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Marek Dębczyński and Stanisław Gawiejnowicz
Adam Mickiewicz University in Poznań
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Abstract—We consider the problem of scheduling linearly
deteriorating jobs on a single machine. Between the jobs there
are defined arbitrary precedence constraints and the objective
is to minimize the maximum cost. For this problem we propose
an exact algorithm and a heuristic. We also report preliminary
results of computational experiments conducted in order to
evaluate the quality of schedules generated by the heuristic.

I. INTRODUCTION

S
CHEDULING jobs with variable processing times very

often occur in manufacturing practice [6]. For example,

the processing time of an activity may be shorter (longer) if

we pay more (less) for its completion. Hence, managers and

project leaders must control the processing times of activities

in projects they rule, in order to act accordingly to changes in

the projects.

In scheduling theory there are known a few different models

of variable processing times. One of them is time-dependent

scheduling in which one assumes that the processing time of

a job is a function which depends on the starting time of the

job. This assumption allows us to consider such scheduling

problems in which any delay results in changes of job pro-

cessing times. We refer the reader to [1] for the most recent

discussion on different aspects of time-dependent scheduling.

Among many time-dependent scheduling problems consid-

ered in literature, most often are studied problems in which job

processing times are described by monotonically increasing

functions. So defined jobs are called deteriorating jobs, since

the job processing times deteriorate (increase) in time.

Usually deteriorating jobs are assumed to be independent,

i.e. no precedence constraints exist between the jobs. This

is a significant simplification, since in real-life problems

precedence constraints occur very often. For example, project

managers must take into account not only variable processing

times of activities but also precedence constraints that indicate

which activities must be completed in order to start other

ones. Hence, even single machine scheduling problems with

the maximum completion time criterion (Cmax), variable job

processing times and non-empty precedence constraints are

rather weakly explored, since only a few results are known.

A special case of linearly deteriorating jobs with arbitrary

precedence constraints is considered in [4]. Linear jobs with a

few special forms of precedence constraints are discussed in

[7] and [1, Chapter 13].
In this paper, we consider the following problem of schedul-

ing dependent deteriorating jobs on a single machine. The pro-

cessing time of each job is a linear function of the job starting

time and between the jobs there exist arbitrary precedence

constraints described by a directed acyclic graph. The criterion

of optimality of a schedule is to minimize the maximum

cost. The criterion is a generalization of the Cmax criterion

and in a better way mirrors the criteria applied in real-life

problems. For example, if a company pays after completion

of each activity of a project and it uses a bounded budget, the

manager will look for such a schedule in which the maximum

single payment will be minimized. According to the best of

our knowledge, scheduling problems of this type were not

considered in literature earlier.
The remaining sections of this paper are organized as

follows. In Section 2, we formulate the considered problem.

In Section 3, we formulate the exact algorithm. In Section 4,

we present the heuristic algorithm. In Section 5, we present

the results of a numerical experiment. In Section 6, we give

conclusions and remarks for further research.

II. PROBLEM FORMULATION

The problem under consideration can be formulated as

follows. The set of jobs J = {J1, J2, . . . , Jn} has to be

processed on a single machine, available for processing from

time t0 ≥ 0. Job processing time of job Jj ∈ J at time t ≥ t0
equals pj (t) = aj + bj ∗ t, where basic job processing times

aj ≥ 0 and deterioration rate bj ≥ 0 for 1 ≤ j ≤ n. Each

job Jj ∈ J is associated with a monotone non-decreasing

cost function fj (t). It measures the cost of the completion

of job Jj at time t and can be computed in a constant time.

Job precedence constraints between jobs from the set J are

described by a given acyclic digraph G = (V (G) , A (G)),
where V (G) and A (G) denote the set of vertices and the set

of arcs, respectively. Our goal is to find a schedule σ such

that fmax (σ) = min
τ∈S

max
1≤j≤n

{fj (Cj (τ))}, where Cj (τ) and

S denote the completion time of job Jj ∈ J in the schedule
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τ and the set of all schedules consistent with job precedence

constraints described by G, respectively.

In short, we will call the problem as the SPDJMS

(Single-machine Precedence-constrained Deteriorating Jobs

Maximum-cost Scheduling) problem.

