
Granulated Code Generation of Interfering
Functionalities

Igor Gelfgat
School of Computer Science,

Tel Aviv University

Email: igor.ge@gmail.com

Shmuel Tyszberowicz
School of Computer Science,

The Academic College of Tel Aviv Yaffo

Email: tyshbe@tau.ac.il

Amiram Yehudai
School of Computer Science,

Tel Aviv University

Email: amiramy@tau.ac.il

Abstract—The Model-Driven Software Development approach
is becoming widely used as powerful model-driven tools are
becoming available for the developer. Yet, it is not suitable to
model, and therefore to generate the code, for all the aspects
handled in the development stage. As a result, MDSD is not as
widely used as it could.

This paper presents a technique that extends the capabilities of
Model-Driven Engineering with behavioral aspects, by modeling
concerns and using them in code generation. Common concerns
can be defined for design patterns, software infrastructures and
other common aspects. Independent concerns can be effectively
combined when applied to the same model element. Software
architects are advised to apply common concerns to their system
models and also to create system-specific concerns and apply
them at the modeling stage. We name it enriching a model with
concerns.

With the help of code definition for each concern, our tool
automatically generates code for the enriched model. Thus, at the
end of the modeling stage the developers will have the structure
of the code and all the glue code ready, so they will only have
to fill the business logic in the manual implementation methods
created for them. They will also maintain the enriched model
and not the code they would otherwise write manually.

Index Terms—Model-Driven Engineering, metaprogramming,
code generation, aspects

I. INTRODUCTION

THE model-driven approach to software development be-

comes more and more popular. Its primary goals are

portability, interoperability and reusability, through architec-

tural separation of concerns [1]. When the model is the

primary artifact of the development process, the user works

on the model, and a tool generates all or part of the code.

This raises the productivity and the quality of the process.

Productivity is raised as the auto-generation takes care of all

the plumbing code. The generated code is of very high quality

since it was fully tested beforehand. Though the model itself

still has to be tested, it requires much less effort than testing

the whole system. Thus, it is effective to maintain and fix the

model instead of the code when possible [2].

It is easier to understand a model rather than the code,

since it is a more abstract definition of the system. Of course,

when the code is automatically generated we wish its behavior

to be clearly understood from its model definition, to allow

us to avoid looking at this code at all. The model-driven

technique obligates to work with the model itself and not with

the code, keeping the model consistent. Again, it shortens the

development time and increases the implementation quality.

A software system has structural and behavioral aspects.

Both should appear in various levels of abstraction in the

system model, as it is more natural for a human to start

from a high-level description and then gradually get down

to details. Presently, using model-driven techniques mostly

means constructing structural models, but not behavioral ones.

Once behavior is modeled, it is often done at the same level

of abstraction as implementing, and requires the same effort.

It is hard to find a collaboration of structural elements

such that it will be possible to automatically generate their

implementation. There are, however, some exceptions. For

example, when we have a structural model where the behavior

of some of its elements is similar. In this case one can apply

stereotypes [3], enabling code generation for this behavior.

Also, there are modeling techniques that define behavior for

a single type of systems, but do not suit other types. For

example, state diagrams can be used to model events-based

systems [4] [5], but are not suitable for, e.g., data management

systems.

We have developed a technique to define the behavior of

a general system or part of it, which enables us to generate

automatically as much of the code as possible, such that only

the business logic will be left to implement. The intention is

similar to that of Aspect-Oriented Programming (AOP) [6]

that, among other things, targets at minimizing duplicated

code. Here we aim to minimize the effort to apply similar

behavior multiple times.

In our technique models are enriched with concerns, en-

abling automatic code generation for the structure and the

behavior that concerns contribute to the applied model ele-

ments. The most valuable is the ability to pass data between

two independent concerns. This gives us an ability to combine

concerns on the same model element without an additional

effort to define their combined behavior.

The Oxford Dictionary defines granulated as “formed into

grains or particles”. The code generation technique is named

Granulated Code Generation to emphasize the fact that the

generated code is built of small parts coming from many

functionalities applied to the model elements.

The rest of the paper is organized as follows. Section II

demonstrates the expected results with examples. In Section III

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1333–1340

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 1333

we describe the technique, explaining how to model with

concerns and how the generation process works. Section IV

presents related work. Section V summarizes the paper.

