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Abstract—A number of trainable dependency parsers have
been presented in the literature. These parsers require tagged
input: this may potentially cause a problem, because taggers are
not in general 100% accurate, and any errors in tagging are
likely to lead to errors in the output of the parsers. The current
paper investigates the relationship between tagging errors and
parsing errors. The investigation is carried out on Arabic text,
using specific taggers and parsers, but the lessons that can be
learned are applicable to other languages and other tools of the
same kind.

I. INTRODUCTION

T
HE problem: a number of trainable parsers have been

proposed, particularly for dependency grammars. These

parsers are trained on treebanks, where the words that appear

at the nodes of the trees have been part-of-speech tagged (POS

tagged, tagged). They can then be used to parse unseen texts

which have also been tagged. In general, parsers and taggers

can make mistakes. It seems likely that mistakes in tagging the

target unseen texts will lead to extra errors being introduced

into the output of the parsers. The aim of the current paper

is to investigate the extent of this problem. How much worse

does a data-driven parser perform if the input is incorrectly

tagged?

We report on a number of experiments using different

taggers, different parsers, and different sizes of training

corpus. The specific taggers we use are AMIRA [1], MADA

[2] and an in-house maximum-likelihood (MXL) Arabic

tagger [3], which achieves similar accuracy: we will say

more about the advantages of the in-house tagger for the

current investigations below. The parsers are MALTParser

[4], [5], [6] and MSTParser [7], [8]. The training corpus is

the Penn Arabic Treebank (PATB) [9]. The trees in the PATB

are phrase-structure trees: we used a standard algorithm for

converting phrase-structure trees to dependency trees. We

will discuss this conversion when we consider the PATB in

more detail below.

We carried out two sets of experiments:

• We took all possible combinations of taggers and parsers

and calculated the accuracy, taking the output of the

given parser with the tags included in the PATB as the

reference. If the errors introduced by the tagger and the

mistakes made by the parser are independent, you would

expect that combining a tagger whose accuracy was T
with a parser whose accuracy was P when trained on a

perfectly tagged corpus to be T ×P . The result of these

experiments (to save the reader the suspense of waiting

to the end of the paper) was that in general the accuracy

is greater than T ×P–the problems introduced by having

a less than perfect tagger are to some extent compensated

for by the parsers.

• The mistakes made by one combination of parser and

tagger were not in general the same as the mistakes

made by another combination. We therefore looked

at the effects of merging tagger:parser pairs–of using

say MADA+MSTParser and AMIRA+MALTParser,

accepting only those analyses where the two agreed.

Unsurprisingly, the precision of this approach was

markedly higher than the accuracy of either of the

contributing combinations, but in general the F-score for

the merged version was very close to their average: this

is roughly what you would expect–where they disagree

at least one of them must be wrong, so eliminating

cases where they disagree is bound to remove some

errors. Unfortunately, there does not seem to be any

compensating factor of the kind that comes into play

when combining taggers and parsers. In the first set

of experiments the results are better than might have

been expected. In the second set they are almost exactly

what you would expect. For tasks where precision is

important it is worth doing the merge, but you do lose

almost the same level of recall as you gain in precision.

II. FROM THE PATB TO DEPENDENCY TREES

We used PATB (Part 1 v3 using ‘without-vowel’ set of

trees)1 to train the two parsers we used in our experiments.

The trees in PATB are phrase-structure trees (it contains just

over 5000 trees, at an average length of 28 words per tree,

with some trees containing 100+ words), and hence are not

directly useable for training dependency parsers. We therefore

need to convert PATB trees to dependency trees.

1Catalog number LDC2005T02 from the Linguistic Data Consor-
tium (LDC). Available at: http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?
catalogId=LDC2005T02
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Converting phrase-structure trees to dependency trees is a

straightforward task, so long as (i) the item in each subtree

which contains the head can be identified; and (ii) there

are no constructions with zero-heads. Assuming that these

two conditions hold, the following algorithm will produce a

dependency tree from a phrase-structure tree [10], [11]:

1) given a leaf node, turn it into a tree with no daughters;

2) a) otherwise, choose the subtree which contains the

head: turn it into a dependency tree: call this D;

b) turn all the other subtrees into dependency trees,

and add them as daughters of D.

