
Experimental Analysis of Different Pheromone
Structures in an Ant Colony Optimization

Algorithm in Robotic Skin Design

Cristiano Nattero, Massimo Paolucci, Davide Anghinolfi, Fulvio Mastrogiovanni and Giorgio Cannata.
Università degli Studi di Genova

LIDO Lab @ DIST

13, Via Opera Pia

16145 Genova, Italy

Email: <name>.<surname>@unige.it

Abstract—The optimization of the wire routing in an artificial
skin for robots consists in selecting a subset of links between
adjacent tactile sensors in order to connect them to a finite
set of microcontrollers with a minimum cost. The problem has
been modelled as a minimum cost Constrained Spanning Forest
problem with solution-dependent costs on arcs. The problem is
NP-hard. A MIP formulation, which applicability is limited, is
given. An Ant Colony Optimization (ACO) algorithm, recently
introduced, is also described for tackling large scale problems.
This paper introduces several different alternative pheromone
structures, whose effectiveness is evaluated through experimen-
tal tests, performed on both real and synthetically generated
instances.

I. INTRODUCTION

T
O EQUIP robots, especially humanoids, with tactile

sensing, the development of robotic skin is an active

field of research. Artificial skins are devices composed of

tactile sensors linked in a network of connections, and are

researched because they would allow new kind of interaction,

possibly safer and more natural, with people, other robots

and the environment. The kind of technology used for the

sensors allow the recognition of different types of information,

especially pressure, proximity or temperature. Designing a

robotic skin is a hard engineering task as it requires to deal

with different conflicting requirements including resolution,

speed, bandwidth, weight, consumption, placement, reliability,

calibration, to name the main ones. In the last phases of the

design, it is necessary to choose how to route the wires in

the skin, in order to satisfy a set of requirements. A general

optimization technique has been recently developed [1]: this

article extends the contribution by exploring several algorith-

mic features.

The considered skin [2]–[4] is based on capacitive-

technology and is formed by elements (Fig. 1a) which tile

(Fig. 1b) the surface of a robot part, forming a so-called patch.

A data network is embedded in the elements: thanks to I/O

ports on their sides, information can be sent to and forwarded

from adjacent elements or, with use of additional wires, a

microcontroller. Given a patch, an appropriate routing of the

networking of the skin elements is required, in order to link

(a) (b)

Fig. 1: A skin element, bottom and up (a), and a patch (b) [2]–

[4], (pictures courtesy of IIT, Italian Institute of Technology).

each element to a microcontroller which will read its data.

Each microcontroller can be connected to a limited number

C of elements. The resulting wiring represents one of the

major limiting factors to the implementation of large scale

robot skin. Therefore, in order to reduce wiring complexity,

each microcontroller can be connected directly to only one

element of a patch, called the entry point, whereas the signals

of the other sensing elements are routed via neighbouring skin

elements. Note that each skin element can route the signals

managed by a single microcontroller.

Beyond the minimization of routing complexity cost dis-

cussed above, two other main objectives must be considered

in the skin layout: power consumption (mostly related to the

number of microcontrollers) and the fault tolerance of each

skin patch. The former is achieved by reducing the number of

microcontrollers to the strictly necessary minimum to control

all of the elements. Fault tolerance prescribes that in case

of failure the system must avoid to suddenly stop working.

On the contrary, a graceful performance degradation must be

guaranteed, since residual functionalities can be essential to

detect the failure and let the robot safely homing. The failure

of a microcontroller is the most critical case and hence it is the

main focus of this work. In such a case all the elements con-

nected to the microcontroller become blind. Therefore, in order

to reduce the damage it is advisable to uniformly distribute

the load among microcontrollers. In addition, a significant

performance degradation occurs if the blind elements form

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 431–438

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 431

a big sensing hole on the patch; a strategy to mitigate this

drawback consists in spreading the skin elements assigned to

a microcontroller as much as possible.
The concepts explained above lead to the formulation of

wire routing as an optimization problem with three distinct

but interconnected aspects: (i) assign each skin element to a

microcontroller; (ii) identify an entry point for each microcon-

troller; (iii) define wire routing.
The remainder of this paper is organized as follows. A

review of the approaches to robotic skin optimization is given

in Section II. Issues relevant to modelling this problem in

the class of the Constrained Spanning Forest problems are

discussed in Section III. A Mixed Integer Programming (MIP)

formulation for the problem is introduced in Section IV. The

proposed multi-start heuristic and the ant colony approaches

are detailed in Section V. In Section VI the performance of the

heuristic approaches are analysed and conclusions are drawn

in Section VII.

