

Abstract—Business processes naturally integrate web
services implemented with different languages and technologies
and executed in heterogeneous environment. Usually the
integrated web services and their underlying infrastructure
used to exchange messages are not under the control of process
architects. This reflects the development and specifically
complicates the testing. In this paper a methodology for testing
of business processes is presented, which aims to enable
automatic test case generation for path coverage functional
testing, as well as to provide fault injection mechanisms for
negative functional testing. The methodology is supported by a
testing framework, called TASSA, that consists of several tools
for design time testing of business process described according
Web Service Business Process Execution Language (WS-
BPEL) standard. The framework follows the Service-Oriented
Architecture (SOA) principles and is validated through sample
business process scenarios.

I. INTRODUCTION

ERVICE-ORIENTED Architectures (SOA) allows
software applications to interoperate in a new way in

distributed environment. Currently, web services are the
most widely adopted technology for implementation of
SOA. In order to achieve a particular business objective,
they are composed in complex business processes following
Web Service Business Process Execution Language (WS-
BPEL) standard [1].

S

Testing business processes brings several challenges due

to the following reasons:

• Missing of graphical user interface of business process;

• Invocation of services which are external for business

process under test;

• Need of additional efforts and tools for testing third

party/external web services of the business process in

order to validate their quality;

• Possibility for usage of particular web service by

multiple business processes;

• Security issues established in distributed environment

such as authentication, authorization, data integrity and

privacy, etc.

The authors acknowledge the financial support by the National Scientific
Fund, Bulgarian Ministry of education, youth and science, grant agreement
No. DО02-182.

Implementation of business processes requires

composition of web services that are built and deployed on

heterogeneous platforms. These services are outside

organization boundaries and are very hard to be tested.

Furthermore, they could be unavailable for a given period of

time or in the worst case could be undeployed by their

provider. This in turn complicates the testing of the business

processes due to the necessity of emulation of the missing or

unavailable web services. Additional efforts are needed for

generation of appropriate message data, which will replace

the actual ones expected by the business process.

In order to address the above issues, the paper proposes a

methodology for testing of business processes. The

methodology covers the following testing activities: (1)

isolation of the business process from its partner web

services, (2) fault injection, and (3) test case generation and

execution. These activities are automated through

implementation of several tools, which are integrated in a

common framework, called TASSA providing end-to-end

testing of business processes described with BPEL.

The rest of the paper is organized as follows. Section II

describes the proposed methodology. Section III presents

TASA tools. Section IV is dedicated to the validation of the

methodology through sample business processes. Section V

gives brief description of the current BPEL testing

approaches and SOA testing methodologies. Section VI

concludes the paper.

II.TASSA METHODOLOGY

This Section describes the methodology that TASSA

framework implements. As was mentioned in the previous

Section the methodology covers three main approaches: (1)

Isolation of the business process from external partner web

services; (2) Injection of faults in the business process or

communication channel leading to unexpected behavior of

the process; and (3) Test case generation and management.

Each of them consists of three common steps:

1. Formal description of the business process with BPEL

TASSA methodology proposes formal description of the

business following WS-BPEL standard. Thus the logic of

the business process including sequences of events and

activities, state transitions and invocations of partner web

services becomes more comprehensible and traceable, which

Towards a Methodology for Testing of Business Processes

Sylvia Ilieva
Sofia University, Department of

Software engineering, 125
Tsarigradsko shosse Blvd., Block 2

1113 Sofia, Bulgaria
Email: sylvia@acad.bg

Ilina Manova
Rila Solutions, Acad. G. Bonchev

St., Building 27, 1113 Sofia,
Bulgaria

Email: ilinam@rila.bg

Dessislava Petrova-Antonova
Sofia University, Department of

Software engineering, 125
Tsarigradsko shosse Blvd., Block 2

1113 Sofia, Bulgaria
Email: d.petrova@fmi.uni-sofia.bg

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1315–1322

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 1315

in turn facilitates test case generation. This is due to the fact

that the core of the standard relies on the BPEL language,

which is XML based language having similar features to

those of imperative programming languages such as

variables, loops, branches, exception handling, etc.

2. Execution of set of activities in order to achieve the

specific goal of the approach

This step is specific for each approach and will be

described in detail in the next subsections of the paper.