The only difficult part of this algorithm, which has been

discussed by Xia and Palmer [12], is the selection of the

subtree which contains the head. The approach we have taken

to this task is to look for all the trees headed by a given label,

and find all the labels for their subtrees. This gives us a list

of labels for potential head daughters for each non-terminal

label (a ‘head-percolation table’ [13]). We then order these in

terms of candidacy for being the head daughter, in terms of

what we believe to be the correct dependency structure, and

we use this preference order for ‘choose the subtree which

contains the head: turn it into a dependency tree’ in the above

algorithm.

There are, however, a number of problems with the PATB.

• Very large numbers of Arabic sentences begin with the

conjunction +ð w+ “and.” The most plausible reading

is that this item implicitly conjoins the first clause in

the current sentence to the previous sentence, and hence

should be taken as its head. This clashes with the treat-

ment in the PATB, where the conjunction is taken to be

the head of the whole sentence. This makes a difference in

cases where the sentence has the general form CONJ S1

CONJ S2 CONJ ... CONJ Sn, where we bracket it

as CONJ (S1 CONJ S2 CONJ ... CONJ Sn) and

the PATB brackets it as (CONJ S1) CONJ S2 CONJ

... CONJ Sn. There are a surprising number of such

cases, and the rebracketing makes a noticeable difference

to parsing accuracy. We therefore have to restructure these

trees, and we also mark sentence-initial +ð w+ “and” with

a special tag (i.e. ICONJ) to prevent the parsers confusing

it with more normal conjunctive uses of this item [14].

• The PATB deals with free word-order by using traces,

where the function of an extraposed item is co-indexed

with an item whose label indicates whether it is a subject

or object, as shown in Fig. 1, where the relative pronoun
	à@
	
YÊË @ All*An2 “who” is coindexed with a trace which

is itself taken to be the subject of 	àAÒëA��
 y+sAhm+An
“contribute to.”

2The transcription of Arabic examples follows Buckwalter’s system
for transcribing Arabic symbols. Available at: http://www.qamus.org/
transliteration.htm

[S [S [CONJ w-]

[VP [VERB -gyr]

[NP-SBJ [NP [DET+NOUN Al+mSrf+An]]

[PUNC ,]

[SBAR [WHNP-1 [REL_PRON All*An]]

[S [VP [VERB y+sAhm+An]

[NP-SBJ-1 [-NONE- *T*]]

...]]]]]]]

Fig. 1. Phrase-structure tree with trace.

This does not really make sense within a dependency-

based framework. The use of traces is antithetical to

the basic idea of dependency grammar, namely that

syntactic structure is determined by relations between

words: a trace is not a word, and as such has no place in

dependency grammar, at least as strictly conceived (e.g.

[15]). We therefore systematically transform the PATB

so that traces are eliminated, with the topicalised NP

treated as a proper constituent of the sentence, e.g. in

Fig. 1 the relative pronoun 	à@
	
YÊË @ All*An “who” is taken

to be a dependent (as subject) of 	àAÒëA��
 y+sAhm+An
“contribute to” despite appearing higher in the original

phrase structure tree.

• Arabic allows ‘verbless’ or ‘equational’ sentences, con-

sisting of a noun phrase (NP) and some kind of pred-

ication (another NP, a prepositional phrase (PP), an

adjective) [16], [17]. It is tempting to think of these

constructions as containing a zero-copula (the fact that

their negated forms do include an explicit copula supports

this analysis). As noted above, we prefer to eliminate

empty items, especially heads.

The standard treatment of such sentences assumes that

the predication is the head, largely on semantic grounds.

This is almost certainly the right thing to do, but given

that the parsers we are using exploit clues extracted from

the local context to guide their decisions, it seemed worth

investigating the effects of choosing either the subject or

the predication as the head–if it turns out the parsers can

more reliably assign labels when the subject is the head,

we can easily transform the resulting dependency tree to

the more normal form once it has been constructed. Over

a number of experiments, it turns out that there is around

a 2% overall increase in accuracy if the subject is taken

to be the head [14]. We therefore make this unintuitive

switch–if we can identify the constituents of a verbless

sentence more easily by taking the subject as the head,

then the extra cost of inverting this move seems well

worth paying.

