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Abstract—A lot of natural language processing (NLP) appli-
cations require the computation of similarities between pairs
of syntactic or semantic trees. Tree edit distance (TED), in
this context, is considered to be one of the most effective
techniques. However, its main drawback is that it deals with
single node operations only. We therefore extended TED to
deal with subtree transformation operations as well as single
nodes. This makes the extended TED with subtree operations
more effective and flexible than the standard TED, especially
for applications that pay attention to relations among nodes
(e.g. in linguistic trees, deleting a modifier subtree should be
cheaper than the sum of deleting its components individually).
The preliminary results of extended TED with subtree operations
were encouraging compared with the standard one when tested
on different examples of dependency trees.

I. INTRODUCTION

T
REE edit distance has been been widely used as a com-

ponent of NLP systems that attempt to determine whether

one sentence entails another, with the distance between pairs

of dependency trees being taken as a measure of the likelihood

that one entails the other. We extend the standard algorithm

for calculating the distance between two trees by allowing

operations to apply to subtrees, rather than just to single

nodes. This extension improves the performance of a textual

entailment system for Arabic by around 5%.

Tree edit distance is a generalization of the edit distance

for two strings, which measures the similarity between two

strings. Tree edit distance (TED) has offered different solutions

for several NLP applications such as information extraction,

information retrieval and textual entailment. TED between two

trees is defined as the minimum cost set of edit operations

to transform one tree to another. There have been numerous

approaches to calculate edit distance between trees (e.g. [1],

[2], [3], [4]). The most popular of these is Zhang-Shasha’s

algorithm [3].

Our ultimate goal is to develop a textual entailment (TE)

system for Arabic [5]. Modern standard Arabic (MSA) is

the Arabic language version which we are concerned with in

the current work. When we refer to Arabic throughout this

paper, we mean MSA. Dagan et al. [6] describe recognising

textual entailment (RTE) as a task of determining, for two

sentences text T and hypothesis H, whether “. . . typically, a

human reading T would infer that H is most likely true.”

According to the authors, entailment holds if the truth of

H, as interpreted by a typical language user, can be inferred

from the meaning of T. One efficient technique that has

been used in recent years to check entailment between two

sentences is by using Zhang-Shasha’s TED method to match

dependency trees for both sentences [7], [8]. Approximate

tree matching allows users to match a tree with solely some

parts of another tree not a whole. However, one of the

main drawbacks of TED is that transformation operations are

applied solely on single nodes [7]. Kouylekov and Magnini [9]

used the standard TED, which uses transformation operations

(insert, delete and change) solely on single nodes, to check

the entailment between two dependency trees. On the other

hand, Heilman and Smith [8] extended the available operations

in standard TED to INSERT-CHILD, INSERT-PARENT,

DELETE-LEAF, DELETE-&-MERGE, RELABEL-NODE and

RELABEL-EDGE. These authors also identify three new op-

erations, MOVE-SUBTREE, which means move a node X in

a tree T to be the last child on the left/right side of a node

Y in T (s.t. Y is not a descendant of X), NEW-ROOT and

MOVE-SIBLING, to enable succinct edit sequences for com-

plex transformation. This extended set of edit operations al-

lows certain combinations of the basic operations to be treated

as single steps, and hence provides shorter (and therefore

cheaper) derivations. The fine-grained distinctions between,

for instance, different kinds of insertions also make it possible

to assign different weights to different variations on the same

operation. Nonetheless, these operations continue to operate

on individual nodes rather than on subtrees (despite its name,

even MOVE-SUBTREE appears to be defined as an operation

on nodes rather than on subtrees). We have solved this problem

by extending the basic version of the TED algorithm so that

operations that insert/delete/exchange subtrees cost less than

the sum of the costs of inserting/deleting/exchanging their

parts. This makes the extended TED with subtree operations

more effective and flexible than the standard one, especially

for applications that pay attention to relations among nodes

(e.g deleting a modifier subtree, in linguistic trees, should be
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(b) l1 l1

l2

(b) l1 l1

l2

Fig. 1. (a) A relabeling of the node label (l1 → l2). (b) Deleting the node
labeled (l2 → ∧). (c) Inserting a node labeled l2 as the child of the node
labeled l1 (∧ → l2) [10].

cheaper than the sum of deleting its components individually).