3. Business process deployment

In order to be tested the transformed business process

need to be deployed on a suitable application server, which

in case of BPEL description of the process could be JBoss,

GlassFish, WebSphere and so on.

A. Isolation of the business process

The isolation of the business process from its partner web

services removes the external dependencies of the process.

Thus the business process could be tested even if particular

web service is not available or is not still developed.

The isolation of the business process under test includes

the following steps:

A.1. Identification of the web services that should be

isolated

This step includes identification of the web service

operations that should be simulated and the corresponding

messages exchanged during web service invocation. Next,

appropriate data are generated in order to replace the

messages expected by the process.

A.2. Preparation for execution of isolation

This step requires formal description of the data generated

on the previous step in order to be used as parameter that

will be passed to a particular tool performing isolation

activity. It includes definition of a message for invocation of

appropriate TASSA tool.

A.3. Business process transformation

This step produces transformed version of the business

process, in which the targeted web services are isolated. It is

performed according to the transformation rules defined on

the step 1.

After completion of the steps presented above the

business process can be executed without availability of its

partner web services. Thus it allows to be tested even if

some of its building blocks are under development. The

overall time for development will be reduced due to ability

for testing of the business process in parallel with its partner

web services.

B. Fault injection

The goal of the fault injection is to simulate faults during

message exchange of the business process and its partner

web services in order to generate negative test cases.

Currently covered by the methodology situations that could

be simulated are (1) overload of the communication channel

that leads to delay of sending or receiving a message, (2)

failure of the communication channel that leads to

impossibility of sending or receiving a message, (3) noise in

communication channel that leads to receiving a message

with syntax and structure errors, and (4) wrong business

logic of particular web service that leads to sending or

receiving a message with syntax errors in its data.

The fault injection of the business process includes the

following steps:

B.1. Description of faults that should be injected

This step requires description of the faults that will be

simulated and their parameters. The fault description

includes identification of the message exchanged when a

failure is expected to occur, modification of the

communication channel and the activity corresponding to

the identified message. It could be executed manually or

using TASSA framework.

B.2. Preparation for execution of injection

The step includes formal description of the faults as

parameters that will be passes to a particular tool performing

injection.. It includes preparation of a message for

invocation of appropriate TASSA tool.

B.3. Business process transformation

This step produces transformed version of the business

process, in which faults are injected. It is performed

according to the transformation rules defined on the

previous steps.

C. Test case generation and execution

Test case generation of the business process includes the

following steps:

C.1. Data dependency analysis of the business process

Data dependencies of the business process are analyzed in

order to find different execution paths. Possible solution is

to transform the business process into tree structure that

present the execution paths according to the values of the

business process’s variables.

C.2. Path selection

On this step a particular execution path of the business

process is selected. The variables from which the selected

path depends on are also identified.

C.3. Test data generation

This step requires generation of value for all variables

identified on the selected path. The values should be chosen

so that the business process to proceed on the desired path.

C.4. Isolation of the business process

This step produces transformed version of the business

process, in which all variables from which the selected path

depends on are replaced with their corresponding values

generated on the previous step.

III. TASSA TOOLS

The implementation of the TASSA framework follows

the methodology described in Section II. Several tools were

produced that are described in this Section. Since the BPEL

1316 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

is widely accepted language for description of business

processes, TASSA tools are implemented based on WS-

BPEL standard and are integrated in NetBeans environment.

A. Isolation tool

The Isolation Tool (IT) provides temporary removal of

BPEL process dependencies from one or more external web

services. This allows the tester to control the returned results

of web services and pre-determine the possible routines in

the BPEL process, as well as to continue testing even if a

particular web service is missing.

The BPEL process’s dependency upon partner services

can be described as follows:

• synchronous execution of operation provided by an

external service (Invoke activity in the BPEL process

description);

• asynchronous execution of operation provided by an

external Service (combination of Invoke and Receive

activity in the BPEL process description);

• unforced message receipt from external service (Pick

activity);

• sending message to external service (resulting from an

ingoing message);

• HumanTask activity, which requires human

intervention and which affects the application through

its output data (operator-entered values).