II. EXAMPLES

We define concerns (or functionalities) as special model

entities that can be applied to regular model entities (classes,

members and operations). This enables us to specify general

behavior of a class at the model stage and to generate automat-

ically part or all of its code. We use both the terms concerns

and functionalities interchangingly. Detailed descriptions of

concerns are provided in Section III.

A. Examples of Resulting Generated Code

Following are examples of classes that we want to model

using concerns and have their code generated automatically.

Here we present the code as it would be written manually and

explain how similar code could be generated. The examples

demonstrate the results we want to achieve. See Section III-E

for an example of generated code.

Example 2.1: This example describes the method make-

Operation of the class SomePrivilegedOperation that, in ad-

dition to its main operation, implements also the following

requirements: only privileged users may execute the method,

it requires a database connection, and its success or failure is

logged.

• Operation within a transaction. A transaction is an oper-

ation with external resources (for example, a database)

that has only two possible outcomes: a success with

all needed changes performed and a failure with no

change performed. For the operation to be successfully

performed, we should locate or create a transaction and

a database connection within the transaction.

• Privileged operation. We want the method to run as a

privileged operation, thus we use Role Based Access

Control (RBAC) which allows us to assign privileges to

users or user groups to run this operation. For a full

description of how RBAC may be modeled in UML

and how automatic security code may be generated from

it, refer to [7]. We implement RBAC using a database,

therefore, a database connection within a transaction is

needed.

• Operations log. Every time the action is executed, the

following information should be saved: the operation

description, the acting user name and a success/failure/u-

nauthorized status.

To apply the requirements for the method using concerns, the

method model will look like:

<< o p e r a t i o n A c c o u n t i n g ,
c u r r e n t T r a n s a c t i o n C o n n e c t i o n (c o n n e c t i o n) ,
p r o t e c t e d O p e r a t i o n (c o n n e c t i o n , c u r r e n t U s e r) >>

makeOpera t ion (c u r r e n t U s e r : User) : b o o l e a n

In the model, we see the method signature and the func-

tionalities applied with concerns. In Sections III-C and III-D

we define how concerns are modeled and applied to classes

and methods. Listing 1 displays a Java implementation of the

example.
Following is a brief explanation of how the implementation

code can be generated from its model. First, the transaction

code is inserted. Then permissions are checked using the

parameter currentUser. To specify a user to be checked for

privileges to run the operation, the currentUser is supplied as

a parameter for the applied functionality at the modeling stage.

The user implementation code is inserted after the permissions

check. At every point before the return, the operation is logged

including its success/failure status.

1 p u b l i c c l a s s S o m e P r i v i l e g e d O p e r a t i o n {
2 p u b l i c boolean makeOpera t ion (User c u r r e n t U s e r) {
3
4 t r y {
5 / / l o c a t e s c u r r e n t t r a n s a c t i o n and r e t r i e v e s

6 / / a c o n n e c t i o n w i t h i n i t

7 Connec t ion c o n n e c t i o n = T r a n s a c t i o n M a n a g e r
8 . g e t C u r r e n t T r a n s a c t i o n () ;
9

10 boolean a u t h o r i z e d = c h e c k P r i v i l e g e s (
11 c o n n e c t i o n , t h i s , u s e r) ;
12 i f (! a u t h o r i z e d) {
13
14 / / removed : l o g ‘ ‘ u n a u t h o r i z e d ’ ’

15 re turn f a l s e ;
16 }
17
18 boolean s u c c e s s ;
19 / / removed : t h e o p e r a t i o n i m p l e m e n t a t i o n

20
21 / / removed : end t r a n s a c t i o n

22
23 / / removed : l o g s u c c e s s

24 re turn s u c c e s s ;
25
26 } catch (SQLExcept ion e) {
27 / / s q l e r r o r

28
29 / / removed : l o g f a i l u r e

30 re turn f a l s e ;
31 }
32 }
33 }

Listing 1. Example 2.1 implementation code. Lines 4-8, 18, 26-27
and 30-31 handle database related behavior. Lines 10-12 and 15-16
check access rights to the privileged operation. Lines 14, 23 and 29
log results. Note: the ”removed” lines in code fragments from here

on represent code that was removed to save space.

Example 2.2: The second example displays how we may

affect code structure and, particularly, how a class can be

altered to use multiple design patterns, just by applying

concerns. See Fig. 1 for the example’s model.

• A singleton class [8]. A single instance of the class is

retrieved through a getInstance() method. In modeling

and generation stages every reference to the singleton

class is a reference to the same object.

