X)P (Y ).
Analogously, X and Y are conditionally independent given

a third random variable Z if and only if P (X,Y |Z) =
P (X|Z)P (Y |Z), which is equivalent to:

P (X|Z) = P (X|Y, Z) (1)

Also recall that the chain rule for random variables says that

for n random variables, X1, X2, ...Xn, defined on the same

sample space S:

P (X1, X2, ...Xn) = P (Xn|Xn−1, Xn−2, ...X1)

P (Xn−1|Xn−2, ...X1)

...P (X2|X1)P (X1) (2)

Imagine we have five random variables: {A,B,C,D,E}.

From the chain rule, we know that:

P (A,B,C,D,E) = P (E|A,B,C,D)

P (D|A,B,C)P (C|A,B)

P (B|A)P (A) (3)

We can represent these five conditional independencies

by means of a directed acyclic graph (DAG) and a set of

conditional distributions, where:

• Each random variable is mapped to a node of the DAG

• Each node has associated with it the conditional distribu-

tion for its variable

• Each node has incoming edges from the nodes associ-

ated with the variables on which the node’s conditional

distribution is conditional

Such a representation is a Bayesian network. It satisfies the

Markov conditions:

Definition A direct acyclic graph (DAG), G, with nodes NG,

a joint probability distribution, P , of random variables DP ,

and a bijective mapping f : DP ⇒ NG satisfies the Markov

Condition if and only if for all v ∈ DP , where n = f(v), v
is conditionally independent given P of the variables that are

mapped to the non-descendants of n given the variables that

are mapped to the parents n.

TABLE I: Conditional independencies required of random variables the DAG
in Figure 1 to be a Bayesian Network

Node Conditional Independencies
A -
B C and E, given A
C B, given A
D A and E, given B and C
E A, B and D, given C

If we know no more than the decomposition given to us by

the chain rule in equation 3, the associated Bayesian network’s

DAG will be complete (since each variable is conditional on

all those prior to it in the decomposition order). However,

imagine that we know that certain conditional independencies

exist as specified in table I. From the definition of conditional

independence, we know that:

• P (C|B,A) = P (C|A)
• P (D|C,B,A) = P (D|C,B)
• P (E|D,C,B,A) = P (E|C)
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Accordingly:

P (A,B,C,D,E) = P (E|C)P (D|C,B)

P (C|A)P (B|A)P (A) (4)

Whenever we simplify the conditional distributions in virtue

of a known conditional independence relation, we remove an

edge on the DAG of our Bayesian network representation. In

this case, the resulting network is given by figure 1.

A

B C

D E

Fig. 1: A DAG with five nodes

Loosely speaking, what we have done is pull the joint

probability distribution P apart by its conditional indepen-

dencies. A Bayesian network is an encoding of these condi-

tional independencies in the DAG topology coupled with the

simplified conditional distributions. Note that the conditional

independencies are encoded by the absence of edges.

The reason why Bayesian networks are useful is that this

structure gives us a means of performing tractable calculations

locally on the network whilst using all information of the joint

distribution. It has been proven that every discrete probability

distribution (and many continuous ones) can be represented by

a Bayesian Network, and that every Bayesian network repre-

sents some probability distribution. Of course, if there are no

conditional independencies in the joint probability distribution,

representing it with a Bayesian network gains us nothing. But

in practice, while independence relationship between random

variables in a system we are interested in modeling are rare

(and assumptions regarding such independence dangerous),

conditional independencies are plentiful.

III. DISCRETE AND CONTINUOUS BAYESIAN NETWORKS

Bayesian networks come in a number of varieties according

to the restrictions, if any, placed on the forms the conditional

probability distributions can take. We will concentrate on

discrete Bayesian networks, where continuous variables are

discretized during preprocessing. Discrete Bayesian networks:

• Deal with continuous variables by discretization into

arbitrarily many arbitrarily sized intervals. Various meth-

ods can be used for choosing the intervals, including

automated clustering methods.