A special case of the SPDJMS problem is the problem

of minimizing the maximum lateness for a set of jobs with

mixed job processing times and empty precedence constraints,

proved to be NP-hard in [2]. Therefore, the problem under

consideration is NP-hard as well and for it there do not exist

polynomial algorithms, unless P = NP.

Since the SPDJMS problem is NP-hard, only suboptimal

schedules for it can be constructed in polynomial time. Hence,

we are interested in good polynomial heuristic algorithms for

the problem. In our paper, we propose such an algorithm. The

quality of schedules generated by the algorithm was examined

by using an exact algorithm described in the next section.

III. EXACT ALGORITHM

In the section, we formulate an exact algorithm for our

problem. The algorithm will be used to verify the quality of

schedules generated by a heuristic algorithm for the problem

presented in the next section. Before we formulate the exact

algorithm, we define two auxiliary functions: GENERATEALL-

TOPSORTS and CALCULATECT.

The function GENERATEALLTOPSORTS applies the idea

used in the algorithm presented in [3]. Given a digraph G

the algorithm generates all topological sortings and returns

them as a list H of dimension SIZEOF(H). The algorithm

uses the following data structures: a list VERTICES, an array

PREDSCOUNT and a list VEP, which contain vertices, number

of predecessors for each vertex and vertices without predeces-

sors, respectively. For a given v ∈ V (G), attribute PredCount

contains the number of predecessors of v, while method Add

inserts a vertex to the list VEP.

1: function GENERATEALLTOPSORTS(G)

2: for all v in V (G) do

3: VERTICES[v.Index] ← v

4: PREDSCOUNT[v.Index] ← v.PredCount

5: if PREDSCOUNT[v.Index] = 0 then

6: VEP.Add(v.Index)

7: end for

8: ALLTOPSORT(0)

9: return H

The function GENERATEALLTOPSORTS after creating men-

tioned data structures, calls the function ALLTOPSORT.

The function ALLTOPSORT returns all topological sortings

as a list H . It manipulates the list VEP which containins only

those vertices without predecessors that have not been yet

processed. The function ALLTOPSORT may cause temporary

changes in VEP and PREDSCOUNT, but upon exit they are

restored to initial values. Functions ERASEALLRELATIONS(q)

and RETRIEVEALLRELATIONS(q) erase and retrieve all arcs

(q, i) ∈ A (G) for a given vertex q ∈ V (G), respectively.

The array OUTPUT contains a sequence of already processed

vertices, and if its size is equal to the number of vertices of

G, the sequence is moved to the list H .

1: function ALLTOPSORT(k)

2: if (VEP.Count > 0) then

3: base← VEP[VEP.Count]

4: do

5: q ← VEP[VEP.Count]

6: VEP ← VEP\ {q};
7: ERASEALLRELATIONS(q)

8: OUTPUT[k] ← q;

9: if k = VERTICES.Count-1 then

10: H .Add(OUTPUT)

11: ALLTOPSORT(k + 1)

12: RETRIEVEALLRELATIONS(q)

13: VEP.Insert(1,q)

14: while VEP[VEP.Count] ! = base

Example 1: We illustrate the application of the algorithm

to a digraph given in Fig. 1.

2 4

6 3

5

7 1

Fig. 1. Digraph of job precedence constraints

There exist 22 topological sortings of the digraph. Each

sorting corresponds to a sequence of indices of vertices of

the digraph that, in turn, corresponds to a schedule. All these

schedules, denoted as σi for 1 ≤ i ≤ 22 (see Table I), can be

found using the function GENERATEALLTOPSORTS.

