
One approach to partial formalization of SOA
design patterns using production rules

Roman Šelmeci
Slovak University of Technology in Bratislava,

Faculty of Informatics and Information Technologies
Ilkovičova 3, 842 16 Bratislava, Slovakia

Email: selmeci@fiit.stuba.sk

Viera Rozinajová
Slovak University of Technology in Bratislava,

Faculty of Informatics and Information Technologies
Ilkovičova 3, 842 16 Bratislava, Slovakia

Email: rozinajova@fiit.stuba.sk

Abstract—Service oriented architecture (SOA) is nowadays one
of the dominant styles in developing new information systems.
These information systems often have complex models, which
can contain mistakes, or are described by informally. In order
to minimize mistakes and to create formal models, patterns as
components of software development could be used - according
to Model driven development (MDD) principles. Design patterns
in SOA have been identified by T. Erl [1]. However, they
are represented in form which is suitable for humans, but
not for computers. In context of machine processing formal
representation of patterns would be advantageous. In this paper
we present our approach to partial formal representation of
SOA design patterns using production rules. This partial formal
representation is useful in searching for mistakes (antipatterns)
in models and will enable creating formal models (with patterns)
from informal documents.

I. INTRODUCTION

A
PARADIGM of Service oriented architecture (SOA)
which is nowadays quite popular, brings flexibility, scal-

ability and faster system development [2].
However, an effective system development consistent with

principles of SOA is sometimes quite difficult. One concept,
which could - according to our opinion - bring promising re-
sults in this context is the concept of design pattern. Adequate
motivation for using patterns can be found in [3], [4], [5], [6].

The main representative of the design patterns in SOA
can be considered patterns published in [1]. This publication
contains a lot of patterns (we can find 83 there), which describe
together the best design practices in development of SOA
based systems.

Patterns are globally represented by an informal documen-
tation. To work better with the patterns and to be able to
have greater benefit of using them (for instance to utilize
artificial intelligence techniques in processing them), it would
be profitable if the patterns were at least partly converted
into the formal representation which is suitable for com-
puter processing. Patterns as components of the software
development could be used in MDD or in DSM (Domain
specific modeling). In MDD the patterns could be elements
of a platform independent model. Patterns could serve us for
building a model with higher abstraction level and additional
value. In the DSM the patterns would form the basis for the
domain specific language (DSL) used for solution specification

in the platform independent form. This language would be
useful for experts (architects) who can describe a solution
using language which is familiar for them and then use code
translator for creating solutions in final platform (which they
do not know). As far as SOA design patterns are concerned,
we are not aware of research which would deal with a formal
representation of SOA design patterns.

In context of functional requirements definition in MDD
many activities must be done. Among them definition of
boundaries, structure and domain model are very important.
Our interest is in creating at least partial formal representation
of SOA design patterns and also in identifying patterns and
antipatterns in models/descriptions of SOA based system. We
believe that this will facilitate better definition of boundaries
(objects in pattern are inputs to a solution), better structure
(objects in pattern and theirs relationships define structures),
and better domain models (patterns represent high-level ab-
straction, objects in pattern represent low-level abstraction).

The rest of the paper is structured as follows. Related work
is given in section II. In section III, we describe our approach
to partial formalization of SOA design patterns and their
utilization in process of pattern identification in SOA based
solutions. Experiments with our approach and their evaluation
are given in section IV. We conclude with suggestion for future
work in section V.

II. RELATED WORK

Theme of formal representation of patterns and application
of patterns in software development is not new. There exist
more approaches describing how to convert informal pattern
specification into a form which would be suitable for machine
processing and would allow the automatization of a pattern
application in the life cycle of software development.

Important role in the environment of the enterprise architec-
ture and the integration of enterprise applications have Enter-
prise Integration Patterns [7]. Authors in [8], [9] were inspired
also by these patterns. These authors aim to use patterns
as platform independent elements in models of integration
solution. In [10] a pattern language for process execution
and integration design in SOA was defined. This work was
elaborated further in [11]. Authors use pattern language and
they enhance it by so-called pattern primitives. By means of

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 1381–1384

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 1381

pattern primitives they want to achieve that the patterns which
are described only in informal form could be used in MDD.
Pattern primitives are so an abstract interface for different par-
ticipants in solution, which patterns provide. For the purpose
of MDD support in SOA they create DSLs for every process
model. These DSLs are created through metamodel which is
based on pattern primitives. In [12] managing architectural
decision model is presented. Authors propose formal definition
of architectural decision model which supports SOA design by
verifying integrity constraints.