To eliminate the dependency upon Invoke activity the

following actions should be conducted:

• Modification of the process, where the relevant Invoke

activity is replaced with Assign activity to assign a

specific values to the output variable;

• When isolating the process from an activity a test

artifact should be created – a variant of the BPEL

process, in which the Invoke activity is replaced by an

Assign activity.

The other dependencies are handled in a similar way.

B. Fault injection tool

The main task of Fault Injection Tool (FIT) is to simulate

faults during message exchange in order to generate

negative test cases. The possible situations that are simulated

are described in Section II. FIT takes as input a BPEL

process under test, a list with failure parameters and a string

with values, which correspond to the arguments of the

activity causing the failure. It returns a transformed BPEL

process with simulated failure.

The fault injection process consists of the following steps:

• identification of message exchanged when the failure is

simulated;

• modification of communication channel, so that the

failures expected by the tester occur;

• modification of an activity that corresponds to the

message in order to send message to the proxy created

between the message sender and receiver;

• serialization of input arguments of the real receiver

(marshalling);

• invocation of the proxy;

• deserialization of output arguments and sending to the

real receiver (unmarshalling).

• Similar steps are performed for the response of the

invocation.

C. Value generation tool

The goal of Value Generation Tool (VGT) is to generate

valid values for all field of a given variable defined with

XML Schema Definition (XSD) in the BPEL process.

Currently the main functionality of VGT is provided by a

tool, called WS-TAXI, which is developed by a research

team of Software Engineering Research Laboratory at the

ISTI (Istituto di Scienza e Tecnologie dell'Informazione) in

Pisa. WS-TAXI generates compliant XML instances from a

given XML Schema by using well-known Category

Partition technique. VGT takes as input a BPEL process

under test and an array with identifiers of variables, whose

values need to be generated.

D. Data dependency analysis tool

Data Dependency Analysis Tool (DDAT) produces a list

of variables for a given execution path in the BPEL process.

It receives as input a BPEL process and an array of unique

identifiers of activities, describing the path that the BPEL

process needs to follow.

During data dependency analysis three operations

implemented in the TASSA framework are invoked:

Analyze, Emulate and Apply. The operation Analyze

provided by DDAT tool returns a list of conditions and for

each condition a list of variables, belonging to that

condition, and location where the variables have to be

injected. Its output is represented in text mode. The

operation Evaluate receives the list of conditions and the

corresponding variable values and checks whether the

conditions are evaluated appropriately. The input for the

operation Apply is the BPEL process, the specific injection

locations, and the specific values to inject. It calls IT of the

TASSA framework by which Assign activities are inserted

before the corresponding conditions in order to set the

variable values. The output of the operation Apply is a

transformed BPEL process, which can be executed

following the desired path.

E. Test case generation tool

Test Case Generation Tool (TCGT) provides test cases

for all executable paths of the BPEL process. It is

responsible for storage and of the test cases and thus

supports conduction of regression tests.

The relationships among TASSA tools are presented in

Fig. 1.

Table I shows the correspondence of the TASSA tools to

the proposed methodology. It describes the applicability of

each tool to the methodology’s steps.

F. Sample usage scenario of the tools

The TASSA tools described above could be used

performing the following steps:

SYLVIA ILIEVA, ILINA MANOVA ET AL.: TOWARDS A METHODOLOGY FOR TESTING OF BUSINESS PROCESSES 1317

Step 1: Use DDAT tool to analyze the data dependencies

of the BPEL process and to find the executable paths as well

as their underlying variables.

Step 2: Use WS-TAXI tool to generate variable values for

each path so the process execution to follow it.

Step 3: Use IT tool to replace path variables with

constants, which values are generated from the WS-TAXI

tool.

Step 4: If negative tests need to be performed than use

FIT tool to inject faults in the BPEL process.

Step 5: If positive tests need to be performed use IT tool

to remove external dependencies from partner web services

of the BPEL process.

Step 6: Deploy BPEL process on an application server.

Step 7: Execute test cases.

Step 8: Compare expected with obtained results from test

case execution.

IV. VALIDATION OF THE METHODOLOGY

TASSA methodology is validated through usage of the

implemented tools for testing of sample business processes

described with BPEL.

A. Business processes used for validation

Three sample business processes are used for validation

of the proposed methodology.