The rest of the paper is organised as follows: the Zhang-

Shasha’s TED is explained in Section II. Section III presents

the extended TED with subtree operations. Section IV de-

scribes dependency trees matching. The experimental results

are discussed in Section V. Conclusions are given in Sec-

tion VI.

II. ZHANG-SHASHA’S TED

Zhang-Shasha’s TED is considered an efficient technique

based on dynamic programming to calculate the approximate

tree matching for two rooted ordered trees. Ordered trees are

trees in which the left-to-right order among siblings is signif-

icant. There are three operations, namely deleting, inserting

and changing a node, which can transform one ordered tree to

another. Deleting a node x means attaching its children to the

parent of x. Insertion is the inverse of deletion. This means an

inserted node becomes a parent of a consecutive subsequence

in the left to right order of its parent. Changing a node alters

its label. All these editing operations are illustrated in Fig. 1.

Each operation is associated with a cost and is allowed

on single nodes only. Selecting a good set of costs for these

operations is hard when dealing with complex problems. This

is because alterations in these costs or choosing a different

combination of them can lead to drastic changes in TED

performance [11].

In the TED algorithm, tree nodes are compared using a

postorder traversal, which visits the nodes of a tree starting

with the leftmost leaf descendant of the root and proceeding

to the leftmost descendant of the right sibling of that leaf, the

right siblings, and then the parent of the leaf and so on up

the tree to the root. The last node visited will always be the

root. An example of the postorder traversal and the leftmost

leaf descendant of a tree is shown in Fig. 2.

For all the descendants of each node, the least cost mapping

has to be calculated before the node is encountered, in order

a7

b3

e1 f2

c5

g4

d6

a7

c2

g1

d6

x5

y3 z4

T1 T2

Fig. 2. Two trees T1 and T2 with their postorder traversal (the subscript for
each node is considered the order of this node in the postorder of the tree). The
postorder of T1 is e,f,b,g,c,d,a and the postorder for T2 is g,c,y,z,x,d,a. The
leftmost leaf descendant of the subtrees of T1 headed by the nodes e,f,b,g,c,d,a

are 1,2,1,4,4,6,1 respectively, and similarly the leftmost leaf descendant of
g,c,y,z,x,d,a in T2 are 1,1,3,4,3,3,1. The bold items in each tree represent the
keyroot items for this tree.

that the least cost mapping can be selected right away. To

achieve this, the algorithm pursues the keyroots of the tree,

which are defined as a set that contains the root of the tree

plus all nodes having a left sibling. The number of keyroots

must be equal to the number of leaves in the tree. So, the

keyroots of the trees T1 and T2 in the Fig. 2 are equal to

{2, 5, 6, 7} and {4, 6, 7} respectively. The keyroots of a tree

are decided in advance, permitting the algorithm to distinguish

between tree distance (the distance between two nodes when

considered in the context of their left siblings in the trees T1

and T2) and forest distance (the distance between two nodes

considered separately from their siblings and ancestors but not

from their descendants)[7].
For each node, the computation to find out the least cost

mapping (the tree distance) between a node in the first tree and

one in the second depends solely on mapping the nodes and

their children. To find the least cost mapping of a node, then,

one needs to recognize the least cost mapping from all the

keyroots among its children, plus the cost of its leftmost child.

Because the postorder way is used in the nodes numbering, the

algorithm proceeds in the following steps [7]: (i) the mappings

from all leaf keyroots are determined; (ii) the mappings for all

keyroot at the next higher level are decided recursively; and

(iii) the root mapping is found. Algorithm 1 shows the pseudo

code of TED algorithm.