• The PATB uses a very fine-grained set of tags, which

carry a great deal of syntactically relevant information

(particularly case-marking). This tagset contains 306 tags,

with for instance 47 tags for different kinds of verb and 44

for different kinds of noun. In particular, case-marking,

and to a lesser extent number and gender marking, in

Arabic is carried by diacritics which are unwritten in

normal text. Thus the only way to extract this information

is by making guesses based on the syntactic context.
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Given that the task of the parser is to determine the

syntactic context, it is hard to see how reliable guesses

about it can be made prior to parsing. Marton et al.

[18], for instance, note that adding the case-marking

tags supplied by MADA actually decreases the accuracy,

because the parser gives considerable weight to them, but

the tagger only manages to assign them correctly in 86%

of cases. A feature which is both significant and hard to

determine is not something a reliable cue.

We therefore collapsed this set to a coarse-grained

set with 39 distinct tags (e.g. PATB has 305 fine-

grained tags which become 39 coarse-grained tags, for

instance, the fine-grained tags ADJ+CASE_DEF_GEN,

ADJ+CASE_INDEF_GEN, ADJ+CASE_INDEF_ACC,

ADJ+NSUFF_FEM_SG+CASE_INDEF_ACC are grou-

ped to ADJ). We can tag this set to just over 96%

accuracy, which is comparable to the performance of

other taggers [19], [20], [21], [22] on this kind of tagset,

whereas we only achieve 91% with the full 306 tags

(similarly MADA obtains 96.6% on the coarse-grained

tagset but only 93.6% on the fine-grained (356-element)

one).

The dependency trees to be used by the parsers also have

to be labelled with functional relations. Since dependency

grammar is entirely concerned with relations between words,

any information beyond simple constituency has to be

encoded in the labels on the relations. Such relations tend not

be explicitly marked in phrase-structure trees, since they are

often implied by the label of the local tree. We therefore have

to impose a set of functional relations. We cannot use a very

fine-grained set of labels here, because the information in the

PATB simply does not provide enough information. The only

labels we can assign with any degree of confidence relate

to conjunctions, and to the subject and object of the verb

(the PATB assigns distinct labels to the subject and object in

verb-initial sentences, so we can use these to determine the

subject and object).

III. THE TAGGERS

We are interested in the effects of incorrect tagging on the

behaviour of the parsers. In order to ensure that the results

are not just an artefact of the mistakes made by a specific

tagger, we have carried out all our experiments using four

tagged versions of the corpus. In each experiment, we have

used the same tagger for both training and testing.

A. Gold-standard tags

The words in the PATB are already tagged. This provides

us with a benchmark to evaluate the consequences of using

taggers that do not provide 100% accuracy: we are unlikely

to achieve higher accuracy when we tag the test sets using

one of the taggers below than we obtain when we use the

original tags of the PATB. In subsequent discussion we refer

ABBREV

ADJ

ADV

CONJ

CV

CVSUFF_DO

DEM_PRON

DET

DET+ADJ

DET+NOUN

DET+NOUN_PROP

DET+NUM

EMPH_PART

EXCEPT_PART

FOCUS_PART

FUT+IV

INTERJ

INTERROG_PART

IV

IVSUFF_DO

LATIN

NEG_PART

NOUN

NOUN_PROP

NO_FUNC

NUM

PART

POSS_PRON

PREP

PRON

PUNC

PV

PVSUFF_DO

RC_PART

REL_ADV

REL_PRON

SUB

SUB_CONJ

VERB_PART

Fig. 2. Our coarse-grained tagset.

to the tags we obtain this way as gold-standard tags. Even these

tags are not guaranteed to be 100% accurate–they have been

obtained by some mixture of automatic and manual tagging,

and both of these are liable to error. However, this is the most

accurate available set of tags, and furthermore any systematic

errors will also appear in the training set, and hence may be

compensated for when the parsers are trained. We use this set

for reference–if for some experiment we obtain N accuracy

with the gold tags and N ′ using one of the taggers then we

know that the tagger has introduced an error of N −N ′.
The tags in the PATB itself are very fine-grained, since

the tags assigned to nouns include gender, number and case

markers, and verb tags are also marked for number and gender.