• An object pool [9]. We use two object sets (a set of free

objects and a set of objects in use) and methods to borrow

them for work and to return them back to the pool.

An implementation code is shown in Listing 2. Both patterns

are at a class level, but cause generation of different methods

and fields. The singleton pattern brings in a static method and

static fields, while the object pool pattern leads to generation

of regular methods and fields.
Consider a more complex case, where a concern is applied

to some other class OtherClass with a link to the class in the

1334 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Fig. 1. The model for Example 2.2.

example. Also, the link is assigned a role, such that the link

should be used in the generated code for OtherClass. Any

such usage should take into account the singleton pattern and

access the pool object using the getInstance() method.

/∗∗
∗ @concern S i n g l e t o n

∗ @concern Pool<MyResource>

∗ /

p u b l i c c l a s s MyResourcesPool {
/∗∗ @concern S i n g l e t o n ∗ /

p r i v a t e s t a t i c MyResourcesPool t h e I n s t a n c e ;
/∗∗ @concern S i n g l e t o n ∗ /

p r i v a t e s t a t i c O b j e c t l o c k = new O b j e c t () ;
/∗∗ @concern Pool<MyResource> ∗ /

p r i v a t e L i s t<MyResource> a v a i l a b l e L i s t ;
/∗∗ @concern Pool<MyResource> ∗ /

p r i v a t e Set<MyResource> i n u s e S e t = new HashSet () ;

/∗∗ @concern S i n g l e t o n ∗ /

p r i v a t e MyResourcesPool () {
a v a i l a b l e L i s t = Arrays . a s L i s t (i n i t ()) ;

}

/∗∗ @concern S i n g l e t o n ∗ /

p u b l i c s t a t i c MyResourcesPool g e t I n s t a n c e () {
i f (t h e I n s t a n c e == n u l l) {

s ynchronized (l o c k) {
t h e I n s t a n c e = new MyResourcesPool () ;

}
}
re turn t h e I n s t a n c e ;

}

/∗∗ @concern Pool<MyResource> ∗ /

p r o t e c t e d MyResource [] i n i t () {
/ / removed : r e s o u r c e s i n i t i a l i z a t i o n

}

/∗∗ @concern Pool<MyResource> ∗ /

p u b l i c MyResource r e q u e s t R e s o u r c e () {
/ / removed : i f t h e r e i s no a v a i l a b l e o b j e c t −
/ / w a i t f o r i t

MyResource r e s o u r c e = n u l l ;
s ynchronized (t h i s) {

/ / removed : f i n d o b j e c t i n a v a i l a b l e L i s t ,

/ / move i t t o i n u s e S e t and r e t u r n i t w i t h i n

/ / r e s o u r c e v a r i a b l e

}
re turn r e s o u r c e ;

}

/∗∗ @concern Pool<MyResource> ∗ /

p u b l i c vo id r e t u r n R e s o u r c e (MyResource r e s o u r c e) {
s ynchronized (t h i s) {

/ / removed : move t h e o b j e c t from i n u s e S e t

/ / t o a v a i l a b l e L i s t

}
/ / removed : n o t i f y t h a t t h e r e i s a f r e e o b j e c t

}
}

Listing 2. Example 2.2 implementation code. Note: the @concern tag
indicates either a concern is applied to a class, or a member/method is

generated as a result of applying a concern.

III. GRANULATED CODE GENERATION – THE TECHNIQUE

In this section we describe a technique that enables us

to automatically generate code from a model that includes

behavior information.

A. General Description

The generic model technique and generation process that

we have built enables system architects and designers to define

common functionalities and to apply them to software model

entities. As the result the target system is constructed, having

part of it generated from modeled structure and behavior, and

the other part is manually implemented business logic.

The functionalities that we call concerns are model entities

(in our examples they are UML classes) that may be associated

with (applied to) regular entities (other UML classes) that

represent system entities and probably result in generated

DB tables, classes in code, etc. Concern members may be

associated with class members, and concern methods – with

class methods.

Once a concern is associated with some class it affects

the generated code for the class, adding some functionality

(defined by a plugin, supplied with the concern), saving the

developer’s time needed to write this code manually.

To make this technique useful, it should be able to apply

a wide range of generation functionalities to a model. Each

functionality is generally independent from others or depends

only on a small number of other functionalities. Thus, it should

be easy to add new functionality definitions to the tool. The

architecture of the tool is based on a “plugins framework”,

where a new functionality is added to the tool through a

new plugin that is not aware of other plugins, except those

it depends on.