Order Music Process (OMP) is invokes three partner web

services. Two of them, which are external, are used for e-

mail validation and checking of music tracks. The third one

provides offers to the customers and is implemented by the

TASSA team. The process handles simple order of music

tracks. It consists of four main steps. First, the customer

provides his/her personal information like name and e-mail

address and the music artist or album he/she is interested in.

Next, a partner web service verifies the e-mail address

provided by the customer. If the e-mail address is wrong, the

business processes ends with informative message. If the e-

mail is correct, the customer’s order is processed. Then, the

process invokes another partner web service that provides

information about the available music tracks of the chosen

artist or album. Finally, a third partner web service

calculates the prices of the music tracks and makes an offer

to the customer. If the order is less than 100 EUR the

calculated price is shown to the customer and he/she can buy

the music tracks of his/her favorite artist or album. If the

order is greater than 100 EUR a message is sent to the

customer that the company could offer him a better price for

that quantity.

The Travel Reservations Process (TRP) consists of five

tasks: receiving of request for reservation (receive activity),

creating an airplane reservation (invoke activity), reserving a

vehicle (invoke activity), reserving a hotel (invoke activity)

and reply of the request (reply activity). Also the process has

three conditional activities. The first conditional activity

checks if there is airplane reservation for the customer. If

there is not, then the process invokes the Airline Reservation

web service. Otherwise, the process skips that invoke. The

second conditional activity checks if there is a reserved

vehicle for the customer. If there is no vehicle reservation,

then the process invokes the Vehicle Reservation web

service. Otherwise, the web service is skipped. The third

conditional activity checks if there is a hotel reservation for

the customer. If there is no reservation then the process

invokes the Hotel Reservation web service. Otherwise the

process continues without this web service call.

Order Data Verifier Process (ODVP) validates the clients

order data, namely email, credit card number and zip code.

The process consists of four web services. Email web

service is used for email validation. Credit Card web service

validates credit card number and type. Currency Convertor

web service gets conversion rate from one currency to

another currency. Zip Code web service validates a zip code

and returns its USA state abbreviation, latitude and

longitude in decimal degrees.

B. Validation results

The TASSA methodology was applied to all business

processes presented above. In order to illustrate the usage of

the TASSA tools, sample scenarios showing their

functionality in the context of different business processes

are chosen and presented. Complete description of the

Fig. 1 TASSA tools

TABLE I.
CORRESPONDENCE OF THE TASSA TOOLS TO THE

METHODOLOGY

TASSA tool Methodology step

IT Step A.3

FIT Step B.3

VGT Step A.1, Step B.1, Step C.3

DDAT Step C.1, Step C.2

TCGT
Automates the execution of all TASSA tools
providing managing capabilities

1318 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

testing activities and obtained results of the methodology

application can be found in [6], [7], [8], [20].

1. Data dependency analysis

Consider the TRP example. Suppose that the invocation

of the Airline Reservation web service and the Hotel

reservation web service need to be tested. Therefore, the

process has to satisfy the first and the third conditions

described in previous section. Fig. 2 presents the results

form data dependency analysis performed by the DDAT [6].

Fig. 2 Data dependency analysis of the Travel Reservation Process

The returned result set consists of two conditions. Each of

them is supplemented with its place in the process, and the

variables that determine its outcome. This information is

then used to modify the business process in order to follow

preliminary specified execution path. If appropriate values

(satisfying the cited conditions) of the variables are injected

at the correct place (just before entering the first conditional

activity), the desired web services will be invoked.

2. Web service isolation and fault injection

Suppose that ODVP needs to be isolated from its partner

web services. Fig. 3 shows an invoke activity, called

CardValidatorInvoke, that is responsible for invocation of

web service for validation of client credit card number.

<invoke name="CardValidatorInvoke"

 partnerLink="CardValidatorPartner"

 operation="Validate_CreditCard"

 xmlns:tns="http://www.Softwaremaker.Net/

 WebServices/" portType=

 "tns:ValidatorSoap"

 inputVariable="Validate_CreditCardIn"

 outputVariable="Validate_CreditCardOut">

</invoke>

Fig. 3 Invoke activity before process transformation

Fig. 4 shows transformation of the above activity after

execution of FIT and IT of the TASSA framework.