We follow common practice in discarding this very fine-

grained information, reducing the 306 tags that appear in the

PATB to a more coarse-grained set with 39 tags that are shown

in Fig. 2 (reducing the granularity of the PATB tagset is fairly

common practice, since some of the most fine-grained tags are

very hard indeed to distinguish simply on the basis of local

clues, which are what most taggers depend on. Unfortunately

there is no universally accepted coarse-grained version, so we

simply made what seemed like a reasonable compromise).3

We will return to this in Section V.

B. AMIRA

The first tagger we use is AMIRA 2.0 [1]. This tagger is

reported to achieve around 97% accuracy, which is about as

good as any reported system.
Using AMIRA, however, highlights one of the problems

that arise when you try to connect black-boxes together. The

parsers require training data, for which we are using the PATB.

The PATB is tagged, but with different tags from the ones used

by AMIRA. In order to use AMIRA to tag the text before

inputting it to the parsers, we will have to translate between

the two tagsets.
This is a non-trivial task. The two tagsets have dif-

ferent numbers of tags (AMIRA has 29 tags, whereas

3We used the extended reduced tagset (ERTS) setting for AMIRA and then
removed inflectional markers. This produced a set of tags that is very similar
to the 25 tags in the Bies/RTS tagset, but with distinctions between nouns,
adjectives and cardinal numbers. Although the Bies/RTS tagset is taken as
a norm, there are numerous minor variants in use: Marton et al. [18], for
instance collapse a number of POS tags but add other distinctions. This is
perhaps unsurprising. Given the influence that using a specific tagset has on
system performance, people will want to try out different tagsets. It does,
however, make it difficult to maintain strict comparability.
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our coarse-grained version of the PATB tagset has 39),

and more importantly they make different kinds of dis-

tinctions. The AMIRA tagset, for instance, uses one tag

(RP) to cover a range of particles which are subdi-

vided into eight subclasses (EMPH_PART, EXCEPT_PART,

FOCUS_PART, INTERROG_PART, RC_PART, NEG_P-

ART, PART, VERB_PART) in the PATB; and it uses several

tags to describe different kinds of verbs (VB, VBG, VBD,

VBN, VBP) where the PATB just uses three (IV, PV, CV).

Places where the AMIRA tagset is coarser than the PATB

tagset are particularly problematic. It seems plausible, for

instance, that the different kinds of particle enter into different

syntactic relationships. If we cannot tell the parsers which kind

of particle some word is, then they are not going to be able

to be very intelligent about guessing what its relationships

with other words are going to be (this might have knock-on

effects, so that it may not just be this word that is affected).

Thus tagging using AMIRA is bound to introduce problems

that would not arise if AMIRA used the same tagset as the

PATB.

Places where the AMIRA tagset is finer than the PATB

tagset are also awkward, because it may be that distinctions

that are missing from the PATB tagset would have been useful.

In order to overcome these problems, we use

transformation-based retagging (TBR) [23], [24] to recover

from the mismatches between the two tagsets. TBR collects

statistics about the local context in which erroneous tags

have been assigned, and attempts to find rules based on this

information to apply after the original tagger has been run.

This technique will produce a small improvement in the

performance of almost any tagger. Typically, taggers that

achieve scores in the mid 90s are boosted by 2-3%–the lower

the original accuracy, the greater the typical improvement.

When we used it for comparing the original tags produced

by AMIRA and the gold tags the score improved from

around 87% to just over 97%. Some of this improvement

arises simply from rules that spot that the two tagsets use

different names for the same things (e.g. that things that are

called JJ are called ADJ in the PATB) but some of it comes

from learning how to split coarse-grained AMIRA tags into

fine-grained PATB ones.

There is a further problem with using AMIRA. The fact that

Arabic allows a range of items to be cliticised (conjunctions,

prepositions, pronouns) makes it difficult even to tokenise text

reliably. This means that not only does AMIRA sometimes

assign different tags from the PATB, it sometimes even splits

the text into different numbers of tokens. That makes it even

harder to use AMIRA to tag texts in order to use parsers that

have been trained using the PATB, since the tagged versions

of the texts do not even contain the same numbers of tokens.

Here, we used AMIRA v2.0 with Yamcha toolkit v0.33.4

4http://chasen.org/~taku/software/yamcha/.