• Are not limited by linear and/or Gaussian noise assump-

tions.

• Are unrestricted by an apriori structure beyond that

imposed by discretization. This is both good and bad:

– They follow the data when it leads.

– Cases unencountered in the learning data will take

the apriori distribution, which is generally uniform.

There are situations where this is undesirable (e.g.

where closely related cases all strongly evince a

particular structure). Methods exist that provide vari-

ance estimates which help indicate when dangerously

novel cases are encountered.

• Permit efficient and accurate variance estimation on apos-

teriori probability distributions.

• Permit the use of exact inference algorithms.

• Permit, when combined with decision theoretic exten-

sions, the use of exact utility maximization algorithms for

generating decision policies (including on meta-models).

• Can be used as the automated basis for the production of

general Bayesian networks (see below).

Other common forms include Gaussian and hybrid dis-

crete/Gaussian networks. Automated algorithms exist for the

automatic learning of, and exact inference on, such networks.

These, though, require Gaussian variables to be linear com-

binations of their parents with Gaussian noise (potentially

conditional on the values taken by their discrete in hybrid

networks).
General Bayesian networks, where any conditional prob-

ability distribution in the network can be of any type, are

possible. Currently, no automated learning algorithms or exact

inference algorithms are known for such networks, but sam-

pling methods do exist for inference. When such networks

are desired, it has been suggested that discretized variables

be used for the structural learning process [1]. After the

conditional independencies are discovered by this process,

bespoke conditional distributions for each variable given its

parents can be fitted to the non-discretized data given domain

knowledge.
Rigorous comparisons of accuracy between discrete and

Gaussian networks are difficult to find. My conjecture is that

discrete networks often offer significant advantages over their

Gaussian cousins because of their non-linearity, their minimal

imposition of structure on the data during learning and the

current relative sophistication of the algorithms that can be

perform on them. Obviously, though, the degree to which

the system in question meets the assumptions involved in the

Gaussian models is a key factor here. Where this is unclear

but the inclusion of non-discretized continuous variables un-

avoidable, a good option is to custom-build a general network

from the discrete conditional independence structure identified

by the automated discrete learning algorithm.

IV. LEARNING

A. Learning a Network from Expert Causal Knowledge

Importantly, a causal network is a conditional independence

encoding of the type described previously. Thus if we have

knowledge of the causal relationships pertaining between the

variables we are modeling then we can immediately produce

the DAG structure of the Bayesian network. In such cases,

domain experts may also directly specify the conditional

distributions. Where this does not occur, we need to learn

the conditional distributions from data. Discrete and Gaussian

networks have efficient automated algorithms for parameter

learning.
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B. Learning a Network from Data

Where no expert knowledge is available we must learn the

conditional independencies encoded in the network from data.

The basic procedure is to perform a heuristic search on the

space of possible sets of conditional independencies in order

to obtain the best such set. This is complicated by the fact that

multiple topologies can encode the same set of conditional in-

dependencies. To overcome this, we instead search equivalence

classes of topologies/conditional independence sets [2].

Efficient learning algorithms occur in both the Discrete

and Gaussian cases. In the discrete case, an algorithm exists

that includes an optimality guarantee: As the size of our

learning data approaches infinity, the probability of learning

the globally optimal model (with a single iteration of the

algorithm) approaches 1 [3]. Where the conditions are not met,

a more general hill climb algorithm produces better results.

The result is that the most robust learning algorithm utilizes

the inclusion boundary algorithm for its first search and then

repeatedly restarts the general hill climb algorithm.

The most principled and popular fitness function is the

Bayesian Dirichlet score. This calculates the aposteriori proba-

bility of a set of conditional independencies given the learning

data. Accordingly the network we obtain is that which repre-

sents the most probable set of conditional independencies.

C. Meta-Models

Often a single network structure dominates alternatives.