B. As Part of the MDE Process

The technique incorporates completely into the MDE pro-

cess. First, architects and software infrastructure teams identify

common functionalities (in addition to those widely used

or already existing within the organization), prepare their

definitions and code generation plugins. Then, designers apply

them to the model at the proper level of abstraction (model

transformations enable us to easily use models on various

abstraction levels). Some details for an already applied func-

tionality may be added on a lower level. The lowest level

model is used for the code generation. Developers then extend

the generated code to complete the implementation.

At any time, changes may be easily done to the model

and applied concerns. They directly affect the generated code,

making maintenance easier.

In [10], Uhl, Koch and Weise discuss how a higher level of

abstraction affects effort needed to develop and to maintain a

system. Similarly, abstraction of behavior helps to make the

model more intuitive. Generation of the code from the enriched

model minimizes manual code, therefore increasing program

quality and demanding less maintenance.

IGOR GELFGAT, SHMUEL TYSZBEROWICZ, AMIRAM YEHUDAI: GRANULATED CODE GENERATION OF INTERFERING FUNCTIONALITIES 1335

C. Defining Concerns

Following we describe how to define a concern in a model.

Such a definition enables a designer to apply it to a class in the

design model. In addition, a plugin should be supplied to the

generation tool for a particular concern, to enable generating

the code that implements the capabilities that the concern

is meant to provide when applied to a class. This plugin

is not to be seen by anyone during the system design or

the implementation stages. Some documentation is required,

however, to describe the semantics of applying the concern.

There exist different kinds of concerns. Some interfere

at method level1, some at class level2, and some at both3.

Some introduce parameters, others introduce fields or methods.

There are also more complicated concerns that are related to

other concerns (interfere at inter-object level). Following is a

description of an approach to define a concern.

Defining a concern means to provide its name, to describe

fields and methods it can be applied to as well as relationships

with other concerns. We do it by creating a UML class with a

<<concern>> stereotype. The name of the UML class that

represents the concern is the name of the concern, its attributes

and operations describe fields and methods the concern may or

should be applied to within the applied class (enriched class).

UML meta-model of a concern is presented in Fig. 2.

A UML attribute in a concern (i.e., in the UML class that

represents it) defines an annotation that should be applied to

an attribute in the enriched class in the design model. We call

it concern field hereafter. The attribute it is applied to is called

enriched field.

A UML operation in a concern (named concern method)

defines an annotation that should be applied to an operation of

the enriched class (named enriched method). Concern methods

may have one or more of the following stereotypes applied:

<<optional>> If not otherwise specified, a concern

method is required for the concern. Only when the

<<optional>> stereotype is used for the concern

method it does not have to be specified in an enriched

class.

<<full implementation>> This concern method supplies

full implementation for a method it is applied to. It

should be the last one applied, because further applied

concern methods are meaningless. Similarly, no addi-

tional manual implementation of the enriched method is

required.

<<frontend>> When applied, the parameters of the

enriched method should conform to the parameters of

the concern method: the same order of parameters and

each enriched method parameter is assignable from the

corresponding concern method parameter. This kind of

a concern method enables calling an enriched method

from the generated code.

1The concerns in the Example 2.1.
2The concerns in the Example 2.2.
3Pool example, see Fig. 3.

A defined concern method may be parameterized to pass

information about the desired functionality: data structures,

types, etc. Some parameters require special notation, achieved

by adding a stereotype to a parameter, as following:

<<introduced>> A value of specified type is calculated

by the concern and supplied as an additional argument to

the subsequent concern methods and the implementation

method. When used in a model, only a name of the new

argument is specified in place of the parameter.

<<erased>> If a method argument or an introduced pa-

rameter (see Section III-D) is passed to an <<erased>>

concern parameter, the argument/introduced parameter is

used only by the concern, and is not available for use by

neither concern methods applied after it, nor the imple-

mentation method. This stereotype is for convenience -

to avoid developers seeing unneeded parameters (used by

the concern only).

<<returns>> A value of specified type is calculated

by the concern and returned to the caller. The concern

method hides the return value it receives from the called

method and returns the calculated one. It is helpful when

the received value is processed by the concern method

and a value of another type or even nothing (void) is

returned by the concern method. A concern method can

be defined as returning a value also when it receives void

or in the case it is a <<full implementation>>.