C. MADA

MADA [2] uses a slightly extended version of the PATB

(Part 1 v3) tagset, with some extra classification of nouns (e.g.

NOUN_QUANT and NOUN_NUM). The fine-grained MADA

tagset contains 352 tags, compared to the normal PATB set

of 306, and the coarse version has 57, compared to the 39

that we obtain by omitting inflectional markers (case, number,

gender). Fortunately the MADA tags are a strict superset of

the standard PATB set, and hence can be reduced to either

the standard fine-grained version or our coarse version by

omitting the extra classification of nouns, so we do not have

the same problems using MADA with the PATB as we have

with AMIRA.

We also applied TBR to the output of MADA, because

although we were not faced with mapping incompatible tagsets

in the same way as with AMIRA, using TBR nearly always

provides a small improvement, amounting in this case to an

increase from 94% to 96.6%. When we refer to AMIRA and

MADA below, we will always be talking about the results of

using these taggers with TBR.

Here, we used MADA 3.1 with SVMTools v1.3.15 and

SRI’s Language Modeling Toolkit (SRLIM) v1.5.126 and

Standard Arabic Morphological Analyser (SAMA) v3.1

(catalog number LDC2010L01) from the LDC.7

D. Maximum-likelihood tagger

We also use an in-house maximum-likelihood (MXL)

Arabic tagger [3]. We will simply outline the basic principles

that it is based on and note its accuracy here.

MXL operates in two stages, as follows:

• In the first stage we use two simple kinds of statistic: (i)

the conditional likelihood that a word which starts with

the same three letters or ends with the same three letters

as the one we are trying to tag has a given tag, and (ii) the

transition probabilities between tags. We use a weighted

combination of these to produce a maximum-likelihood

guess at the current tag. This process produces about 91%

accuracy.

• We then use TBR to refine the original set of hypotheses,

leading to a final accuracy of 96.4%. It is noteworthy

that adding TBR to a tagger whose initial accuracy is

significantly lower than that of MADA and AMIRA

brings it up to about the same level.

The advantage of this tagger is that because it was trained

on the PATB, the tags it uses are exactly the PATB tags. We

therefore do not need to overcome problems associated with

mismatches between tagsets.

5http://www.lsi.upc.edu/~nlp/SVMTool/
6http://www.speech.sri.com/projects/srilm/download.html
7http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=

LDC2010L01
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IV. THE PARSERS

The parsers we use are data-driven dependency parsers. The

parsers are given a representation of a set of dependency trees,

and they infer rules that will enable them to parse unseen texts.

The key advantages of these parsers are that they are robust

(they will do something no matter what the input) and fairly

fast. They are not perfectly accurate, but then no parser that

is perfectly accurate has yet been developed.

A number of such tools are available. We have chosen

MALTParser v1.5.28 and MSTParser v0.29 as examples of

different approaches that are reported as achieving impressive

results. The details of how these parsers work are outside the

scope of the current paper. For us they are simply black-boxes

which require tagged text as input, and whose performance

is likely to worsen if the text is incorrectly tagged. The key

question is: if a tagger assigns tags with accuracy T and

a parser assigns roles to words with accuracy P , will the

combination of the tagger and parser achieve T × P or more

or less?

V. EXPERIMENTS

A. Individual combinations of parsers and taggers

We are principally concerned with the interactions between

the parsers and taggers. However, given that the parsers have

to be trained on a corpus of trees, it is also of interest to see

how their accuracy varies as the size of the dataset varies. In

general, the performance of data-driven systems improves as

the amount of data available to them increases.

Collecting large training sets, however, is very time-

consuming, and the time to train a system also goes up, often

non-linearly, as the amount of training data increases. Looking

at the way the performance changes with the size of the

training set can provide clues about the maximum that can be

attained by a given tool and about the amount of data required

to achieve a specified accuracy. In most of the experiments

below, then, we plot accuracy against size of training data.

This also provides a number of insights into how the taggers

and parsers interact.