TABLE I
ALL TOPOLOGICAL SORTINGS FOR DIGRAPH IN FIG. 1

Schedule Sorting Schedule Sorting

σ1 (2,6,4,3,5,1,7) σ12 (2,4,6,3,5,7,1)

σ2 (2,6,4,3,5,7,1) σ13 (4,2,6,3,5,1,7)

σ3 (2,4,3,5,1,7,6) σ14 (4,2,6,3,5,7,1)

σ4 (2,4,3,5,1,6,7) σ15 (4,2,3,5,1,7,6)

σ5 (2,4,3,5,7,6,1) σ16 (4,2,3,5,1,6,7)

σ6 (2,4,3,5,7,1,6) σ17 (4,2,3,5,7,6,1)

σ7 (2,4,3,5,6,1,7) σ18 (4,2,3,5,7,1,6)

σ8 (2,4,3,5,6,7,1) σ19 (4,2,3,5,6,1,7)

σ9 (2,4,3,6,5,1,7) σ20 (4,2,3,5,6,7,1)

σ10 (2,4,3,6,5,7,1) σ21 (4,2,3,6,5,1,7)

σ11 (2,4,6,3,5,1,7) σ22 (4,2,3,6,5,7,1)
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Now, we describe the function CALCULATECT, the main

idea of our exact algorithm and we present its pseudo-code.

The function CALCULATECT, for a given schedule H [i]
and starting time t0, generates the vector of all job completion

times. The pseudo-code of the function is as follows.

1: function CALCULATECT(H [i], t0)

2: C[0]← t0
3: for i← 1 to n do

4: C[i]← ai + (1 + bi) ∗ C[i− 1]
5: end for

6: return C

The main idea of our exact algorithm (see the pseudo-code

of Algorithm 1) is as follows. Using function GENERATEALL-

TOPSORTS we create all topological sortings and store them

in array H . Each such a sorting corresponds to a schedule and

is described by an element H [i] from H . For each schedule

σ described by a H [i], we calculate job completion times by

function CALCULATECT and store them in array C. For each

job Jj we compute its cost in σ and C, and calculate the

maximum cost Fmax of currently examined schedule. Finally,

we compare the value Fmax with previously stored value

of Fmin of the smallest maximum cost among all examined

schedules and if Fmax is lower, we set Fmin ← Fmax. In a

similar way, we check all remaining sortings in H .

At the input of Algorithm 1 we are given a digraph G of

job precedence constraints, the set of jobs J with processing

times in the form of pj (t) = aj + bj ∗ t and cost functions

fj , where 1 ≤ j ≤ n. At the output of the algorithm we get

optimal schedule σ⋆ with the smallest maximum cost.

Algorithm 1 for the SPDJMS problem

1: H ← GENERATEALLTOPSORTS(G)
2: k ← SIZEOF(H)
3: i← 1
4: Fmin ←∞
5: while i ≤ k do

6: Fmax ← −∞
7: C ← CALCULATECT(H [i], t0)
8: r← n

9: while r ≥ 1 do

10: j ← H [i][r]
11: f ← fj(C[r])
12: if Fmax < f then Fmax ← f

13: r ← r − 1
14: end while

15: if Fmin > Fmax and r = 0 then

16: Fmin ← Fmax

17: σ⋆ ← H [i]

18: i← i+ 1
19: end while

20: return σ⋆

IV. HEURISTIC ALGORITHM

In the section, we present a heuristic algorithm for the

SPDJMS problem, based on algorithm from [5] for finding

a schedule with the smallest maximum cost for a set of

jobs with fixed job processing times. Before we formulate

the heuristic algorithm, we define three auxiliary functions:

CALCULATEFMAX, GENERATERATES and FINDMINIMUM.

The function CALCULATEFMAX, for a given schedule σ

and starting time t0, calculates the maximum cost Fmax.

1: function CALCULATEFMAX(σ, t0)

2: C[0]← t0
3: Fmax ← −∞
4: for all j in σ do

5: C[j]← aj + (1 + bj) ∗ C[j − 1]
6: f ← fj (C[j])
7: if Fmax < f then Fmax ← f

8: end for

9: return Fmax

The function GENERATERATES, for a given set of jobs J ,

for each job returns a pair of two sets of ratios. The first set

contains the values of
bj
aj

for each job Jj ∈ J . We use the

ratios to generate schedules with the smallest and the largest

completion time of the last job. The second set contains the

values of cost functions associated with each job Jj ∈ J
at time t = Random(1, 100). We use this set to generate

schedule with jobs in non-increasing order of these ratios.