At most one parameter of this kind may be present in

a single concern method. It is possible to define it as a

return type of the concern method (see Fig. 3), except

for the case of void type.

<<return type required>> Type of an enriched method

that the concern method may be applied to. The concern

method uses the value it accepts from the method called.

At most one parameter of this kind may be present in a

single concern method.

<<exception>> Exception thrown by the concern.

Should be declared in the signature of the enriched

method or being handled by one of the previous con-

cerns. By default, the signature of the implementation

method will not contain this exception.

<<handled exception>> An exception of this type, if

thrown from the subsequent concern method/implemen-

tation method, is handled by the concern and is not seen

by the caller.

Note that a parameter can not be annotated with more than

one of the types.

The last four types do not require a parameter to be supplied

with a value, so the parameter appears only in the concern

definition.

An example of a concern definition is shown in Fig. 3. It

defines a concern for a pool of objects that allows reusing

objects instead of recreating them (when it is expensive to

create them for each use). The pool has a template parameter

that defines the type of stored objects and three methods each

pool of objects has: init() for the first initialization of objects,

1336 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Fig. 2. Concern meta-model.

Fig. 3. Definition of an object pool (from Example 2.2).

borrow() – taking an object out of the pool and return()

– returning previously borrowed object. The initialization

method is a <<frontend>> method, because it is called from

inside the automatically generated code. The other two are

<<full implementation>> – no manual implementation is

required.

D. Applying Concerns

An element in a model can be described in various ways and

by various relationships, annotations, etc. Each description is

meaningful for the code generation and should be expressed

in the generator definition. This allows the generation tool to

identify the element’s behavior.

A class can be instrumented with one or more concerns

(see Fig. 4). In this case, every non-optional concern method

defined in the concern should be applied to one of the methods

in the enriched class. Every concern field should be applied

to a field in the enriched class. When a number of concerns

are applied to a class, each of them is taken into account

separately, but they should not have collisions (i.e., fields

with identical names or methods with identical names and

parameter types).

Each method may have a number of concern methods

applied to it. The concern methods are treated in their order

of appearance for the enriched method: on a call they will run

in that order, and on return their “after” parts will run in the

reverse order. It is reminiscent of aspects (of AOP). Concern

methods are applied in the following way:

• A method’s signature is defined as it should appear to the

caller, i.e., it is the signature of the full method including

all applied concern methods. Hence a developer, who

has to call the generated code for the enriched method,

sees the same method signature as it appears in the

model. Please note that it is the same signature as if the

class was modeled without using concerns and rather was

implemented manually.

• From an applied concern method’s point of view, it is

running in a “method” (which does not exist really)

that has a list of parameters, a set of exceptions and a

return type. The rest of a structure it is applied to (i.e.,

the following concern methods and the implementation

method) is also a “method” with another list of arguments

and a return type. The rules and the restrictions are as

follows:

– Every parameter supplied to a concern method

should be accessible by it. Therefore it should be

defined in the signature or introduced by one of

the previously applied concern methods, and should

not be hidden (<<erased>>) by any of them.

See (1) and (2).

– The implementation method will have its ab-

stract signature generated in the code and should

be implemented manually, except for the case

where the last applied concern method is a

<<full implementation>>.

– The implementation method will contain all non-

hidden parameters of the method’s signature as it is

defined and all introduced (but not hidden) parame-

ters in all applied concern methods.

– If none of the applied concern methods requires a re-

turn parameter, the return type of the implementation

method will be the same as of the enriched method.

Otherwise, the return type will be as needed by the

latest concern method that has a return parameter.

See (3).

– Chain of return types. Every concern method that

IGOR GELFGAT, SHMUEL TYSZBEROWICZ, AMIRAM YEHUDAI: GRANULATED CODE GENERATION OF INTERFERING FUNCTIONALITIES 1337

Fig. 4. A Web Service with 3 authorized-only methods authorization and database connection behavior, defined by applying concerns. The methods are
similar to the method in Example 2.1.

expects a certain return type should comply with the

return type of a following concern method with a

return parameter, if exists. See (4).

A signature of a method is defined as (P, r, Ex), where

P is a list of parameters, r is a return type and Ex is a

set of exceptions. Enriched method signature is marked as

(P0, r0, Ex0). Similarly, its implementation method signature

is marked as: (Pn, rn, Exn), where n is the number of applied

concern methods.

The rules described beforehand are explained using the

equations below. The equations are for each i, i = 0 .. n−1.