As can be seen from Fig. 3 and Fig. 4, the Invoke activity,

named CardValidatorInvoke, is enclosed with two additional

Assign activities.

The first Assign activity initializes the input parameters of

the ProxyInvoke operation of FIT. The parameters are as

follows:

• Serialized input arguments of card validator operation

of Credit Card Validator web service;

• End point address of the Credit Card Validator web

service;

• Wait interval initialized with 20;

• Error factor initialized with 0.

The second Assign activity copies deserialized result from

invocation of the ProxyInvoke operation of FIT to the output

variable of the Credit Card web service. In addition,

CardValidatorInvoke activity invokes the ProxyInvoke

operation instead actual Credit Card web service.

<assign name="Assign1">

 <copy><from>

 sxxf:doMarshal($Validate_CreditCardIn.parameters)

 </from><to>

 $ProxyInvokeOperationIn.operationIn/tassaP:part1

 </to></copy>

 <copy><from>

 'http://www.softwaremaker.net/webservices/

 swm/validator/validator.asmx?WSDL'

 </from><to>

 $ProxyInvokeOperationIn.operationIn/

 tassaP:endpoint

 </to></copy>

 <copy><from>20</from><to>

 $ProxyInvokeOperationIn.operationIn/tassaP:wait

 </to></copy>

 <copy><from>0</from><to>

 $ProxyInvokeOperationIn.operationIn/

 tassaP:errorsFactor

 </to></copy>

</assign>

<invoke xmlns:tns="http://www.rila.com/tassa/ProxyIn-

voke" inputVariable="ProxyInvokeOperationIn"

name="ZipCodeInvoke" operation="ProxyInvokeOperation"

outputVariable="ProxyInvokeOperationOut"

partnerLink="PartnerLink1" portType="tns:ProxyInvoke-

PortType"/>

<assign name="Assign2">

 <copy>

 <from>

 sxxf:doUnMarshal($ProxyInvokeOperationOut.part2)

 </from>

 <to part="parameters"

 variable="Validate_CreditCardOut"/>

 </copy>

</assign>

Fig. 4 Invoke activity after process transformation

The results form transformation of the process and

execution of the generated test cases are presented in [7].

3. Negative test case generation

The last example shows test case generation for OMP

when FIT is applied.

In order to illustrate the faults that can be simulated with

the FIT, four test cases are defined as follows:

• Test Case 1: Message delay;

• Test Case 2: Interruption;

• Test Case 3: Noise in the message structure;

• Test Case 4: Noise in the message data.

To prove the fault injection against normal behavior of

the process first additional test case should be observed:

• Test Case 0: No fault injection (normal behavior)

The generated test cases differ in the following

characteristics:

• Failure parameters – describe the faults that FIT

simulates. The possible failure parameters are

presented in Table II.

• Activity – the activity that will be injected with faults;

• Input data – the test data put at the input of the business

processes sample.

SYLVIA ILIEVA, ILINA MANOVA ET AL.: TOWARDS A METHODOLOGY FOR TESTING OF BUSINESS PROCESSES 1319

TABLE III.
FAILURE PARAMETERS

Parameter Description

Errors Factor

Integer value defining the kind of error that will
be injected (1-100 – insert errors in the data,
which would possible break the XML structure;
0 – usually used with Wait Interval to delay the
message; - 1 – replace the original values in the
message, usually used with Data Pool Location
and TAXI Web Service Endpoint Address ; -2
–interrupt the message;)

Wait Interval
an integer value that instructs the IWS how
many seconds to delay the message

End Point Address the end point address of the partner web service

Data Pool Location
the location address of predefined values that
will be generated by TAXI Web Service in case
of Error Factor -1

TAXI Web Service
Endpoint Address

the end point address of the TAXI Web Service
(TAXI-WS) that will be used to generate values
in case of Error Factor -1

Each test case is validated against particular pass criteria

that define the expected output of the case. The broad

description of the expected result per test case is as follows:

• Test Case 0: No fault injection – the expected output

without fault injection is a meaningful, well formed

message that is executed for a given time interval (t).

• Test Case 1: Message delay – the expected output with

a message delay is a meaningful, well formed message

that is executed in time interval t + T, where T is the

delay given as a failure parameter.