III. EXTENDED TED WITH SUBTREE OPERATIONS

The main weakness of the TED algorithm is that it is not

able to do transformations on subtrees (i.e. delete subtree,

insert subtree and change subtree). The output of the standard

TED algorithm is the distance between the two trees only. In

order to make the TED deal with subtree operations, we need

first to extend it to find a sequence of single edit operations

that transforms the first tree into the other with minimal cost,

because it measures the distance between two trees only. Then,

according to this sequence we can decide if there are subtree

operations or not, as explained below.

A. Find a sequence of edit operations

In order to find the sequence of edit operations that trans-

forms the first tree into another, the computation proceeds as
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Algorithm 1 Pseudo code of Zhang-Shasha’s TED algorithm [3]

T[i] the ith node of T, labeled in postorder
l(i) the leftmost leaf descendant of the subtree rooted at i
K(T) the keyroots of tree T, K(T) = {k ∈T|¬∃ k1 >k with l(k1) = l(k)}
Ø a null tree
FD[T1[i, i1], T2[j, j1]] the forest distance from nodes i to i1 in T1 to nodes j to j1 in T2, if i< i1 then T1[i, i1] = Ø (temporary array).
D[i,j] the tree distance between two nodes T1[i] and T2[j] (permanent array) .
γ(T1[i] −→ ∧) delete the ith node from T1

γ(∧ −→ T2[j]) insert the jth node of T2 into T1

γ(T1[i] −→ T2[j]) change the ith node of T1 with the jth node of T2

n and m the number of nodes in T1 and T2 respectively
|X| the length of X
min function return minimum item among three items.

1: compute l1(n), l2(m), K1(T1), K2(T2)
2: for x← 1 to |K1(T1)| do

3: for y ← 1 to |K2(T2)| do

4: FD[, ]← 0
5: for i← l1(x) to x do
6: FD[T1[l1(x), i], ]← FD[T1[l1(x), i− 1], ] + γ(T1[i] −→ ∧)
7: end for

8: for j ← l2(y) to y do
9: FD[, T2[l2(y), j]]← FD[, T2[l2(y), y − 1]] + γ(∧ −→ T2[j])

10: end for

11: for i← l1(x) to x do

12: for j ← l2(y) to y do
13: if (l1(i) == l1(x) and l2(j) == l2(y)) then

14: FD[T1[l1(x), i], T2[l1(y), j]]← min(
15: FD[T1[l1(x), i− 1], T2[l2(y), j]] + γ(T1[i] −→ ∧),
16: FD[T1[l1(x), i], T2[l2(y), j − 1]] + γ(∧ −→ T2[j]),
17: FD[T1[l1(x), i− 1], T2[l2(y), j − 1]] + γ(T1[i] −→ T2[j]))
18: D[i, j]← FD[T1[l1(x), i], T2[l2(y), j]]
19: else
20: FD[T1[l1(x), i], T2[l1(y), j]]← min(
21: FD[T1[l1(x), i− 1], T2[l2(y), j]] + γ(T1[i] −→ ∧),
22: FD[T1[l1(x), i], T2[l2(y), j − 1]] + γ(∧ −→ T2[j]),
23: FD[T1[l1(x), i− 1], T2[l2(y), j − 1]] +D[i, j])
24: end if

25: end for

26: end for
27: end for

28: end for

29: return D[n,m]

follows: create new matrices called PATH matrix, which has

the same dimensions of FD matrix, and DPATH matrix, which

has the same dimensions of D matrix, to store the sequence of

edit operations as a list. In particular, when the values of FD

and D in Algorithm 1 are computed, the values of PATH and

DPATH are computed, by using the edit operation labels: “i”

for an insertion, “d” for deletion, “x” for changing and “m” for

no operation (matching), as explained in the following rules:

1) Set PATH[i,j] = PATH[i-1,j]+ “d,” if FD[i,j] = FD[i-1,j]

+ delete cost. (i.e. lines 6,14 and 20 in Algorithm 1)

2) Set PATH[i,j] = PATH[i,j-1]+ “i,” if FD[i,j] = FD[i,j-1]

+ insert cost. (i.e. lines 9,14 and 20 in Algorithm 1)