II. APPROACHES TO THE PROBLEM OF WIRING IN

ROBOTIC SKIN DESIGN

For a detailed review of tentative solutions to robotic skin

optimization, the interested reader can refer to [1]. In the past

two decades, research on tactile arrays for humanoid robots has

been based on the design of grid-like wiring patterns. Solutions

based on grid-like patterns are not efficient when scaling up to

patches with hundreds of tactile sensors, since the number of

wires quadratically increases with the array size. This problem

is of the uttermost importance for highly embedded machines

as humanoid robots, because the physical space necessary to

host wires can be difficult to obtain. The approach based

on telemetric robotic skin, aimed at avoiding wires at all

by locating sensor chips inside a moulding material, which

is drained within a suitable robot cover does not allow any

control related to fault-tolerance requirements. Attempts to

address the wire routing problem via skin modularity deeply

compromise fault-tolerance. Deformable and stretchable skin

sensors exploit the principle of Electrical Impedance Tomog-

raphy to reconstruct pressure distribution over a given surface

using only border measurements. Although this mechanism

allows to avoid wiring the surface itself, the problem of the

number of wires actually needed at the border (especially for

large surfaces) is not addressed.
In spite of all the different approaches to the wiring problem

available, it is important to note that a smart method to wiring

taking into account fault-tolerance is currently missing. The

only work which provides wire routing solutions taking into

account both complexity and fault-tolerance is the authors

recent paper [1], which presents two heuristic algorithms, one

of which is an Ant Colony Optimization.
The main contribution of this article is an experimental

investigation of five different pheromone structures for solving

the wire routing problem.

III. A GRAPH-BASED MODEL

Since the interconnections between robotic skin elements

are fixed, it is convenient to represent a robotic skin patch as

1

2
3

6
4

5

7 8
9

1 1
1 0

1 2

(a)

1 | 1

1 | 2

1

1 | 3

2

2 | 6
1 | 4

3

2 | 5 5

1 | 7 1 | 8

4

2 | 9

4

2 | 1 1

5

2 | 1 0

3

2

2 | 1 2

1

(b)

Fig. 2: An example of a patch graph (a), and a possible solution

(b).

a graph G = (V, E) where V = {v0, . . . , vn} is a set of vertices

and E = {e0, e1, . . . , em} is a set of edges. V contains a vertex

v for each skin element, whereas E includes an edge e = (i, j)

for each pair of neighbouring elements i, j ∈ V , i < j .

An example of a graph associated with a patch is given

in Fig. 2a. Note that the graph is supposed to be symmetric,

so no direction is defined between two connected elements.

Due to the characteristics of the considered robotic skin and

independently from the elements shape, G is a planar graph.

In addition, if the vertices associated with the skin elements

on the border are neglected, then G is also a regular graph.

Given a patch and a corresponding graph G, Dij represents the

Euclidean distance between the centroids of each pair of skin

elements (i, j) ∈ V × V . Finally, a set K of microcontrollers

is given. In general, the minimum cardinality of K can be

computed as |K| =
⌈

|V |
C

⌉

, where V is the set of skin

elements and ⌈x⌉ denotes the ceiling operator, which returns

the smallest integer bigger than or equal to x .

The problem of optimally defining a wire routing for a

patch of skin elements can be modelled within the class

of Constrained Spanning Forest problems: the set of skin

elements assigned to a microcontroller k corresponds to a

set of vertices Tk , such that |Tk| ≤ C , and the wiring defines

an acyclic connected sub-graph Sk(Tk , Ek) in G induced by

Tk, that is a tree. Any vertex v in Tk can be chosen as root

and used as entry point for the microcontroller k . The solution

of the wiring problem is then a forest F corresponding to the

the collection of all the trees Sk. Therefore, the connection

of the skin elements in a patch to a set of microcontrollers

and the consequent wire routing corresponds to a constrained

spanning forest on the graph associated with the patch. As an

example, Fig.2b shows a possible wiring for the patch graph

of Fig.2a using two microcontrollers. In Fig.2b the node labels

(k|v) denote the index of the microcontroller followed by the

index of the vertex, whereas the number associated with the

edges represents the order of assignment of a connection to a

microcontroller, allowing the identification of the entry-points

(vertices 1 and 12, in the example) and the routing direction.