Where this is not the case, we can collect multiple high scoring

networks by, for example, collecting all networks that are at

least 1

x
as probable as the best network, for some x. These

networks can be weighted by their relative probability and

inference can be performed over the entire set. Effectively, we

now reason using not just our best hypothesis of the system

structure, but a set of plausible hypotheses, weighted for their

plausibility. This can be a very powerful method, and all

inference algorithms discussed below can be run on such a

meta-model.

D. Missing Data

Structural learning can be performed with missing data

items in the learning set. Common algorithms for dealing with

this are the Gibbs Sampler and Expectation Maximization.

V. SYSTEM ANALYSIS

A. Markov Blanket

The Markov Condition entails other conditional indepen-

dencies. Because of the Markov Condition, these conditional

independencies have a graph theoretic criterion called D-

Separation (see [4] for detailed definition). Accordingly, when

one set of random variables, Γ, is conditionally independent of

another, ∆, given a third, Θ, them we will say that the nodes

representing the random variables in Γ are D-Separated from

∆ by Θ.

The most important case of D-Separation/Conditional Inde-

pendence is:

A

F

B

G

C

H

D

I

E

J K L M N

O P Q R

S T U V W

Fig. 2: The Markov Blanket of Node L

• A node is D-Separated of the entire graph given its

parents, its children, and the other parents of its children.

Because of this, the parents, children and other parents of

a node’s children are called the Markov Blanket of the node.

This is important. Imagine we have a variable, α, whose

probability distribution we wish to predict and whose Markov

Blanket is the set of nodes, Γ. If we know the value of every

node in Γ, then we know that there is no more information

regarding the value taken by α. This can be generalized to look

for the nodes that provide no additional information regarding

the set of nodes we are interested in given the variables we

are certain we will be always be able to observe the values of.

In this way, if we are confident that we can always establish

the values of some of the variables our network is modeling,

we can often see that some of the remaining variables are

superfluous, and we need not continue to include them in the

network nor collect information on them. Since, in practice,

collecting data on random variables can be costly, this can be

very helpful.

B. Causal Analysis

The connection between causality and conditional indepen-

dence has lead to the use of Bayesian networks in causal

analysis, often in conjunction with manipulation tests. See [4]

for details.

VI. INFERENCE

Inference is the practice of obtaining aposteriori probability

distributions for variables of interest, given the available

evidence. Once a Bayesian network has been created/learnt,

we can use the network to calculate the a posteriori probability

distributions for a subset of variables, Γ, given the observation

that a second subset, ∆, has taken particular values. In the

discrete and Gaussian cases we are also able to obtain accurate

estimations of the variance of such a posteriori distributions,

permitting the calculation of ’error bars’ around the probability

estimates.

Efficient exact algorithms exist for both the discrete and

Gaussian cases. In the general case, or if a discrete network is

sufficiently complex, exact inference algorithms is intractable.

In such cases we turn to sampling techniques. The most

important (largely for its extension in the application of par-

ticle filters in the case of general Bayes filters) is importance

sampling.
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VII. AUTOMATED DECISION MAKING

Bayesian networks can be extended with utility, decision

and information nodes to produce ’Influence Diagrams’. The

utilities are entered by domain experts and specify the value

to the user of the system being in particular states. Variables

under the user’s control are designated decision variables.

Additionally an information order is stipulated. This is based

on the partial order in which the decisions must be made

as well as the specification of information variables, which

are variables not under the user’s control that, if they are not

currently known, will be known before the performance of a

particular set of decisions. Often this is because they will be

known only after the performance of earlier decisions.

So extended, inference is performed on Junction Trees

whose topology respects the information order and which

has both probability and utility potentials associated with the

clusters and intersection sets. Transmission of information

through this structure now also includes a utility maximization

procedure for each decision variable. The result is the output

of decision policies which specify the value to which each

(relevant) decision variable ought to be set to maximize

expected utility given the evidence that will obtain at the time

of the decision. Details of the algorithm can be found in [5].