3) Set PATH[i,j] = PATH[i-1,j-1]+ “m” (when change

cost=0) or “x” (otherwise), if FD[i,j] = FD[i-1,j-1] +

change cost. (i.e. line 14 in Algorithm 1)

4) Set DPATH[i,j] = PATH[i,j], if D[i,j] = FD[i,j]. (i.e. line

18 in Algorithm 1)

5) Set PATH[i,j] = PATH[i-1,j-1]+ DPATH[i,j] (i.e. the path

of D[i,j]), if FD[i,j] = FD[i-1,j-1] + D[i,j]. (i.e. line 20

in Algorithm 1)

The first and second rules are applied to cells in the first

column and row respectively, while the first cell in the matrix

is empty. Therefore, for most objective functions, each cell in

the first row equals the cell to its left appended with insert

operation “i” (rule 2), and each cell in the first column equals

the cell just above it appended with delete operation “d” (rule

1). For the other cells, it is possible (and common) that FD[i,j]

resulted from more than one of the previous three neighboring

cells. In this case, one of the values of FD[i,j] is selected

according to the priority of edit operations specified by the

user. Fig. 3 shows the direction of the computed FD[i,j] cell.

A horizontal arc specifies that the jth node of the second tree

is to be inserted (rule 2), while a vertical arc indicates that

the ith node of the first tree to be deleted (rule 1). A diagonal

arc specifies that the jth node in the second tree is to be

changed with the ith node of the first tree if they are not

equal, otherwise no operation is performed (rule 3 except rule

5, which it is append the value of DPATH[i,j] in rule 4 instead

of either “x” or “m”). After the PATH matrix becomes full,

the optimal path is the last cell (at final row and column) in

PATH matrix.

MAYTHAM ALABBAS, ALLAN RAMSAY: DEPENDENCY TREE MATCHING WITH EXTENDED TREE EDIT DISTANCE 13



i-1,j-1

i,j-1 i,j

i-1,j

i

dx/m

Fig. 3. The edit operation direction used in our algorithm. Each arc that
implies an edit operation is labeled: “i” for an insertion, “d” for deletion, “x”
for changing and “m” for no operation (matching).

Fig. 4 illustrates the intuition of how to compute this optimal

path for T1 and T2 trees in Fig. 2. In this figure, the cells

representing concordance of the optimal sequence of edit

operations that transform T1 into T2 are highlighted in bold,

whereas the final optimal path is the last cell (at final row and

column).

The mapping between two trees can be found from the final

sequence of edit operations by mapping the nodes correspond-

ing to match operation “m” only.

The final distance is 6 which represents the final values

(at final row and column) in the FD matrix.1 The last value

in the PATH matrix represents the final sequence of edit

operations, which is: dddmmiiimm. According to this path,

we can define an alignment between two postorder trees.

The alignment between two trees T1 and T2 is obtained

by inserting a gap symbol (i.e. “_”) into either T1 or T2,

according to the type of edit operation, so that the resulting

strings S1 and S2 are the same length as the sequence of

edit operations. The gap symbol is inserted into S2 when the

edit operation is delete (“d”), whereas it is inserted in S1

when the edit operation is insert (“i”). Otherwise, the node

of T1 and T2 are inserted into S1 and S2 respectively. The

following is an optimal alignment between T1 and T2:

S1: e f b g c _ _ _ d a

d d d m m i i i m m

S2: _ _ _ g c y z x d a

This means,
d: Delete (e) from T1

d: Delete (f ) from T1

d: Delete (b) from T1

m: Leave (g) without change

m: Leave (c) without change

i: Insert (y) into T1

i: Insert (z) into T1

i: Insert (x) into T1

m: Leave (d) without change

m: Leave (a) without change

The final mapping between T1 and T2 is shown in Fig.

5. For each mapping figure the insertion, deletion, matching

and changing operations are shown with single, double, single

1Here, the cost of each single operation is considered 1 except matching
is equal to 0.

a7

c5

e1

a7

d6c2

g1 x5f2

b3

g4

d6

y3 z4

T1 T2

Fig. 5. Standard TED, mapping between T1 and T2.

dashed and double dashed outline respectively. The matching

nodes (or subtrees) are linked with dashed arrows.