Pi+1 = Pi

⋃

Introducedi \ Erasedi (1)

Exi+1 = Exi

⋃

Handledi \ Throwni (2)

ri+1 =































ri, if returnsi =⊥
∧

returnTypeReqi =⊥

⊥, if returnsi 6=⊥
∧

returnTypeReqi =⊥

returnTypeReqi, otherwise

(3)

ri ≤ returnsi (4)

Fig. 4 presents an example of an HR service that creates,

adds and removes an employee in an organization database.

The service is defined as a <<WebService>> so it will be

created and deployed as a Web Service and all its parameters

will be presented in its Web Services Description Language

(WSDL) file [11]. A connection is supplied to every method,

so it will be able to perform database queries. Each method is

declared with authorization checks. The only thing that is left

to be implemented manually is to perform a query for each of

the methods.

Fig. 5 illustrates the enriched method getAllEmployees(),

generated parts for concern methods applied to it, and the

arguments and the return type of each part and the implemen-

tation method. These would be actual method signatures for

all parts, if we were creating them in separate methods.

The application on the signatures is as the follow-

ing. Concern method currentTransactionConnection adds its

<<introduced>> parameter connection that becomes avail-

able for the subsequent concerns. Concern method protected-

Operation removes the <<erased>> parameter user. Finally,

both protectedOperation and protectResultObject throw Pro-

tectionException.

Fig. 5. Schematic view of the enriched getAllEmployees() method, the
arguments and the return type of each generated part (if they were separate
methods) and the implementation method.

E. Resulting Code

In this section we present a MySet example, a set of

objects, combined with a Visitor design pattern: the method

checkAllObjects() passes over all elements in the set and

performs a manually implemented operation on each object.

Listing 3 shows its generated code in the class MySetBase.

The manual code is placed in the class MySet, implementing

the abstract method, and adding any fields and methods not

mentioned in the model. Thus, the manual code is not affected

by regeneration of the automatic code, since they are in

separate files. Moreover, all the automatic code is in a separate

source folder.

/∗∗ Gener a ted bas e c l a s s o f MySet c l a s s

∗ i n t h e model . ∗ /

p u b l i c a b s t r a c t c l a s s MySetBase {
p r i v a t e MyObject [] myObjects ;

/∗∗ Gener a ted method f o r t h e one s p e c i f i e d

∗ i n t h e model . ∗ /

p u b l i c f i n a l vo id c h e c k A l l O b j e c t s () {
f o r (MyObject e l e m e n t : myObjects) {

t h i s . c h e c k A l l O b j e c t s (e l e m e n t) ; }
}

/∗∗ I t i s a g e n e r a t e d method t h a t s h o u l d be

∗ imp lemen ted . @param o b j e c t t h e par ame te r

∗ i n t r o d u c e d by t h e v i s i t o r ∗ /

p r o t e c t e d a b s t r a c t vo id c h e c k A l l O b j e c t s (
MyObject o b j e c t) ;

}

Listing 3. Generated code for MySet

F. Tool Prototype

We have implemented a prototype 4 to check our ideas. It

receives a model that contains concerns and enriched classes.

Having plugins supplied for the concerns, the tool generates

4See http://sites.google.com/site/gcgtool/

1338 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

the code. We have successfully generated code for two ex-

amples: a small data management system and a distributed

algorithm.

The first example is a bank account management system. It

uses concerns for database connectivity, security, multithread-

ing, error checking and design patterns. The application has

the following features: managing multiple accounts (check

balance, deposit and withdraw), managing access rights and

access log, checking legal account state (no overdraw) and

committing operations per time period (business day) in a

separate thread. Its manual code consists almost only of

database queries (that may be handled by existing MDE

techniques, e.g., AndroMDA [12]) and GUI.

The second example is a mechanism for distributed algo-

rithms, based on asynchronous events. The mechanism uses

concerns for multithreading and communicating with events.

The mechanism enables sending named events with additional

data asynchronously to any interested object. There is also a

concern for defining distributed nodes. It provides methods

to manage node’s neighbours and a way to define events

sent to / received from the neighbours. With its help we

have implemented the Chang and Roberts ring-based election

algorithm [13]. Its manual code consists only of the algorithm

logic and code that builds the ring (the algorithm logic could

be generated from statecharts [5]).

To turn the prototype into a complete and useful tool, we

have to extend its errors handling, allow multiple models as

an input and integrate it with other MDE tools (model editing,

testing tools, etc.).