VIII. AN EXAMPLE

Talent retention has become a significant issue for inter-

national firms in China. High quality local employees often

quickly switch companies and employees who are trained by

their employers often seek better positions once their skill set

has been enhanced. As I response, I am involved in efforts to

assist a number of companies systematically hire and retain

quality employees. The life cycle of such a project is the

following:

1) Establish variables of interest

2) Collect data

3) Encode domain knowledge

4) Create predictive model

5) Collaborative utility estimation

6) Test model

7) Implementation of access system

8) Post-implementation

A. Establish tasks and variables of interest

The first task is to establish which variables may be of

interest. At this point, unless collection costs for certain

variables are prohibitive, it is important to have all potential

relevant variables included. Generally, variable selection will

be the responsibility of domain experts—in this case, we plan

to talk with the human resources departments of the companies

involved and these companies’ employees (via anonymous

surveys). Given such a list of variables, decisions such as

whether a dynamic or static model might be created must be

answered - though it may be that either could be suitable, and

so appropriate data for both must be sought. Variable choice

may be constrained significantly if we are required to use

historic data rather than specify the data that is to be collected.

Often the initial network must be created from historical data

but new data can be specified that will come to be included

at a later point.
The list of variables to be collected in our example might

look something like:

• Employee Related

– Employment history

– Education

– Language ability

– Age

– Sex

– Relationship status

– Demand for applicant’s skills

• Position Related

– Salary

– Professional training at years 1,2,3,+.

– Language training at years 1,2,3,+.

– Overseas opportunities at years 1,2,3,+.

– Position type

– Hours

– Holidays

– Career path opportunities at years 1,2,3,+.

• Company Related

– Chinese managerial viability (including head office)

– Prestige

• Outcome

– Hire

– Length of employment

– Average company satisfaction with employee over

length of employment

As such a model is to be used only for evaluating new hires,

it makes sense to model it statically. If the task were, instead,

to evaluate policies towards current staff over the coming six

months, it would make sense to use a dynamic model. In

other words, rather than simply collect this information for

an employee for their time at the company, we would seek to

obtain the information for each year of their employment and

see whether, at the end of that year, the employee was retained,

and how satisfied the company was with them. The resulting

model should not only assist in hiring employees likely to stay

with the company, but also to retain them as well as promote

practices that lead to high-quality employee performance. It

could also be used to soft-sense and/or maximize employee

satisfaction.
In fact this second model seems very useful. It is likely that

anyone interested in the question ’How do we hire valuable

employees who will stay with the company?’ will also be

interested in the question ’How do we maximise the value of

our employees and ensure they remain with us?’. Further, the

two models incorporate many of the same variables. Therefore

we should probably expand the defined task of the model and

with it the variables we will collect. (For the purposes of this

paper, though, we will continue with the current example.)
Of course this ’discovery’ was deliberate. It emphasises that

the uses of the planned model can multiply as it takes shape.
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Where these eventual uses are clearly related, as above, this is

good. It can, though, necessitate reiterations of the process. If

we add to or alter the assigned tasks, we must ensure that

we have all potentially relevant variables the additional or

emended tasks too. It is also very important not to try and

create the everything model! Where uses are not clearly related

and require large numbers of new variables to be tracked, it is

often better to create a separate model as part of a (partially-

)separate project. Although obviously relevant to employee

retention, we should not include variables that track the general

state of the Chinese economy. We must choose a cut off point,

and here we contain ourselves to specifying current demand

for the applicants skills.

It will also be necessary to establish which variables are

under the control of end-users. In our case this means estab-

lishing which of the variables chosen are under the control

of participating companies. Sometimes this is not clear-cut.

In our case, a company can seek to control the prestige

associated with working at it to some degree, but not directly

or deterministically. Should companies wish to include some

indication of this partial control, we would have to introduce

the elements of this process that they can control. In this case,

I would suggest that the prestige variable be treated as an

environment/chance variable.