The Maximum Weight Forest (MAXWF) problem consists

in defining a spanning forest that maximizes the sum of the

weights associated with each edge. Although it is possible

to solve MAXWF in polynomial-time with a greedy algo-

432 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

rithm [5], the introduction of constraints makes the problem

much more difficult. The Maximum Weight t-restricted Forest

(MAXWCF(t)) problem, consisting in finding the MAXWF

constrained to have no more than t edges in each tree, has

been shown to be NP-hard [6]. The authors also give a

1/4 approximating greedy algorithm. [7] deal with the Min-

imum Weighted Constrained Spanning Forest (MINWCF(p))

problem, which consists in computing the spanning forest of

minimum weight such that every tree component contains at

least p vertices. They demonstrate that the the problem is

NP-hard, ∀p ≥ 4 and [8] show that MINWCF(p) is NP-

hard even with p = 3. [9] address the unweighted version

of the same problem (MINCF(p)) and show that it is NP-

hard for any p ≥ 4, even on planar bipartite graphs of

maximum degree 3. Moreover, they demonstrate that dropping

the condition of planarity the problem becomes APX-hard for

any p ≥ 3, even on graphs with maximum degree 3. Despite

some similarities, the problem faced in this paper differs both

from MAXWF, MINWCF (and MINCF). As a matter of fact,

the problem here considered is to find a constrained spanning

forest F that serves all vertices, minimizing a cost function

with two components: (i) the sum, on all the trees Sk ∈ F ,

of the absolute value of the difference between the number

of vertices |Tk| and the desired average number of vertices

per tree, defined as λ ,

⌈

|V |
|K|

⌉

; this cost component would

favour the microcontroller load balancing; (ii) the sum, on all

the trees Sk ∈ F and on all the ordered pairs of vertices

(i, j), such that i < j, i, j ∈ Tk, of the difference between

the maximum distance between all the pairs of vertices in

V and the distance between i and j; this component would

favour the spreading of the skin elements associated with a

single microcontroller, thus avoiding the risk that large skin

spots could become blind in case of a microcontroller failure.

Considering the second objective component, it is evident

that, for the faced Constrained Spanning Forest problem, no

cost can be a priori associated to an edge as it depends on

which subsets of vertices in V are finally assigned the |K| trees.

Therefore, since the contribution of an edge to the objective

function becomes known only after the introduction of that

edge in a solution, a greedy heuristic appears not suitable for

this problem. Nonetheless, if the contribution of each edge

was known a priori, the considered problem could be reduced

to a MINWCF. This allows to conclude that the problem is

NP-hard.

IV. THE MATHEMATICAL FORMULATION

The wiring routing problem can be formulated as the prob-

lem of determining a spanning forest on the graph G = (V,E)
associated with a skin patch so that the forest is composed by

at most |K| trees and each tree includes at most C vertices.

In addition, as for each microcontroller an entry point and

a feasible routing must be determined, a root vertex and

an orientation is selected for each tree so that the solution

corresponds to a directed spanning forest consisting of a set

of arborescences. This problem can be formulated as a mixed

integer programming (MIP) problem considering the directed

graph G′ = (V,A), where A = {(i, j), (j, i) : ∀(i, j) ∈ E}.

In the following let a = (i, j) denote a generic directed

arc, where vertices i and j are respectively the tail and the

head of a. Then, a feasible solution identifying a directed

spanning forest H is a set of arborescences Rk, i.e., H ,

{Rk(Tk, Ak), k ∈ K}, where Tk ⊆ V and Ak ⊆ A.