For the experiments described below, both parsers were

trained on 16 datasets, starting with the first 250 sentences

and incrementing by 250 sentences up to a maximum of

4000. In the testing step, the last 1000 sentences (from 5000

sentences in PATB) are used to test both parsers after each

training step on one of the training datasets. Also for all the

experiments described below the label attachment score (LA),

i.e. the percentage of tokens with correct head and dependency

relation, and the unlabelled attachment score (UA), i.e. the

percentage of tokens with correct head, are used. The first

experiment shows the results when we used the gold tags: this

provides an upper bound for each parser–introducing mistakes

into the tagging will almost certainly lead to a decrease in

accuracy.

8http://www.maltparser.org/download.html
9http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html
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Fig. 3. Both parsers, labelled accuracy (LA) for gold standard tagging.
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Fig. 4. Labelled (LA) and unlabelled (UA) accuracies of MSTPArser, gold
standard tagging.

Fig. 3 shows exactly what you would expect: the accuracy

of the parsers increases as the size of the training set increases.

There is an initial sharp improvement, as the training set

increases to about 1000 sentences, and then in both cases the

improvement looks roughly linear in the size of the training

set. This clearly cannot continue indefinitely–the accuracy

must be capped at 100%, and presumably the actual limit is

somewhere below that. However, since neither of the plots has

become non-linear at the point where we were forced to stop

training, it is impossible to estimate the asymptotic accuracy.

The important thing to note is that the accuracy of the two

parsers is of the same order of magnitude, but that the errors

they make are not identical.

As noted above, the parsers both work with labelled depen-

dency trees. However, for a number of tasks the constituency

structure is all that is required. We have therefore compared

the results when simply looking at whether the right head-

dependent relations have been found (‘UA’ in Fig. 4) and at

whether the right labels have been assigned to these relations

(‘LA’). The results for this comparison are shown in Fig. 4

for MSTParser with the gold tags–the results are extremely

similar for all the tagger:parser combinations, so we have not

repeated them for other combinations.
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TABLE I
MALTPARSER AND MSTPARSER ACCURACIES, MULTIPLE TAGGERS

COMPARED WITH GOLD STANDARD TAGGING.

Parser Accuracy gold AMIRA MXL MADA

MSTParser
LA 79.3% 77.3% 78.2% 78.5%
UL 80.6% 78.7% 80% 79.8%

MALTParser
LA 77.8% 75% 76% 76.9%

UL 78.8% 76.3% 77.1% 78%

In the remaining experiments we will concentrate on scores

for labelled trees. In every case the scores for unlabelled ones

are about 2% higher, for all tagger:parser combinations and

training sets.

Table I shows the effects of combining the taggers and

parsers. In both cases we have included the results for the

gold tags as a benchmark.

Both MALTParser and MSTParser do better when trained

and tested with the corpus tagged by MXL or MADA than

when we used AMIRA, despite the fact that the three taggers

achieve very similar scores when viewed simply as taggers

(AMIRA 97%, MXL 96.4% and MADA 96.5%).

We considered two possible causes for this difference:

that it arises because of the difference between the tagsets

used by the taggers, or that it arises from the differences in

tokenisation.

Different tagsets: although the sizes of the two tagsets are

similar, the nature of the tags themselves is different. The

MXL tags, which are a coarse-grained variant of the tags used

in the PATB itself, seem to provide more information about

syntactic relations than the AMIRA set. In particular, the fine-

grained distinctions between singular and plural nouns, and

between various verb forms, that AMIRA provides are not

actually very useful when trying to see whether two items are

related.

It may be that the information about particles that MXL

is sensitive to but AMIRA is not is likely to be useful for

parsing: knowing, for instance, that some particle expects the

next item to be a verb-initial sentence, whereas another expects

a subject-initial sentence, may well be useful.

In order to see whether this was the cause of the difference,

we constructed a version of the corpus where we replaced

PATB tags by a coarse copy of the AMIRA tags, using

hand-coded substitution rules, and then replaced these by

fine-grained AMIRA tags where the substituted tags were

compatible with tags actually assigned by AMIRA. Thus if

the PATB assigned a word the tag ADJ we replaced it by

the AMIRA tag JJ. We then inspected the tags assigned by

AMIRA itself: if the tag assigned to this word was one of

AMIRA’s fine-grained adjective tags, e.g. JJR, then we used

this instead. If, on the other hand, the hand-coded replacement

for the PATB tag was incompatible with the one assigned by

AMIRA then we retained the hand-coded one. This gave us

a version of the corpus where all the tags were compatible

with the tags in the PATB, but where some were AMIRA

refinements of the originals.