B. Encode domain knowledge: Pre-learning

Expert knowledge can be encoded in the network. This will

take the form of specifying relationships between variables

(edges in the network) that are required or prohibited, and con-

crete or defeasible parameters for the conditional probability

distributions that relate the variables. In certain circumstances

the network will be entirely created from expert knowledge in

this fashion.

In our example, the current demand for the applicants skills

is something that is unlikely to have been tracked previously,

so is something that can only be incorporated into the intial

model by encoding domain knowledge about its relationship

to other variables. As data is collected, this initial specification

will evolve.

In practice, where data exists it is often be better to leave the

learning process unconstrained and add known relationships

only insofar as they were to weak in the learning data for the

learnt model to pick up.

C. Collect data

Where the network is not entirely based on expert knowl-

edge, data will be required to learn the model from. Even

when only using expert knowledge, it is useful to have data

to test the validity of the model.

In our case, the data is internal to the company and it is

likely that participating companies will need little assistance

in collecting it. It will be essential, though, to ensure data

security and confidentiality. Participating companies will not

want their data to be viewed by other participants or outside

entities, nor will individuals wish for their personal records to

be reconstructible from the finished product.

D. Create network(s)

Where the network is not entirely based on expert knowl-

edge, the model or meta-model will be learnt from the data

collected. During this process a number of methods permit us

to test whether we have sufficient data. If we do not, we must

obtain more (or switch to a less data intensive method).

Further, during learning redundant variables will be found

and eliminated: As explained above, the topology of a

Bayesian network indicates which variables provide no in-

formation regarding the state of the variables of interest to

us given the variables we can be certain of always knowing

the values of. In our case we might find that the individual’s

gender is correlated with our variables of interest, but only

insofar as it is related to a persons level in their company

(perhaps men are more common in managerial positions).

Given we know someones position in the company, their sex

contains no additional information regarding whether they will

be a satisfactory employee nor whether they are likely to leave

the company. As its is the employees companies who will

be using the models, employees’ position in their company

can always be established and the gender of the employee is

redundant.

We will also determine whether a single network dominates

the possible hypotheses regarding the system being modeled,

or whether we should utilize a meta-model made up of

multiple networks as explained above.

E. Encode domain knowledge: Post-learning

In certain circumstances additional domain knowledge will

be encoded in the model post learning. This may include

specifying utility values or transforming the network from a

discrete network to a general Bayesian network.

In our case the utilities involved will be different for

different end users and even for the same end-users in different

circumstances. This is often the case. Accordingly, the utility

values will be alterable just as the value of any other variable

and it is to a large degree the responsibility of the end user to

specify their own. Further, the advantages of efficient, exact

decision theoretic algorithms would make the use of discrete

networks ideal - though some parameter ’smoothing’ might

be useful to minimize the problems associated with novel

cases discussed above. If there are particular relationships

that participating companies have experienced which are not

present in the model, these should be tested for and, assuming

they are found to be present, manually added.

F. Test model

Routine testing is part of the modeling process. Ideally,

though, at this point the model should be used and evaluated

in a pilot program where it will be incorporated into the

access system (see below), encounter new real life cases and

be used by real end-users. The guidance the system offers

should be useful (not trivial). End users should find the access

system easy to use, and the ’reasoning’ behind decisions

understandable. Difficulties found here can be incorporated

into training.
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Whether this step is necessary depends upon the size of

the eventual user base. When the user base is restricted to a

handful of individuals, no such testing is possible. In our case,

the system will be used by human resource staff of numerous

companies and a pilot program would be essential.

G. Implementation of access system

The access system is the software—and, in certain cases

though not in ours, hardware - that will be use to enter

data into and query the finished model or meta-model for

decision assistance and predictions. It must be deployed and

end-users trained in its use. For us this means installing, in

all participating companies, the finished software application,

which would be a non-technical wrapper that permits all

required interactions with the network, as well as providing

training courses to end-users.