1: function GENERATERATES(J )

2: for all j in J do

3: t← RANDOM (1, 100)
4: ptRates [j]← bj

aj

5: fRates [j]← fj (t)
6: end for

7: return (ptRates, fRates)

The function FINDMINIMUM, using the function CALCU-

LATEFMAX, for each of given four schedules σ1, σ2, σ3, σ4,

calculates the maximum cost and returns both an optimal

schedule and its maximum cost.

1: function FINDMINIMUM(σ1, σ2, σ3, σ4, t0)

2: for i← 1 to 4 do

3: F [i]← CALCULATEFMAX (σi, t0)
4: end for

5: Fmin ← F [1]
6: for i← 2 to 4 do

7: if F [i] < Fmin then

8: Fmin ← F [i]
9: σ ← σi

10: end for

11: return (σ, Fmin)

Now, we describe our heuristic algorithm (see the pseudo-

code of Algorithm 2). At the input of the algorithm, we are

given a digraph G of job precedence constraints, a set of jobs

J with processing times in the form of pj (t) = aj + bj ∗ t
and cost functions fj , 1 ≤ j ≤ n. By GT , V (GT ), A (GT )

MAREK DĘBCZYŃSKI, STANISŁAW GAWIEJNOWICZ: AN EXACT ALGORITHM AND A HEURISTIC FOR SCHEDULING LINEARLY DETERIORATING JOBS 403



and NS (GT ) we denote the copy of digraph G of precedence

constraints, the set of vertices of GT , the set of arcs in GT

and the set of jobs without successors in GT , respectively. At

the output of the algorithm, we get an optimal schedule σ⋆.

Algorithm 2 for the SPDJMS problem

1: for i← 1 to 4 do

2: GT ← G

3: while V (GT ) 6= ∅ do

4: NS (GT )←
{

j ∈ V (GT ) : deg
+ (j) = 0

}

5: min←∞
6: max← −∞
7: GENERATERATES(J )
8: for all j in NS (GT ) do

9: if i = 1 and ptRates [j] < min then

10: min← ptRates [j]
11: k ← j

12: else if i = 2 and ptRates [j] > max then

13: max← ptRates [j]
14: k ← j

15: else if i = 3 and fRates [j] > max then

16: max← fRates [j]
17: k ← j

18: end for

19: if i = 1 then σ1 ← (k|σ1)
20: else if i = 2 then σ2 ← (k|σ2)
21: else if i = 3 then σ3 ← (k|σ3)
22: else

23: x← SIZEOF (NS (GT ))
24: k ← x divRandom(1, x)
25: σ4 ← (NS (GT , k) |σ4)

26: V (GT )← V (GT ) \ {k}
27: A (GT )← A (GT ) \ {(i, k) : i ∈ V (GT )}
28: end while

29: end for

30: (σ⋆, Fmin)← FINDMINIMUM (σ1, σ2, σ3, σ4, t0)
31: return σ⋆, Fmin

The main idea of Algorithm 2 is as follows. Four iterations

of the external loop for (lines 1–29) are responsible for

creating four different schedules σ1, σ2, σ3, σ4. Schedules σ1

and σ2 correspond to feasible schedules with the smallest and

the largest maximum completion time, respectively. Schedule

σ3 corresponds to non-increasing order of values of cost

functions calculated by function GENERATERATES. The last

schedule σ4 is a random schedule, which does not violate

job precedence constraints. In every iteration of the internal

loop (lines 3–28) a set of jobs without successors (line 4) is

created, and for this set schedules σ1, σ2, σ3, σ4 (lines 7–27)

are constructed. In every iteration of loop for (lines 8–18) there

is selected a job to schedule σ1(lines 9–11), σ2 (lines 12–14)

and σ3 (lines 15–17). Conditional statements if in lines 19–21

are responsible for adding the choosen job to an appropriate

schedule (σ1, σ2 or σ3), while in lines 22–25 we choose a

random job from the set NS (GT ) and add it to schedule σ4.

Next, in lines 26–27, we update sets V (GT ) and A (GT ). We

proceed in a similar way with other jobs until the moment

when V (GT ) = ∅.
Example 2: We apply the Algorithm 2 to the following in-

stance. We are given a set of n = 7 jobs, with processing times

and cost functions as in Table II. A digraph of precedence

constraints between the jobs is given in Fig. 1.