The following constants are used: Dij , ∀(i, j) ∈ V ×V , Eu-

clidean distance between vertices i and j; Dmax = max{Dij},

Dmin = min{Dij}; C, maximum number of vertices in a

tree (microcontroller capacity); λ ∈ (0, C], desired number

of vertices in a tree (desired microcontroller load level);

w1, w2, w3 ∈ R+, weights modelling the priority of the

objective function components.
The following decision variables are used:

• rkv ∈ {0, 1}, ∀k ∈ K, v ∈ V ; rkv = 1 only if controller
k ∈ K is connected directly to vertex v ∈ V , that is, v is the
root of tree k (the entry point for microcontroller k);

• xka ∈ {0, 1}, ∀k ∈ K, a ∈ A; xka = 1 only if a ∈ Ak; note
that a vertex j is assigned to an arborescence (Tk, Ak) (i.e., it
is controlled by microcontroller k) if either j is the root of k
or it is the head of an arc a = (i, j) such that a ∈ Ak;

• yij ∈ {0, 1}, ∀(i, j) ∈ V × V , i < j; yij = 1 only if i, j ∈
Tk for a given k; these variables determine if two vertices are
assigned to the same arborescence and are used to evaluate the
relative distance between vertices;

• nv ∈ {0, 1}, ∀v ∈ V ; nv = 1 only if v /∈ Tk, ∀k ∈ K;
variables nv are introduced to relax the vertex spanning condi-
tion, i.e., to model also the case of skin patches that generate
graphs structured so that there is no possibility to assign all the
vertices to a microcontroller (this point is discussed later in this
Section);

• ∆k ∈ R+, ∀k ∈ K; these are deviational variables giving the
absolute difference between |Tk| and the average desired load
λ for microcontrollers;

• uv ∈ R, ∀v ∈ V ; variables used in subtour elimination
constraints.

The problem is a multi-objective one requiring the minimiza-

tion of the three following objectives:

O1 ,
∑

v∈V

nv (1)

O2 ,
∑

k∈K

∆k (2)

O3 ,
1

(Dmax −Dmin)

∑

i,j∈V
i<j

yij (D
max −Dij) (3)

where O1 (1) is the sum of vertices not assigned to any

tree in the current solution, O2 (2) is the sum over all

microcontrollers of the variations from the average desired

load λ and O3 (3) corresponds to the sum of the normalized

distances among every pair of vertices assigned to the same

arborescence. The following three scaling factors, ν1, ν2 and

ν3, are introduced to ensure that Oh ∈ [0, 1], h = 1, 2, 3:

ν1 ,
1

|V |
; ν2 ,

1

|K|λ
; ν3 ,

2

[|V | (|V | − 1)]
; (4)

Note that, as such factors are derived from worst case con-

siderations, the scaled objectives could not reach the extremes

of their variation range.

CRISTIANO NATTERO, MASSIMO PAOLUCCI ET AL.: EXPERIMENTAL ANALYSIS OF DIFFERENT PHEROMONE STRUCTURES 433

The multi-objective problem can be converted into a scalar

minimization problem by combining the three objectives into

a single weighted additive objective function (5), where the

values of the weights are provided according to the different

preference of the decision maker. A lexicographic priority can

be imposed between any pair of objectives Oi, Oj , fixing

wi ≫ wj . Then, the proposed formulation is the following:

min w1ν1O1 + w2ν2O2 + w3ν3O3 (5)

subject to:

∑

k∈K

(rkj +
∑

a∈A
a=(i,j)

xka) + nj = 1 ∀j ∈ V (6)

xka ≤
∑

f∈A
f=(j,i)

xkf + rki ∀i ∈ V, k ∈ K,a = (i, l) ∈ A (7)

∑

v∈V

rkv ≤ 1 ∀k ∈ K (8)

∑

j∈V

∑

a∈A
a=(i,j)

(

xka + rkj
)

≤ C ∀k ∈ K (9)

ui − uj + C
∑

k∈K

xka ≤ C − 1 ∀a = (i, j) ∈ A (10)

∑

j∈V

∑

a∈A

(

xka + rkj
)

− λ ≤ ∆k ∀k ∈ K (11)

∑

j∈V

∑

a∈A

(

xka + rkj
)

− λ ≥ −∆k ∀k ∈ K (12)

yij ≥
∑

a1∈A
a1=(h,i)

xka1 + rki +
∑

a2∈A
a2=(l,j)

xka2 + rkj − 1 (13)

∀i, j ∈ V, k ∈ K, i < j

Constraints (6) require that each vertex must be at most

assigned to a single arborescence (i.e., a microcontroller),

being either the entry point for the arborescence or the head of

one of its arcs. Constraints (7) ensure that an arc with origin

in vertex i can be assigned to controller k only if another

arc assigned to k enters in i or if i is an entry point for k.