B. Find a sequence of subtree edit operations

Extending TED to cover subtree operations will give us

more flexibility when comparing trees (especially linguistic

trees). Thus, we have extended the TED algorithm to allow the

standard edit operations (insert, delete and change) to apply

both single nodes and subtrees.

All largest subtrees for each same sequence of edit opera-

tions are checked if they are already subtree(s). Each sequence

of nodes in postorder is considered a subtree, which is itself a

tree, if the following conditions are satisfied: (i) the first node

is a leaf; and (ii) the leftmost of the last node in the sequence

(i.e. the root of a subtree) is the same as the first node in the

sequence. Therefore, the sequence of the nodes e,f,b in tree

T1 in Fig. 2 is a subtree because e is a leaf and the leftmost

of the last node b is 1, which represents the first node e. On

the other hand, the sequence of nodes g,c,d in the same tree

is not a subtree because g is a leaf, but the leftmost of the last

node d is 6, which represents itself, not the first node g.

Let Ep=1..L ∈ {“d”, “i”, “x”, “m”} be an edit operation

sequence that transforms T1 into T2 by applying the technique

in Section III-A. Suppose that S1 and S2 are the optimal

alignment for T1 and T2 respectively, when the length of

S1 = S2 = L. To find the optimal single and subtree edit

operations sequence that transform T1 into T2, each largest

sequence of same operation is checked to see whether it

contains subtree(s) or not. Checking whether such sequence

corresponds to a subtree depends on the type of edit operation,

according to the following rules: (i) if the operation is “d,”

the sequence is checked on the first tree; (ii) if the operation

is “i,” the sequence is checked on the second tree; and (iii)

otherwise, the sequence is checked on both trees. After that, if

the sequence of operations corresponds to a subtree, then all

the symbols of the sequence are replaced by “+” except the

last one (which represents the root of the subtree). Otherwise,

checking starts from a new sequence as explained below. For

instance, let us consider Eh, ..., Et, where 1 ≤ h < L, 1 <

t ≤ L, h < t, is a sequence of the same edit operation,

i.e. Ek=h..t ∈ {“d”, “i”, “x”, “m”}. Let us consider h0 = h,

14 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012



T2 g c y z x d a

T1 - i ii iii iiii iiiii iiiiii iiiiiii
e d x xi iix iiix iiixi iiixii iiixiii
f dd xd xid xix iixx xiiix xiiiix xiiiixi
b ddd xdd xdx xdxi iixxd iixxx iixxxi iixxxii
g dddd dddm dddmi xdxx xdxxi xdxixi xdxixii iixxxiid
c ddddd dddmd dddmm dddmmi dddmmii dddmmiii xdxixix xdxixixi
d dddddd dddmdd dddmmd dddmmx dddmmxi dddmmxii dddmmiiim dddmmiiimi
a ddddddd dddmddd dddmmdd dddmmxd dddmmxid dddmmxiid dddmmiiimd dddmmiiimm

PATH matrix

Fig. 4. Compute the optimal path for the trees in Fig. 2.

we firstly check nodes S1

h, ..., S
1

t and S2

h, ..., S
2

t if they are

subtree or not. In case of Ek is “d,” the nodes S1

h, ..., S
1
t

are checked, whereas the nodes S2

h, ..., S
2

t are checked when

Ek is “i.” Otherwise, the nodes S1

h, ..., S
1

t and S2

h, ..., S
2

t are

checked. All edit operations Eh, ..., Et−1 are replaced by “+,”

when this sequence is corresponding to a subtree. Then, we

start checking from the beginning of another sequence from

the left of the subtree Eh, ..., Et, i.e. t = h − 1. Otherwise,

the checking is applied with the sequence start from the next

position, i.e. h = h+1. The checking is continued until h = t.