• Test Case 2: Interruption – the expected output when

an interruption happens is an error message and the

time interval is almost the same as the time interval t.

• Test Case 3: Noise in the message structure – the

expected output is not a meaningful, well formed

message but an error message, because of wrong

structure (in few tests when the probability of

appearance of corrupted data is low, the test may fall in

Test Case 4)

• Test Case 4: Noise in the message data – the expected

output is a well formed message that depending on the

injected data will derive unexpected workflow or data

values. Hence the output in this case will be similar to

that in Test Case 0 with some diversion.

Following the above definition, a set of test cases was

executed. The results form execution of the test cases are

presented in [8].

V. RELATED WORK

This section presents an overview of the existing

approaches for testing of BPEL processes. It also describes

the current testing methodologies for service-based

applications (SBAs) describing their key features.

A. BPEL testing approaches

The current research on testing business processes is

mainly based on formal or semi-formal approaches, most of

which generate abstract test cases that cannot be executed

automatically.

A large number of approaches for validation of BPEL

processes are based on transformation of the process under

test to an intermediate model for which formal validations

are well known. Transformations based on popular

mathematical formalisms such as Petri Nets [9], [10], [11],

process algebra [12] and state machines [13], [14], [15] are

proposed. They are mainly used for static BPEL analysis. In

those approaches data dependencies are not considered and

produced test specifications are abstract. Therefore, an

automated support for test generation and execution is not

provided.

Another group of approaches rely on transformations

based on Control Flow Graph (CFG) [16], [17], UML [18]

and XML [19]. The framework proposed in [16] introduces

a number of strategies for generation of test cases from an

intermediate model which is an extension of a CFG. The

strategies include full coverage, branch coverage as well as

user customized test generation. The framework specified in

[17] implements only basic path testing strategy to generate

test specifications from a CFG. Data dependencies are

derived by the BPEL process automatically but particular

values should be specified by the testers. In [18] a test

framework which uses UML activity diagrams to generate

test specifications is proposed. Test specifications are

mapped to a TTCN-3 executable test format and can be run

only by tools supporting TTCN-3 format. The framework

presented in [19] uses a specialized BPEL-level testing

language to describe interactions with a BPEL process to be

carried out in a test case. The generation of test cases is not

fully automated and developers have to manually prepare a

large amount of coherent XML data and XPath expression

to compose a test case.

B. SOA testing methodologies

Despite the presence of various approaches and tools for

testing of SBAs, the number of methodologies describing

the complete process of testing is still limited.

If testing teams try to follow a classical methodology for

testing, they soon will realize that it cannot be done. This is

due to the fact that SOA has unique architecture ecology and

own set of protocols [1]. Therefore, SOA testing tools

should be able to test components without user interface and

provide environment, communicate with service brokers as

well as interpret message sent through Enterprise Service

Bus (ESB).

A strategy for SOA testing is presented in [2]. It describes

the key notions of SOA testing focusing on SOA test plan.

The creation of SOA test plan starts with domain

understanding and definition of testing approach. Three

basic groups of testing approaches are identified, namely

top-down, bottom-up and system. Since service performance

is a key for success of SOA, a special attention is given to

the performance testing. The proposed strategy requires

testing on three main levels: Information level, Services

level and Process level. All testing issues are summarized in

a step-by-step guide, which consists of several steps. The

first two steps require definition of testing domain and

architectural objectives. Next, design review and test

planning should be performed. On the fourth step, a

1320 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

functional testing approach is created. Further, functional

performance and SLAs requirements need to be described.

The next four steps require definition of approaches for data

layer, service layer, policy layer and process layer testing.

Further on, the strategy continues with service simulation

and creation of core scenarios and user defined compliance

rules. Finally, SOA testing suit should be selected, on which

tests will be executed. Four types of testing are considered:

Unit testing, Functional testing, Regression testing, and

Compliance and validation testing. The strategy includes

also looping back to design and development as well as

design of approaches for design-time and run-time

diagnostics.

The SOA testing methodology presented in [3] defines

fours levels of testing. Service level testing requires testing

of services in isolation through validation of the request-

response messages according to the requirements. Process

level testing includes validation of all possible process

scenarios enabled by the services. The next level requires

end-to-end testing, where user applications are validated

according to the functional and nonfunctional requirements.