We have investigated the possibility of using some of
existing principles for partial formal representation of SOA
design patterns. We came to the following conclusion:

In the area of enterprise applications integration effort is not
focused on a formal way of work with patterns and pattern
interpretations. Consequently, individual approaches represent
and work with patterns in different ways. We do not consider
different approaches as a drawback but we think that better
results could be reached if one unified standard for pattern
representation could be used.

Approach in [11] establishes formal pattern representation
for process integration through metamodels in UML notations.
These metamodels are used as bases for domain specific
language. The language is however specifically fixated on
these patterns and it is not possible to apply it within SOA
design patterns.

Proprietary approaches and methods for formal pattern
representation in different areas do not conform to our goal
- SOA design patterns. Therefore we prefer more general
approach to formalizing SOA design patterns.

III. PARTIAL FORMALIZATION OF SOA DESIGN PATTERN

USING PRODUCTION RULES

According to [13] for the success of any method of formal
pattern representation there are a few requirements, which are
important: (1) preciseness, (2) flexibility and (3) tool support.
Using rules for a partial formal representation of SOA design
patterns could provide us with a couple of advantages: partial
formal representation of patterns will be in a declarative form
and in an adequate format. This will enable us to utilize
tools for their elaboration. Thus we will be able to reach
desired independence on the concrete implementation in the
final product.

In order to reach our goal - SOA design patterns partial for-
malization, we defined transformation process from informal
text pattern specification to rule based partial formal pattern
representation. Results of this process are production rules and
processes of pattern identification, which can be used in expert
systems.

We have realized and consecutively experimented with first
14 SOA design patterns. In this paper we chose the Canonical
Schema pattern for the purpose of demonstrating activities,
which we have performed.

A. Transformation process from informal text pattern specifi-

cation to rule based partial formal pattern representation

We defined transformation process in three steps. The
descriptions of individual process steps follow.

1) Pattern specification: Pattern can be specified in differ-
ent ways. We defined pattern structure as 5-tuple:

Pattern =< Name, Icon, P, I, F > (1)

where

P =< Summary,Draft, Example > (2)

I =< Requirement, Problem,

Solution, Context, Impacts >
(3)

F =< Effort, Application,

Specialities, Relationships >
(4)

Set P (Formula (2)) defines presentation specification, set I

(Formula (3)) defines identification specification and set F

(Formula (4)) defines application specification of patterns.
2) Object oriented analysis: Production rules are defined

in form of If ... Then Each section contains objects
and definition of their required states. In consequence, it
is necessary to define objects which together create cores
of individual patterns specifications. We use object oriented
analysis of the textual pattern specification to identify objects
in patterns. We use objects identified in patterns - for the
first time in vocabulary expansion and for the second time
in pattern formalization rules.

In the phase of object oriented analysis we use UML class
diagrams for representing identified domain objects and their
relationships. UML diagrams help us to visualize transformed
part of pattern specification. Example of UML class diagram
with identified objects in specification of Canonical Schema
problem is in Figure 1.

Service A Service B

Data Model A Data Model B

Data

Data Model Transformation from/tofrom/to

modeling data with

use

has

modeling data with

has

use

Fig. 1. Sample of some identified objects and theirs relations in problem
definition of Canonical Schema Pattern.

Figure 1 describes a situation when data transformation is
needed because two different data models are used for the
same data by two services (problem definition in Canonical
Schema pattern).

1382 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

3) Pattern production rules and identification process:

Subsequently we create production rules based on identified
objects, object relationships and pattern specification from step
2. Production rules (assigned to corresponding group) describe
patterns in one of their state - problem, solution, context, and
impacts.

Then we define process for pattern candidate/pattern iden-
tification. This process is necessary and specifies the moment,
when the certain group of rules is executed. General overview
of rules activation process is in Figure 2. Input of this
process is formed by pattern rules and objects identified in
descriptions/models of SOA based solutions. Output of this
process is represented by identified patterns, pattern candidates
and patterns impacts. Pattern candidates serve us in searching
places in the solution which interfere with good established
practices of designing system. Pattern impacts define which
areas in solution and how are these areas affected by applica-
tion of pattern.

iterative

Contex rules activation

Problem rules activation

Solution rules activation

Impact rules activation

Pattern rules
Objects in SOA system

model/description

Pattern candidatesPatterns Impacts

Context rules

Problem Rules

Pattern candidates

Solution Rules

Patterns

Impacts rules

Impacts

NO

is context correct

YES

Fig. 2. Overview of rules activation process for identifying patterns, pattern
candidates and pattern impacts.