IV. RELATED WORK

Lodderstedt, Basin, and Doser [7] describe a way to model

security requirements for a software system that enables gen-

erating security code automatically. This approach is based on

applying roles to UML classes. It does not address other types

of requirements besides security.

Harel and Politi [5] show how reactive systems may be

modeled using statecharts. This technique enables the creation

of a complete model of event-based systems, but in non event-

based systems, statecharts are useful only for a small part of

the system.

The Rhapsody tool enables full cycle model-driven de-

velopment [14]. In Rhapsody, model and code are strongly

associated, thus the model is never outdated, while the code

remains the most important artifact at the development stage

as it handles all the details. Some model elements also include

code. Rhapsody enables model execution and model-based

testing. Although Rhapsody is one of the most powerful

MDE tools, it does not include an ability to effectively reuse

common design patterns and logic, besides some built-in

structures.

Comparing our technique to Aspect-Oriented Modeling

(AOM) [15] [16] [17] [18] and Feature-Oriented Modeling

(FOM) [19], AOM and FOM do not change method’s signature

(except for exceptions) and do not allow passing parameters

between two aspects/features applied on the same method.

Moreover, AOM does not provide aspects that may be applied

to a class, enriching the class along with its methods with

a complex behavior at once. Thus, our technique is more

powerful, meaning more code is easier generated for non

crosscutting concerns.

Compared to non-MDE techniques such as AOP and

Feature-Oriented Programming (FOP), our technique makes

the development process easier and more straightforward, as

the association is done in the model stage.

A. Comparing to AOM techniques

There are various existing AOM techniques. Here we com-

pare our technique with some of them in particular.

AspectOPTIMA [20] is a powerful language independent,

aspect-oriented framework that was built as a case study for

Reusable Aspect Models (RAM) [18]. To apply aspects to an

application model, RAM uses Sequence Diagrams that define

pointcuts and advices (the aspect behavior at pointcuts).

RAM, similarly to other AOM techniques, has the following

disadvantages:

• Weaving (the term used in RAM for models, although

the actual weaving is done at the runtime by AOP

implementation) of aspects with application models, is

done at the aspects level, using interfaces to describe

entities that should be affected. This way it serves only

crosscutting concerns.

• Weaving is done at pointcuts (methods) as in AOP. Our

technique enables applying a concern as a whole, thus

adding a general behavior that takes into account the

enriched class with all its enriched methods.

• There is no change in signature for application methods.

• To pass parameters between two applied aspects, or to

make them aware one of another for some other purpose,

it is required to create an aspect that unites the two (see

Figure 5 in [18]).

For a survey on some UML-based AOM approaches

see [21].

V. CONCLUSIONS AND FUTURE WORK

We have described an MDE technique to define common

functionalities (concerns) and use them in modeling to get

automatically generated code for an enriched model. It reduces

the effort needed for software system development. We showed

how different concerns can be applied to a single model

element and how they can solve different programming and de-

sign problems (security, design patterns, exceptions handling,

etc.).

Our technique handles both behavioral and structural con-

cerns, allows to define generally any functional or non-

functional concern and to combine multiple concerns at a

single class or method. Other MDE techniques either do not

handle the behavioral aspect, or do not suit for all software

systems (data management, real-time, distributed, etc.). We

successfully applied our technique using a tool prototype to

generate and implement examples of data management and

distributed event-based systems.

IGOR GELFGAT, SHMUEL TYSZBEROWICZ, AMIRAM YEHUDAI: GRANULATED CODE GENERATION OF INTERFERING FUNCTIONALITIES 1339

In the future we plan to deal with complex concerns and

automatic ordering, to check alternative ways to represent

concerns and to prepare a case study.
We can think about concerns that are aware of each other,

for example generalizing of another concern, aggregation of

concerns and other dependencies. When enriching a model it is

currently required to state the full order for applying concerns.

It may not be necessary in every case. Moreover, frequently

two unrelated and non colliding concerns are applied together

and may be executed in any order. Further research may be

done on how it is possible to automatically determine (for a

particular use) necessary order of concerns, even if it is not

stated explicitly (also for colliding concerns).
We plan to conduct a wide case study to assess the con-

tribution of the technique to the development process and to

further check its applicability. Also an empirical data is needed

to confirm this contribution.
We also seek for an alternative representation of concerns

model with expression strength similar to the one described.