The regression testing is performed on the last level in order

to ensure the stability and availability of the system under

test across SOA lifecycle. On the first two levels functional,

security, performance and governance aspects are tested.

The proposed methodology could follow bottom-up as well

as top-down approach.

In [4] the SOA testing is categorized in the following

phases. The first phase requires governance testing. It aims

to determine if SOA policies are enforced. The second phase

is performed on a service-component level. It checks if the

basic functionality of the functions and components

complies the specification. On the next phase a service level

testing is conducted. Its goal is to ensure that the services

meet project requirements as well as business and

operational requirements of other processes, which use

them. The integration test phase is focused on the interfaces

of the services. It checks the service behavior and data

exchange between services. The process level testing

addresses the service orchestration. System level test phase

determine if SOA technical solution provides the specified

business requirements and meets the user acceptance

criteria. The final test phase requires security testing. The

proposed methodology also defines the types of testing that

is performed on each phase. For example, the service-

component test phase requires functional, performance,

interoperability, backward compatibility, compliance and

security testing. The interoperability and backward

compatibility are missing in the service level testing.

HexSOA Test Model provides a methodology to

implement and adapt 16 best practices obtained from

previous SOA testing assignments of the Krosstech

Solutions Company [5]. It defines the types of testing, which

are performed on each phase of application development,

namely functional, performance, interoperability,

compliance and security. The model is based on four

strategies. The unit test strategy requires unit testing to be

executed for all services of the SOA system. WSDL

standard, interoperability, web service security, business

logic, graphical user interface (GUI) and performance

benchmark should be validate on this phase. In contrast to

other methodologies, the business process testing is also

performed on this phase. Service emulation is proposed in

case of missing or disabled services. Integration test strategy

aims to validate integration layers of the SOA system and its

pathways. Integration layers include web services, middle-

tire services, services exposing functionality of the legacy

systems, etc. This phase is more focused on the business

processes rather than on the code and GUI. Functional test

automation strategy aims to identify recordable test cases,

create test scripts, interpret test results and report them to the

development team. Performance test strategy requires

performance end to end testing of the SOA system.

The presented above methodologies provide overview of

the testing activities performed on different layers of the

service-oriented application under test, which are called

levels or phases. They present SOA testing from a high level

perspective, where details about the testing activities

performed on each level is missing. In contrast, TASSA

methodology is focused on the business process level testing

providing description of the required activities in a step-by-

step manner. It defines concrete testing approaches and

shows not only what should be done but how it should be

done as well. Since a lot of tools for functional testing of

single web services exist, the proposed methodology does

not consider testing activities on a web service level.

VI. CONCLUSION

The TASSA framework is a methodology and a set of

tools for testing business conforming WS-BPEL standard. It

complements existing development environments’ native

verification tools and can be used jointly to achieve end-to-

end design-time testing of service based applications. The

TASSA framework is validated through testing of sample

business processes. The obtained results show the

effectiveness of its capabilities for functional testing as well

as for robustness testing via injection of invalid, unexpected

or random data into a business process.

The future work will be focused on extension the

proposed methodology towards run-time testing of BPEL

processes. The work on the approach for monitoring of

business processes is started. The goal of the monitoring is

not only to estimate the quality characteristics of the

business process, but also to find patterns to predict possible

failures.

REFERENCES

[1] G. Hattangadi, “A Practical Guide To Modern SOA Testing,” White
paper, July, 2011.

[2] D. Linthicum and J. Murphy, “Key Strategies For SOA Testing,”
Mindreef, Inc., Hollis, New Hampshire, 2007.

[3] G. Hattangadi and R. Gupta, “Driving Better Business Process
Scalability with Modern Software Quality,” white paper, July, 2010.

[4] “SOA Test Methodology,” white paper, Torry Harris Business
Solutions, July, 2007.

[5] S. Shriram, “The HexSOA Test Model,” white paper, Krosstech
Solutions, August, 2009.