Constraints (8) impose that for each microcontroller there must

be at most one entry point. Constraints (9) limit the number of

vertices assigned to each microcontroller. Constraints (10) are

the sub-tour elimination constraints introduced by [10]; here

these constraints ensure that each microcontroller is associated

with an acyclic connected and directed sub-graph, i.e., an

arborescence. Constraints (11) and (12) define the unbalance

between the number of vertices assigned to a microcontroller k
and the average desired load. Constraints (13) impose yij = 1
if vertices i and j are controlled by the same microcontroller.

Variables nv are necessary to determine feasible solutions

for the graphs whose vertices cannot be partitioned into

|K| distinct arborescences, i.e., assigned to the available

|K| microcontrollers. Such situations may arise in case of

patches generating a non connected graph, but also in case

of connected graph with particular structures [1].

V. THE ANT COLONY OPTIMIZATION ALGORITHM

Since the MIP model as-is is almost useless to solve large

scale instances [1], a metaheuristic approach had to be de-

veloped and, being the problem instances very structured, the

choice has been oriented towards an algorithm which makes

use of learning. In particular, an Ant Colony Optimization

(ACO) algorithm [11], together with an efficient Candidate

Strategy (CS), has been implemented [1]. The ACO algorithm

described in this Section shares the same structure of the

algorithm described by Anghinolfi and Paolucci [12], which

borrows concepts both by the Ant Colony System (ACS) [13]

and the Max-Min Ant System (MMAS) [14]. The algorithm is

outlined in Pseudocode 1.

Pseudocode 1 ACO algorithm.

Input: G = (V, E), |K|, λ, P
1: F ∗ ← ∅, zbest ← +∞
2: π ← initPheromone(G)
3: while termination_condition not met do
4: for all ant a do

5: Fa ← build solution(G, |K|, λ, π)
6: if z (Fa) < zbest then

7: F ∗ ← Fa
8: zbest ← z (F ∗)
9: end if

10: localPheromoneUpdate(Fa , π)
11: end for

12: globalPheromoneUpdate(F ∗ , π)
13: end while

14: return F ∗

The graph G, the number |K| of microcontrollers, the

desired occupancy level λ and the number P of artificial ants

are fed into the algorithm. The best solution F ∗ and the best

value zbest are initialized respectively to an empty set and

to +∞ (l. 1). The pheromone π is also initialized (l. 2). The

main loop of the algorithm (l. 3 - 13) consists in making each

ant (l. 4 - 11) construct a forest Fa which possibly spans all

the vertices in V (l. 5), comparing the solution against the

incumbent (l. 6) and eventually save it (l. 7 - 8). Pheromone

trails are locally updated after each construction (l. 10) and

globally updated at the end of the iteration (l. 12). The best

solution found is finally returned (l. 14).

The solution construction proceeds incrementally [1], each

ant a constructing a forest Fa one tree T at a time. A tree

is constructed by adding an edge e to T . The edge e is

obtained from an element z, which is extracted out of a set

θ of candidates using information associated with pheromone

trails. The set θ is generated from scratch before the insertion

of each edge and Subsections V-A and V-B explain how to

obtain it. The set θ can contain one among two possible types

of elements: edges or vertices. A vertex v is called free if it

has not been assigned to any tree yet so, If z corresponds to

an edge e = (i, j), either i ∈ T and j is free, or j ∈ T and i
is free. In the other case, if z corresponds to a vertex v, then

it is free. For the sake of completeness, any edge e connecting

v to a vertex in T can be added, since their contribution to

the objective function (5) is equivalent. The construction of

current tree ends when the desired occupancy level has been

reached (|T | = λ) or it is no longer possible to find an element

for which the insertion is feasible (θ = {∅}).