Using the gold standard tags obtained directly from the

PATB scores 78%, using the AMIRA tagset scores 76.5%.

The only differences are that where the PATB tag translates

to an AMIRA tag, and the tag assigned by AMIRA is

compatible with the translation but is finer-grained, we have

used the one assigned by AMIRA; and that where several

PATB tags translate to the same AMIRA tag (e.g. particles)

we have simply used the commonest translation. These results

strongly suggest that the choice of tags is significant, since

in this experiment the two sets are compatible at every point,

but the LA-AMIRA tags include fine-grained distinctions

that are made by AMIRA but not ones that are made in the

PATB. Thus the decrease in accuracy of the parser must be

due solely to the loss of information that arises when we

merge PATB tags.

Tokenisation: the other potential problem is that AMIRA’s

tokeniser segments the text differently from the way that it is

segmented in the PATB. In the PATB, for instance, the string

½Ë
	
YË l*lk “therefore” is treated as a single subordinating

conjunction, whereas AMIRA breaks it into a preposition È l
“for” and a determiner ½Ë 	X *lk “that.” Similarly, in the PATB

the string ú


Í ly “mine” is split into two tokens (a preposition

È l “for,” and a pronoun ø
 y “me”), whereas AMIRA treats it

as a single proper noun. This caused us problems when trying

to use AMIRA to tag the treebank, since the leaves in the trees

did not always correspond to tokens in the output of AMIRA.

The difference in tokenisation affected around 2% of tokens,

so since the parser performed around 2% worse with AMIRA

than with the other taggers it seemed plausible that this was

the source of the discrepancy.

In order to investigate the effect of this problem, we

produced a version of the corpus where we replaced sequences

where the PATB had a single token and AMIRA had several

by the hand-coded AMIRA equivalent of the PATB tag, and

likewise where the PATB had several tokens and AMIRA had

one by the sequence of hand-coded AMIRA equivalents of the

PATB tags.

This gave us a version of the treebank that had the same

number of tokens as the original PATB, with as many items

as possible given the tags assigned by AMIRA and the others

given hand-coded AMIRA equivalents of the original PATB

tags. The results suggest that this is not the source of the

problem, since AMIRA produces almost identical results (no

difference to three significant figures) no matter whether its

own tokeniser or the tokenisation used in the PATB is used.

B. Merging combinations

A given tagger:parser combination will make errors. If two

such combinations produce different parents for some word,

then at least one of them must be wrong. So if we take the

output of two combinations and reject all instances of words

where the two suggest different parents for a word, we must

improve the precision, because we will be throwing away items

where we know that one of the combinations has made a
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TABLE II
PRECISION (P), RECALL (R) AND F-SCORE (F) FOR DIFFERENT

TAGGER1:PARSER1+TAGGER2:PARSER2 COMBINATIONS

MSTParser MALTParser Precision (P) Recall (R) F-score (F)

gold

gold 88% 71% 0.79
AMIRA 86% 60% 0.71
MXL 88% 59% 0.71
MADA 89% 57% 0.69

AMIRA

gold 88% 57% 0.70
AMIRA 86% 68% 0.76

MXL 88% 67% 0.76
MADA 88% 65% 0.75

MXL

gold 88% 59% 0.70
AMIRA 83% 72% 0.77

MXL 87% 56% 0.68
MADA 88% 67% 0.76

MADA

gold 88% 57% 0.69
AMIRA 84% 69% 0.76
MXL 87% 67% 0.76
MADA 87% 69% 0.77

mistake. The other one may, of course, have got the parent

for this word right, but since we cannot tell which has got

it wrong and which has got it right, we have to distrust the

output of each. We will also decrease the recall, because there

will now be items for which we have discarded the parents

suggested by the parsers, and hence we will end up with no

parent assigned to them. The question is: does the increase in

precision compensate for the decrease in recall?