After that, when the (t−h) sequences that start with different

positions and end with t position do not contain a subtree, the

checking starts from the beginning with the new sequence, i.e.

h = h0 and t = t− 1. The process is repeated until h = t.

The cost of a subtree edit operation is taken to be half the

sum of the costs of its parts2 (i.e. subtree deletion is cheaper

than individual nodes deletion), whereas the cost of change

identical subtree is equal to 0.

To explain how the subtree operations are applied, let us

consider the two trees T1 and T2 in Fig. 2.

According to extended TED with subtree operations, the

cost is 4 and the sequence of operation is as follows: there is a

sequence of “d,” “m” and “i” in the result. These sequences

consist of three subtrees (i.e. the three deleted nodes, the first

two matched nodes and the three inserted nodes): ddd mm

iii mm. So, the final result is: ++d +m ++i mm. This means:

++d: Delete subtree (e,f,b) from T1

+m: Leave subtree (g,c) without change

++i: Insert subtree (y,z,x) into T1

m: Leave (d) without change

m: Leave (a) without change

The final mapping between T1 and T2 is shown in Fig. 6,

the extended TED with subtree operations.

IV. DEPENDENCY TREES MATCHING

As we mentioned before, our main goal is to check en-

tailment between a pair of Arabic sentences (i.e. text and

hypothesis) using TED algorithm. To match text:hypothesis

dependency tree pairs effectively, we use the extended TED

with subtree operations. It enables us to find the minimum edit

operations to transform one tree to another. Also, it allows us

2These costs are changed to match the requirements of specific applications.

a7

c5

e1

a7

d6c2

g1 x5f2

b3

g4

d6

y3 z4

T1 T2

Fig. 6. Extended TED with subtree operations, mapping between T1 and T2.

to be sensitive to the fact that the links in a dependency tree

carry linguistic information about relations between complex

units, and hence to ensure that when we compare two trees

we are paying attention to these relations. For instance, this

enables us to be sensitive to the fact that operations involving

modifiers, in particular, should be applied to the subtree as

a whole rather than to its individual elements. Thus, we

transform tree D1 to tree D2 in Fig. 7 by deleting “in the

park” in a single operation, removing the modifier as a whole,

rather than three operations removing “in,” “the” and “park”

one by one. We have applied the current technique to mapping

different dependency trees by using the costs in Fig. 8 as initial

test for edit operations in our experiments. These costs are an

updating version for the costs that used by Punyakanok et al.

[12]. These authors found that using TED gives better results

than bag-of-word scoring methods, when they applied them

for question answering task. The stop word here is a list that

contains some of most common Arabic words (e.g. the particle
	à@ Ǎn “indeed”).3 For instance, Èñ 	ª ��Ó QK
YÖÏ @ 	à@ Ǎn Almdyr

mšγwl “The director is indeed busy” entails Èñ 	ª ��Ó QK
YÖÏ @
Almdyr mšγwl “The director is busy.” Dependency trees have

also relations between each two nodes (e.g. SUBJ, OBJ, MOD,

etc.), whereas TED does not consider them in its processing.

We solved this problem by embedding a dependency relation

with its connected node (i.e. node(POS-tag,relation)).

By using the costs in Fig. 8, the cost of transfering D1

into D2 according to the standard TED is 19 (i.e. one stop

3The transcription of Arabic examples in this document follows Habash-
Soudi-Buckwalter (HSB) transliteration scheme [13] for transcribing Arabic
symbols.
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Cost Single node Subtree

Delete: if a node X is a stop word =5, half the sum of the costs of its parts
else =7

Insert: if a node Y is a stop word =5, half the sum of the costs of its parts
else =100

Change: if a node X is subsume of a node Y=0, if a subtree S1 is identical to a subtree S2=0
if X is a stop word =5, else half the sum of the costs of its parts
else =100

Fig. 8. Edit operation costs.

saw

I man

the

in

park

the

saw

I man

the

D1 D2

Fig. 7. Two dependency trees, D1 and D2.

word “the” (5) and two words (14)), whereas according to the

extended TED with subtree operations it is 10. Therefore, it

is easy to decide that D1 entails D2, whereas the reverse is

not. We also exploited the subset/superset relations encoded by

Arabic WordNet (AWN) [14] when comparing items in a tree.