TABLE II
JOB PROCESSING TIMES AND COST FUNCTIONS IN EXAMPLE 2

Processing times Cost functions

p1 (t) = 8 + 3t f1 (t) = t + 5

p2 (t) = 4 + t f2 (t) = 2t + 3

p3 (t) = 1 + t f3 (t) = t + 4

p4 (t) = 7 + 2t f4 (t) = 2t + 8

p5 (t) = 3 + 2t f5 (t) = 2t + 7

p6 (t) = 8 + 2t f6 (t) = t + 2

p7 (t) = 2 + t f7 (t) = 2t + 6

For this instance, the heuristic algorithm generates sequence

σ18 with the maximum cost equal to 2794. All possible sched-

ules for the instance, together with corresponding maximal

costs, are listed in Table III (by a star ’⋆’ we denote the optimal

schedule and its maximum cost).

TABLE III
ALL FEASIBLE SCHEDULES FOR INSTANCE FROM EXAMPLE 2

Schedule Maximum cost Schedule Maximum cost

σ1 6 570 σ12 3 189

σ2 3 285 σ13 6 090

σ3 2 944 σ14 3 045

σ4 5 898 σ15 2 800

σ5 2 949 σ16 5 610

σ6 2 938 σ17 2 805

σ7 5 930 σ⋆

18
2 794⋆

σ8 2 965 σ19 5 642

σ9 6 090 σ20 2 821

σ10 3 045 σ21 5 802

σ11 6 378 σ22 2 901

V. NUMERICAL EXPERIMENT

In the section, we present results of a numerical experiment

we conducted in order to verify the quality of schedules

constructed by the proposed heuristic algorithm.

We implemented both the exact algorithm and the heuristic

algorithm in Microsoft Visual C# 2010 Express. The exper-

iment was performed on a PC computer with the following

parameters:

1) Motherboard: ASUS P5K SE;

2) Processor: Intel(R) Pentium(R) Dual CPU E2180 @

2.00GHz (2C 2GHz, 1MB L2);

3) RAM Memory: 2GB of Patriot Memory DDR2-800;

4) Operating System: Microsoft Windows XP Professional.
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In the experiment, we generated 6 sets with n jobs, where

n ∈ {5, 6, 7, 8, 9, 10}. For each n, we generated 10 times a

random digraph G of job precedence constraints. For each such

a digraph, we calculated the smallest maximum cost and an

optimal schedule using the exact algorithm and a suboptimal

schedule and its maximum cost using the heuristic. In total,

we generated 60 random instances of our problem.

Results of the experiment are summarized in Table IV,

where ’#sched’, ’Exact’, ’Heur’ and ’Worst’ denote the num-

ber of all feasible schedules, the optimal (minimal) maximum

cost, the maximum cost of the schedule constructed by our

heuristic and the worst (largest) maximum cost, respectively.

Each value in the table is an average of 10 values correspond-

ing to randomly generated instances of the SPDJMS problem.

Average computation time for the heuristic algorithm was

less than 1ms. Average time for the exact algorithm for

instances with n = 10 jobs was less than 10s.

TABLE IV
RESULTS OF NUMERICAL EXPERIMENT

n #sched Exact Heur Worst

5 15 546 602 1 297

6 68 1 516 2 078 5 525

7 105 6 463 7 857 25 769

8 882 10 917 14 631 50 788

9 5 851 9 385 13 667 76 127

10 54 564 51 522 78 069 402 079

VI. CONCLUSIONS

In the paper, we proposed an exact algorithm and a heuristic

for an NP-hard time-dependent scheduling problem with lin-

early deteriorating jobs, arbitrary precedence constraints and

the maximum cost objective. We also presented preliminary

results of numerical evaluation of the algorithms.

The main future research goal is to introduce in the proposed

heuristic algorithm such improvements that will increase the

quality of generated schedules and make it more satisfactory.

It is also worth to check, which one of known algorithms

generating all topological sortings of a given acyclic digraph

will be the most effective in the exact algorithm.
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