If the sets of mistakes that were made by the two combina-

tions were complementary, then the precision of the merged

output would be 1 and the recall would be 1−(w1+w2), where

wi is the error rate of combination i. The F-score for the merge

if the combinations have complementary distributions would

thus be (1− (w1 +w2))/(1− (w1 + w2)/2). If, on the other

hand, the two combinations made exactly the same mistakes

then the F-score for the merge would be (1 − w1). In other

words, for combinations with similar accuracy, the highest

precision will come if the errors they make are complementary,

and the highest F-score will come if they make identical errors.

Table II shows the precision, recall and F-score for all

possible pairs of combinations of tagger and parser, e.g.

that if you use MSTParser having tagged using AMIRA and

MALTParser having tagged using MADA then the precision

is 88%, the recall is 65% and the F-score is 75%. This table

includes cases where one or both the parsers were combined

with the gold tags. These cases are greyed out, because in any

real situation the gold tags would not be available.

Table II roughly bears out the observations above. The

best precision is generally obtained by using different

taggers for each part of the combination (so the best

precision for AMIRA+MSTParser comes from merging

it with MXL+MALTParser or MADA+MALTParser,

the best for MXL+MSTParser comes from merging

it with MADA+MALTParser, and the best for

MADA+MSTParser from merging it with MXL+MALTParser

(or MADA+MALTParser)); and the best F-score is generally

obtained by using the same tagger with the two parsers.

VI. CONCLUSIONS

The impetus for the current paper arose from a simple query:

what happens if you combine a tagger whose accuracy is T
with a parser whose accuracy is P ? It turns out that the answer

is often better than T × P . When, for instance, we combine

MSTParser, for which we get an accuracy of 79.3% when

using the gold tags, and MXL, whose accuracy is 96.4%, we

get 78.7%, which is noticeably greater than the 76.1% that you

would expect if the errors simply compounded one another. It

seems as though the fact that the training set contains the same

pattern of errors as the test set automatically provides a degree

of compensation.

Closer inspection shows that the nature of the tagsets has

a substantial effect. Because MXL uses the PATB tagset,

which was presumably chosen because it carried the kind of

information that is required for parsing, it interacted better

with both the parsers than AMIRA, which uses a general

purpose tagset which is not tuned to this task. The mismatch

between AMIRA’s built-in tokeniser and the tokenisation in

the treebank caused us some technical problems, but does not

seem to be a critical factor in the accuracy of the combination

of AMIRA with the two parsers.

We have also investigated the effects of merging the outputs

of pairs of tagger:parser combinations. The results here are

broadly as expected–the precision of the combination is always

better than the accuracy of either of the contributing pairs

(which is inevitable), and using a different tagger with each

parser in the combination produces the greatest improvement

in precision (which is what we expected, but it needed

confirmation).

The results above arise from investigating combinations of

specific tools–three taggers × two parsers. Are these results

compromised by the fact that we chose these specific tools,

or are there general lessons to be learnt? The taggers all

use different mechanisms and different information, and the

parsers also use substantially different approaches. The fact

that nonetheless we get fairly consistent results in Section

V-B suggests that there may be some robustness about the

conclusions. It seems that no matter which tagger and which

parser we use we get results that are better than you would

expect just by looking at the individual performance of the

components. The main result of the second set of experiments–

that taking the combined output of two different tagger:parser

combinations improves the precision–is almost inevitable, but

there is a tendency for combinations that involve different

taggers to achieve greater precision than ones where the two

parsers are combined with a single tagger.

It seems likely that this pattern would be repeated if other

parsers or taggers were used: mistakes made by a combination

of T and P could be caused either by T or by P . If T is

combined with some other parser P ′, then the mistakes caused

by T will almost certainly arise again, and will not be spotted

when the output of the two combinations is merged, whereas

a combination of another tagger T ′ with P ′ will not repeat

the mistakes introduced by T . Thus although our experiments
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were limited to a specific set of tools and a specific language

(as any experiments must be) we believe that the results are

likely to be applicable if other tools are used. The critical

issue is that the tools should be distinct, either using different

principles or different underlying data (training sets, rule sets),

so that they do indeed make mistakes in different places. This

observation is likely to transfer to other languages, not just

other tools for handling Arabic. If you have multiple taggers

and parsers which make distinct mistakes (which is likely to

happen if they are based on different principles or use different

features) then combining them will inevitably improve the

precision and is likely to also improve the F-score.
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