For our prototype implementation we have chosen JBoss
Drools, as it has good community and tool support, it is
easy accessible and it is an open-source product. Example of
JBoss Drools production rules used to identify the Canonical
Schema pattern candidate according to problem of data model
transformation is Rule 1. This rule is assigned to groups which

Rule 1 Canonical Schema - problem.

r u l e " Model t r a n s f o r m a t i o n "
r u l e f l o w −group : " problem "
when

$ d a t a : Data ()
$s1 : S e r v i c e ($ d a t a i n d a t a)
$s2 : S e r v i c e ($ d a t a i n da t a , t h i s != $s1)
$m1 : DataModel (f o r == $ d a t a)

from $s1 . d a t a _ m o d e l s ()
$m2 : DataModel (f o r == $ d a t a)

from $s2 . d a t a _ m o d e l s ()
D a t a M o d e l T r a n s f o r m a t i o n (

(m1==$m1 && m2==$m2) | |
(m1==$m2 && m2==$m1))

t h e n
i n s e r t (

new Can o n i c a l Sc h e ma Ca n d i d a t e (
$da ta , $s1 , $s2)) ;

end

describe problem state of Canonical Schema pattern (defined
with ruleflow-group). Rule 1 defines problem (and identifies
candidate for Canonical Schema pattern) by searching for
services, which are using different data models with trans-
formation requirement for the same data.

IV. EXPERIMENTS AND THEIR EVALUATION

All rules for 14 patterns were inserted into the JBoss Drools
knowledge base. Then we created JUnit tests. JUnit tests were
created in order to simulate adequate environment in which
patterns and pattern candidates have to be identified. JUnit
tests were inspired by case studies from [1]. For example
correct application of Canonical Schema in case study is
described as: For the order record, a single Order schema is
defined, and it is agreed that all order data passed between
Alleywood Java service, Tri-Fold ERP service, and Tri-Fold
.NET service will comply to the document structure and
validation rules established by this schema.

Case studies are in informal textual form, so we use once
more object oriented analysis to identify objects in them. Each
identified object was matched to existing term from created
vocabulary and inserted into working memory of JBoss Drools
prototype system. In Canonical Schema case study of three
services (Alleywood Java, Tri-Fold ERP, Tri-Fold .NET), one
data (Order) and data model (Order.xsd) were identified. Each
partial formalized pattern definition in knowledge base was
able to identify corresponding pattern or pattern candidate
according to objects in working memory.

Combining same partial UML class diagram from trans-
formation of 14 patterns we got diagram in the Figure 3.
This diagram represents a set of domain objects, which can
be used for modelling of solution based on SOA principles.
The benefit is easy understanding, because they are derived
from well known and accepted patterns. Domain experts and

ROMAN ŠELMECI, VIERA ROZINAJOVÁ: ONE APPROACH TO PARTIAL FORMALIZATION OF SOA DESIGN PATTERNS 1383

Service

<<ServicegLayer>>

<<ServicegNormalization>>

ServicegModel

<<CanonicalgProtocol>>

CommunicationgProtocol

Inventory

<<CanonicalgSchema>>

Data

<<CanonicalgSchema>>

DatagModel

<<CanonicalgSchema>>

<<CanonicalgProtocol>>

DatagStandard

<<SchemagCentralization>>

DatagModelgArchitecture

<<CanonicalgSchema>>

DatagModelgTransformation

modeling0..*

1

modelinggdatagwith

1..*

0..*

uses/provides

1..*

0..*

uses1

0..*

contains

0..*1

defines

1..*

0..*

defines
1..*

1

has
1

0..*specifiesgdatagmodelgfor

1

0..*

to 1

0..*
from 1

0..* defines
1..*

1

use 1

0..*

Fig. 3. Diagram of domain objects from some inventory patterns, their
relation ship and pattern relevancy.