Roughly speaking, if comparing one tree to another requires

us to swap two lexical items, we will be happier doing so if

the item in the source tree is a hyponym of the one in the

target tree. Doing this will allow us to delay making decisions

about potentially ambiguous lexical items: it is reasonably safe

to assume that if W1 has a sense which is a hyponym of some

sense of W2 then a sentence involving W1 will entail a similar

sentence involving W2 as shown in (1) (since “cat” is hyponym

of “animal,” (1a) entails (1b), whereas the reverse must be not).

This will definitely be quicker, and may be more reliable, than

trying to disambiguate the two from first principles and then

looking for entailment relationships.

(1) a. I saw a cat.

b. I saw an animal.

This reflects the widely accepted view that contextual in-

formation is the key to lexical disambiguation. Within the

RTE task, the text provides the context for disambiguation

of the hypothesis, and the hypothesis provides the context for

disambiguation of the text. Almost any human reader would,

for instance, accept that (2a) entails (2b), despite the potential

ambiguity of the word “bank.”

(2) a. My money is all tied up at the bank.

b. I cannot easily spend my money.

TABLE I
TESTING DATASET TEXT’S RANGE ANNOTATION.

Text length Entails Not entails

<20 90 51 39
20-29 226 118 108
30-39 86 55 31
>39 9 6 3
Total: 411 225 186

V. EXPERIMENTS

In order to check the effectiveness of the extended TED with

subtree operations, we used it to check the entailment between

T-H Arabic pairs of sentences and compared its results with

standard TED on the same set of pairs. Checking whether if

one Arabic sentence entails another, however, is particularly

challenging because Arabic is more ambiguous than most

languages, such as English. For instance, Arabic is written

without diacritics (short vowels), often leading to multiple am-

biguities. This matter makes the morphological analysis very

difficult (i.e. a single written form corresponding to as many

as ten different lexemes [15], [16], [17]). The preliminary

testing dataset contains 411 pairs, annotated as ‘Entails’ and

‘Notentails.’ This dataset was collected automatically using

the ‘headline-lead paragraph’ technique [18] from newspaper

websites via Google-API, pairing the first paragraph of article

(as text) with its headline (as hypothesis). This is based on the

observation that a news article’s headline is very often a partial

paraphrase of the first paragraph of this article, conveying thus

a comparable meaning. The annotation is performed manually

by eight expert and nonexpert human annotators to identify the

different pairs as positive ‘Entails’ or negative ‘Notentails’ in

our dataset. Each pair was annotated by three inter-annotators

and the results is the overall agreement among them. The

distribution of these pairs over the text length is summarised

in Table I, when the hypothesis average length is around 10

words and the average of common words between text and

hypothesis is around 4 words. The average length of sentence

in this dataset is 27 words per sentence, with some sentences

containing 40+ words. The inter-annotator agreement (where

all annotators agree) is around 74% compared with 89% where

each annotator agrees with at least one co-annotator. This

suggests that the annotators found this is difficult task.

In order to check the entailment between T-H pairs, we

follow three steps:

• Representing both T-H pair to dependency trees. De-

pendency tree is a tree where words are vertices and
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syntactic relations are dependency relations. Each vertex

therefore has a single parent, except the root of the tree.

A dependency relation holds between dependent, i.e. a

syntactically subordinate vertex, and head, i.e. another

vertex which it dependent. So, the dependency structure

represents as head-dependent relation between vertices

that are classified by dependency types such as SBJ

“subject,” OBJ “object,” ATT “attribute,” etc.

We have carried out a number of experiments with

state-of-the-art taggers (i.e. AMIRA [19], MADA [20]

and an in-house maximum-likelihood (MXL) tagger

[21]) and parsers (i.e. MALTParser [22] and MSTParser

[23]).4 These experiments show in particular that merging

MADA with MSTParser gives better result (around 80%)

than the other merging tagger:parser [26]. We therefore

use MADA+MSTParser in the current experiments.