It will be essential for end users to be able to enter new

data, and for the model to react to this data. In our case, data

regarding new hires will occur automatically as end-users work

with the program. But data regarding policies to employees,

satisfaction with and of employees and employee retention

will need to be specifically entered. It will be necessary to

ensure that the finished application permits such data-entry,

and would be advantageous if it alerted designated individuals

if such data-entry does not occur.

Bayesian networks can be set to automatically adapt the

parameters of their conditional probability distributions to new

data. On the assumption that the underlying system is stable,

this generally suffices. If this assumption is questionable, an

ongoing structural learning process should continue to model

the relationships found in recent data to ensure that no abrupt

alterations of the system have occurred and hence that the

network remains valid for the domain. Our system is certainly

subject to shocks from outside the variables we have included

- for example the Chinese economy could enter a prolonged

downturn - and so ideally such a process should be included

as part of the final application and automatically operate as

data becomes available. Minimally, it should be possible for

humans to periodically implement such a process.

H. Post-implementation

The access system will require ongoing support and main-

tenance. As new individuals become end-users they will need

training. Finally, to ensure the model stays accurate in chang-

ing circumstances, ongoing data acquisition and collation will

be required.

In our case, this means providing software support and

training for novice end-users such as new HR employees.

The low level data acquisition program should be able to be

implemented by participating companies.

IX. OUTPUTS

So what might we expect to obtain from such a system? Let

us imagine a 26 year old, unmarried male without children. He

has an undergraduate engineering degree from a high-quality

Chinese institution and is professionally competent in English.

His last job was low-level management, and he specifies an

expected salary of RMB7000/month. He has held three jobs

in the last fours years.

1) Should the prospective employee be hired.

2) If he is hired, what sort of contract and conditions should

he be given to maximise the expected value of the hire,

measured in terms of satisfaction with his contribution

and retention whilst minimizing costs.

For example he might be offered a number of attractions

at a specified future time - perhaps an overseas placement

opportunity after two years, or ongoing professional education

paid for by the company from year 1-3, etc. It may be that he

should not be offered additional language training, since this

is unlikely to increase either his or the company’s satisfaction

but, if successful, will greatly increase the risk that he will be

leave (because headhunted!).
A more sophisticated situation is where certain characteris-

tics remain unknown (perhaps at a resume sifting stage). The

company may decide not to trust applicants’ claims about their

language ability, or plan to have applicants take additional

tests. Decision policies will be given that specify whether an

applicant should be hired and, if so, the details of the contract

for each of the possible values of the unknown variables. For

example, the applicant in question might be hired only if he

performs outstandingly on the test (since there might be a

high-risk of him leaving), but in such a case be offered a

lucrative salary and numerous inducements to stay (since he

would be a valuable employee if he could be retained). A

example decision policy representing the above, and assuming

that an appropriate test outcome variable was included, is given

in table II.

TABLE II: Decision policy for applicant, given test result

Test Score Hire Salary
Overseas

placement

Professional

Training

Language

Training

< 60 No - - - -

60-70 No - - - -

70-80 No - - - -

80-90 No - - - -

90-100 Yes 14,000 After two years After three years No

The network would also be able to produce aposteriori pre-

dictions for the variables of interest, given current knowledge

and on the assumption that the decision policies specified are

followed. It could also be run with the decision variables

treated as chance variables or set to other options to see the

aposteriori given just current knowledge, or to test alternative

decision policies.
If we imagine the ’Average company satisfaction with

employee over length of employment’ variable takes values

from 1 to 10 (representing some suitable function from yearly

reviews) and the ’Length of employment’ variable takes the

values 1 to 5 and >5 (representing the employee leaves the

company before that many years), then we might be given the

distributions represented in tables III and IV.
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