SYLVIA ILIEVA, ILINA MANOVA ET AL.: TOWARDS A METHODOLOGY FOR TESTING OF BUSINESS PROCESSES 1321

[6] I. Spassov, D. Petrova, V. Pavlov, S. Ilieva, “DDAT: Data
Dependency Analysis Tool for Web Service Business Processes,”
Second International Workshop on “Software Quality SQ” within The
International Conference on Computational Science and Applications
(ICCSA), Santander, Spain, B. Murgante et al. (Eds.): ICCSA 2011,
Part V, LNCS 6786, Springer, Heidelberg, pp. 232-243.

[7] D. Petrova-Antonova, S. Ilieva, I. Manova, D. Manova, “Towards
Automation Design Time Testing of Web Service Compositions,” The
5th IFIP TC2 Central and Eastern European Conference on Software
Engineering Techniques (CEE-SET), Debrecen, Hungary, August,
2011.

[8] D. Manova, I. Manova, S. Ilieva, D. Petrova-Antonova, “faultInjector:
A Tool for Injection of Faults in Synchronous WS-BPEL processes,”
2nd Eastern European Regional Conference on the Engineering of
Computer Based Systems (ECBS-EERC), September, 2011,
Bratislava, Slovakia, pp. 99-105.

[9] C. Ouyang, E. Verbeek, W. Vanderaalst, S. Breutel, M. Dumas, A.
Terhofstede, "Formal Semantics and Analysis of Control Flow in WS-
BPEL," Science of Computer Programming, Vol. 67, No. 2-3, July
2007, pp. 162-198.

[10] Sebastian Hinz, Karsten Schmidt, and Christian Stahl, "Transforming
BPEL to Petri Nets," In Wil M. P. van der Aalst, B. Benatallah, F.
Casati, and F. Curbera, editors, Proceedings of the Third International
Conference on Business Process Management (BPM 2005), volume
3649 of Lecture Notes in Computer Science, Nancy, France,
September 2005, pp. 220-235.

[11] Chien-Hung Liu, Shu-Ling Chen, Xue-Yuan Li, "A WS-BPEL Based
Structural Testing Approach for Web Service Compositions," IEEE
International Symposium on Service-Oriented System Engineering,
2008, pp.135-141.

[12] H. Foster, S. Uchitel, J. Magee, J. Kramer, "LTSA-WS: a tool for mo-
del based verification of web service compositions and choreo-
graphy," In Proceeding of the 28th international conference on Soft-
ware Engineering (ICSE) – Research Demonstration, pp. 771–774.

[13] J. Garc´ıa-Fanjul, J. Tuya, and C. de la Riva, “Generating Test Cases
Specifications for BPEL Compositions of Web Services Using SPIN,”
in Proc. of WS-MaTe, 2006, pp. 83-94.

[14] Yuan Yuan, Zhongjie Li, Wei Sun, "A Graph-Search Based Approach
to BPEL4WS Test Generation", Proceedings of the International
Conference on Software Engineering Advances, October 29-
November, 2006

[15] Xiang Fu, Tevfik Bultan, Jianwen Su, "WSAT: A Tool for Formal
Analysis of Web Services", the Proc. of 16th Int. Conf. on Computer
Aided Verification, pp. 510-514.

[16] Z. J. Li, H. F. Tan, H. H. Liu, J. Zhu, N. M. Mitsumori,
"Businessprocess-driven gray-box SOA testing", IBM Systems
Journal, v.47 n.3, July 2008, pp.457-472.

[17] T. Lertphumpanya, T. Senivongse, "Basis path test suite and testing
process for WS-BPEL," WSEAS Transactions on Computers, vol. 7,
issue 5, 2008, pp. 483-496.

[18] Qiulu Yuan; Ji Wu; Chao Liu; Li Zhang, "A model driven approach
toward business process test case generation," 10th International
Symposium on Web Site Evolution (October 2008), 2008, pp. 41-44.

[19] Philip Mayer, Daniel Lübke, "Towards a BPEL unit testing
framework," Proceedings of the 2006 workshop on Testing, analysis,
and verification of web services and applications, July 17-17, 2006,
Portland, Maine, pp.33-42.

[20] D. Manova, S. Ilieva, F. Lonetti, A. Bertolino, C. Bartolini, “Towards
Automated Robustness Testing of BPEL Orchestrations,”
International Conference on Computer Systems and Technologies

(CompSysTech), June, 2011, Vienna, Austria, pp. 659‐664.

1322 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