• Using standard TED or extended TED with subtree

operations with edit operations costs in Fig. 8 to find

the cost of matching between T-H pair. In this step, we

use AWN as a lexical resource in order to take account

of synonymy and hyponymy relations when calculating

the cost of an edit.

• A text entails a hypothesis when the cost of matching is

less than some specific threshold.

The extended TED with subtree operations gives better

results (around a 5% overall increase in accuracy) than the

standard TED. For instance, in (3) if there are “Fifty thousand

tourists visited Lebanon and Syria last September,” then (3a)

entails (3b). The reason is that if “Fifty thousand tourists

visited Lebanon and Syria last September” is true, then there

is no way to avoid the conclusion that “Fifty thousand tourists

visited Lebanon and Syria” as a matter of fact, because (3b)

did not specify the time of visiting. Hence deleting this subtree

as a whole removes a single piece of information. The reverse

does not hold (i.e. (3b) does not entail (3a)) because if “Fifty

thousand tourists visited Lebanon and Syria” is true, then we

cannot conclude that the visiting happened in “last September.”

In general, the first sentence, the entailing expression, is more

informative than (or sometime a paraphrase of) the second

one, what is entailed, because the information that the second

sentence carries is included in the information that the first

sentence carries. For this reason, we define the cost of deleting

to be cheaper than the cost of inserting.

4These parser are data-driven dependency parsers. For Arabic they are
usually trained on an Arabic dependency treebank, such as Prague Arabic
Dependency Treebank (PADT) [24], or on some version of the Penn Arabic
Treebank (PATB) [25] that has been converted to dependency trees: scoring
of such parsers is a matter of counting dependency links.

(3) a. ú
æ
	�AÖÏ @ ÈñÊK
 @ ú


	̄ AK
Pñ�ð 	àA 	JJ. Ë @ðP@ 	P l�'A� 	Ë@ 	àñ�Ô
	g

xmswn Alf sA’H zArwA lbnAn w+swryA fy Aylwl

AlmaDy

“Fifty thousand tourists visited Lebanon and

Syria last September”

b. AK
Pñ�ð 	àA 	JJ. Ë @ðP@ 	P l�'A� 	Ë@ 	àñ�Ô
	g

xmswn Alf sA’H zArwA lbnAn w+swryA

“Fifty thousand tourists visited Lebanon and

Syria”

VI. CONCLUSION

We have presented here an extended version of tree edit

distance (TED) that solved one of the main drawbacks of

standard TED, which is that it only supports transformation

operations (i.e. delete, insert and change) on single nodes. The

extended TED deals with subtree transformation operations as

well as single ones. It has the advantage of being efficient

and more appropriate to find the minimum edit operations to

transform one tree to another compared with standard TED.

Here, the lead-paragraph in the Arabic articles that are

returned by this process typically contain very long sentences

(upwards of 100 words), where only a small part has a direct

relationship to the headline. With very long sentences of this

kind, it commonly happens that only the part of lead-paragraph

is relevant to headline. This is typical of Arabic text, which

is often written with very little punctuation, with elements

of the text linked by conjunctions rather than being broken

into implicit segments by punctuation marks such as full stops

and question marks. For instance, the lead-paragraph has the

form CONJ S1 CONJ S2 CONJ ... CONJ Sn entails the

headline, Si, i=1..n. Thus the extended TED with subtree op-

erations surpasses the standard TED in such type of sentences.

The current findings, while preliminary, are quite encour-

aging. We are currently experimenting with extended TED

with subtree operations within a textual entailment system for

Arabic with different costs and more sentences pairs.

We plan to use other Arabic lexical resources, such as

OpenOffice Arabic dictionary and MS Word Arabic dictionary,

to provide us with more information about relations between

words, because the information in AWN, while very useful,

is sparse in comparison to the Princeton WordNet (PWN), i.e.

English WordNet [27].
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Fig. 9. Arabic dependency trees, D3 and D4 for sentences (3b) and (3a) respectively.
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