technical experts can use these objects in process of system
development. UML class stereotype is used for classifying
objects according to SOA design pattern in diagram (alike
technique used in [14]). If one object was identified in more
than one SOA design pattern, then object has more stereotypes
(one for each pattern). Only Inventory and Service have no
stereotype, because these objects belong to all patterns we
have already formalized. One object can be identified in
several SOA design patterns because authors also specified
relationships among patterns. These relationships specify how
one pattern influences another pattern. SOA design patterns
relationships could be useful in creating the DSL, because
they specify how patterns could be combined and how this
combination influences each pattern. Common objects used
in different patterns can represent shared understanding of
modelled solution among patterns. These common objects also
represent places in a solution where different patterns "work"
together. Each pattern manipulates with parameters of objects
from their own perspective and consequently models different
aspect of solution. All these activities can be expressed by
pattern language defined in suitable DSL.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented our proposal for partial
formal representation of SOA design patterns by production
rules. We brought in also several approaches for formal pattern
presentation from different areas of software engineering. The
paper also contains an example of objects and production rules
for partial formal representation of Canonical Schema Pattern.
Compared to [15] we have created a vocabulary of domain
objects with higher level of precision for modelling one part
of SOA environment - Service inventory. In comparison with
other mentioned approaches, our method enables not only

partial formal representation of SOA design patterns but also
the definition of processes for detection of patterns/candidates
for pattern.

In our further work we plan to continue in extending the
knowledge base of SOA design patterns. The base for our
future work is an idea of using design patterns as model
components of a software solution. SOA system documenta-
tion contains documents in many different styles and formats,
so we will create domain specific language for modelling
SOA systems design. Keywords in this DSL will be names
of domain objects identified in the process of SOA patterns
formalization. We believe that using this DSL the following
goals can be reached: automatic manipulation with domain
objects and their relationships and automatic detection of
patterns and candidates in the solution.

ACKNOWLEDGMENT

This work was partially supported by the Slovak Research
and Development Agency under the contract No. APVV-0208-
10 and the Scientific Grant Agency of Slovak Republic, grant
No. VG 1/1221/12.

REFERENCES

[1] T. Erl, SOA Design Patterns. Prentice Hall, 2009.
[2] ——, SOA Principles of Service Design. Prentice Hall, 2007.
[3] C. Alexander, The Timeless Way of Building. Oxford University Press,

1979.
[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[5] M. Fowler, Analysis Patterns: Reusable Object Models. Addison-
Wesley, 1997.

[6] L. Ackerman and C. Gonzalez, Patterns-Based Engineering: Success-

fully Delivering Solutions Via Patterns. Addison-Wesley Professional,
2010.

[7] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,

Building, and Deploying Messaging Solutions. Addison-Wesley Pro-
fessional, 2003.

[8] R. Z. Frantz, R. Corchuelo, and J. Gonzáles, “Advances in a DSL
for Application Integration,” in Web Application Integration (ZOCO)

in JISBD, vol. 2, 2008, pp. 54–66.
[9] T. Scheibler and F. Leymann, “From Modelling to Execution of Enter-

prise Integration Scenarios: The GENIUS Tool,” in Kommunikation in

Verteilten Systemen (KiVS), ser. Informatik aktuell, K. David, K. Geihs,
and W. Brauer, Eds. Springer Berlin Heidelberg, 2009, pp. 241–252.

[10] C. Hentrich and U. Zdun, “A Pattern Language for Process Execution
and Integration Design in Service-Oriented Architectures,” in Transac-

tions on Pattern Languages of Programming I. Springer, 2009, pp.
136–191.

[11] U. Zdun and S. Dustdar, “Model-driven and pattern-based integration of
process-driven SOA models,” International Journal of Business Process

Integration and Management, vol. 2, no. 2, pp. 109–119, 2007.
[12] O. Zimmermann, J. Koehler, and F. Leymann, “Managing architectural

decision models with dependency relations, integrity constraints, and
production rules,” Journal of Systems and Software, vol. 82, no. 8, pp.
1249–1267, Aug. 2009.

[13] N. Soundarajan and J. O. Hallstrom, “Precision, Flexibility, and Tool
Support: Essential Elements of Pattern Formalization,” in Design Pattern

Formalization Techniques, T. Taibi, Ed. IGI Publishing, 2007, pp. 280–
301.

[14] J. Dong, S. Yang, and K. Zhang, “Visualizing design patterns
in their applications and compositions,” IEEE Trans. Softw. Eng.,
vol. 33, no. 7, pp. 433–453, Jul. 2007. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2007.1012

[15] L. Tang, J. Dong, T. Peng, and W.-T. Tsai, “Modeling enterprise
service-oriented architectural styles,” Service Oriented Computing and

Applications, vol. 4, no. 2, pp. 81–107, 2010.

1384 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