We actually want to define a similar graphical representation

to make the model more intuitive.

REFERENCES

[1] J. Miller and J. Mukerji, MDA Guide Version 1.0.1, 2003. [Online].
Available: http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf Visited
July 2012.

[2] M. Azoff, The Benefits of Model Driven Development, 2008.
[3] A. Schleicher and B. Westfechtel, “Beyond stereotyping: Metamodeling

approaches for the UML,” Hawaii International Conference on System

Sciences, vol. 3, pp. 3051–3060, 2001.
[4] J. Lavi and J. Kudish, “Systems modeling & requirements specification

using ECSAM: an analysis method for embedded & computer-based
systems,” Innovations in Systems and Software Engineering, vol. 1,
no. 2, pp. 100–115, 2005.

[5] D. Harel and M. Politi, Modeling Reactive Systems with Statecharts:
The Statemate Approach. New York: McGraw-Hill, Inc., 1998.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in Proceedings

European Conference on Object-Oriented Programming. Springer-
Verlag, 1997, pp. 220–242.

[7] T. Lodderstedt, D. A. Basin, and J. Doser, “SecureUML: A UML-based
modeling language for model-driven security,” in UML ’02: Proceedings

of the 5th International Conference on The Unified Modeling Language.
London, UK: Springer-Verlag, 2002, pp. 426–441.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley, 1995.

[9] M. Kircher and P. Jain, “Pooling,” in EuroPLoP, 2002, pp. 497–510.

[10] T. Koch, A. Uhl, and D. Weise, Model Driven Architecture. [Online].
Available: http://www.omg.org/cgi-bin/doc?ormsc/2002-09-04 Visited
July 2012.

[11] J. M. Vara, V. de Castro, and E. Marcos, “WSDL automatic generation
from UML models in a MDA framework,” in NWESP ’05: Proceedings

of the International Conference on Next Generation Web Services

Practices. Washington, DC, USA: IEEE Computer Society, 2005, pp.
319–324.

[12] AndroMDA Framework. [Online]. Available: http://www.andromda.org
Visited July 2012.

[13] E. Chang and R. Roberts, “An improved algorithm for decentralized
extrema-finding in circular configurations of processes,” Commun. ACM,
vol. 22, pp. 281–283, 1979.

[14] E. Gery, D. Harel, and E. Palachi, “Rhapsody: A complete life-cycle
model-based development system,” in Proceedings of IFM, ser. Lecture
Notes in Computer Science, vol. 2335. Springer, 2002, pp. 1–10.

[15] Y. Wang, S. Singh, J. Hosking, and J. Grundy, “An aspect-oriented
UML tool for software development with early aspects,” in EA ’06:

Proceedings of the 2006 international workshop on Early aspects at

ICSE. New York: ACM, 2006, pp. 51–58.

[16] N. Ubayashi, G. Otsubo, K. Noda, J. Yoshida, and T. Tamai, “AspectM:
UML-based extensible AOM language,” in ASE ’08: Proceedings of the
2008 23rd IEEE/ACM International Conference on Automated Software

Engineering. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 501–502.

[17] D. Stein, S. Hanenberg, and R. Unland, “A UML-based aspect-oriented
design notation for AspectJ,” in AOSD ’02: Proceedings of the 1st

international conference on Aspect-oriented software development, New
York, 2002, pp. 106–112.

[18] J. Klein and J. Kienzle, “Reusable aspect models,” in Proc. of the 11th

Workshop on Aspect-Oriented Modeling., 2007, p. 11.

[19] S. Trujillo, M. Azanza, and O. Diaz, “Generative metaprogramming,” in
Proceedings of the 6th international conference on Generative program-

ming and component engineering, ser. GPCE ’07. New York: ACM,
2007, pp. 105–114.

[20] J. Kienzle, E. Duala-Ekoko, and S. Gélineau, “AspectOptima: A case
study on aspect dependencies and interactions,” in Transactions on

Aspect-Oriented Software Development V, ser. Lecture Notes in Com-
puter Science, A. Rashid and H. Ossher, Eds. Springer, 2009, vol.
5490, pp. 187–234.

[21] M. Wimmer, A. Schauerhuber, G. Kappel, W. Retschitzegger,
W. Schwinger, and E. Kapsammer, “A survey on UML-based aspect-
oriented design modeling,” ACM Computing Surveys, vol. 43, no. 4, pp.
1–33, 2011.

1340 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