Note that, for comparison purposes, it is possible to design a

434 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

randomized constructive heuristic simply by neglecting the use

of pheromone. In this case, the selection of the next element

z ∈ θ to insert in T is performed randomly with a uniform

probability distribution. A Multi Start Heuristic (MSH) is

then obtained by restarting the construction. Conceptually, this

corresponds to setting P = 1 but, in practice, it is convenient

to write a dedicated implementation. For a fair comparison, the

termination condition both of MSH and ACOs is the maximum

running time.

Differently from MSH, when more alternatives exist, the ant

performs the selection in two steps. First, as in the standard

ACS, the ant chooses randomly the node selection rule be-

tween exploitation and exploration with probability q ∈ [0, 1]
and 1 − q respectively. Let π(z) denote the pheromone trail

associated with element z: the exploitation rule selects z
deterministically according to

w = argmax
w∈θ

π(w) (14)

and the exploration rule selects z according to a selection

probability p(z) obtained as

p(z) =
π(z)

∑

w∈θ π(w)
(15)

Following the same approach proposed in [12], the

pheromone trails do not depend on the cost function values

associated with previously explored solutions. Rather, they

vary in an arbitrary range [πmin, πmax] such that πmin < πmax

and πmin ≥ 0. In this way, πmin and πmax are no longer

parameters to be tuned. This feature makes the algorithm more

independent from the specific problem or instance. After any

ant a completes the construction of a solution F , in order to

reduce the probability that the successive ants construct an

identical solution during the same iteration, the pheromone

trails are locally updated (l. 10) as follows

π(z)← (1− ρ)π(z), ∀z ∈ F (16)

where ρ ∈ [0, 1] is the local evaporation parameter. The

global pheromone update (l. 12 in Pseudocode 1) is performed

in three steps:

(i) the perturbations due to the local pheromone updates are

removed;
(ii) pheromone trails are evaporated as follows

π(z)← (1− α)π(z), ∀z /∈ F ∗ (17)

where F ∗ is the incumbent solution and α ∈ [0, 1] is the

global evaporation parameter;

(iii) pheromone trails relevant to F ∗ are reinforced as follows

π(z)← π(z) + α ·∆π(z), ∀z ∈ F ∗ (18)

where ∆π(z) is the maximum pheromone reinforcement

obtained as

∆π(z) = πmax − π(z), ∀z ∈ F
∗ (19)

As shown in [12], these rules make the pheromone reach

both bounds asymptotically.

A. Candidate Strategy

The set θ of elements candidate for insertion, is constructed,

coherently with the used pheromone structure, upon a set ψ
of candidate vertices, defined as follows. Let A(v) be the set

of vertices adjacent to v and N(v) ⊆ A(v) be the set of free

vertices adjacent to v. With a minor abuse in the notation,

let also A(T) be the sets of vertices adjacent to those in

T and N(T) the set of free vertices adjacent to those in

T . Given a incomplete forest F , possibly empty, a first set

ψ0 is obtained including including all vertices in N(T). If

the tree is empty, then any free vertex is added to ψ0 to

bootstrap its construction. Now, ψ0 can be passed directly to

an ant for construction but this choice leads to poor quality

solutions which, most of the times, are also incomplete. A

first improvement is obtained by constructing a set ψ1 ⊆ ψ
keeping only those vertices for which |N(v)| is minimal, i.e.,

ψ1 =

{

v ∈ ψ : v = arg min
w∈ψ
|N(w)|

}

(20)

This is called the Least Unassigned (LU) rule and allows

to obtain much better solutions, although it still produces too

many incomplete ones.

Finally a set ψ2 ⊆ ψ1 is defined by keeping only those

vertices in ψ1 for which, in turn, the total number of free

adjacent vertices is minimal, i.e.

ψ2 ,

v ∈ ψ1 : v = arg min
w∈ψ1

∑

u∈N(w)

|N(u)|

(21)

This is called the Least Cumulative Unassigned (LCU) rule

and, thanks to its look-ahead effect, it reduces the chances

that a vertex v is left unassigned to any microcontroller since

it tends to avoid leaving v isolated. It is convenient to set

ψ = ψ2: LCU allows to obtain remarkably better solutions

in terms of objective O1, and partly of O3 as, in most cases,

this mechanism tends to produce chain-like shaped trees, i.e.,

trees with only two leaves. Objective O2 is implicitly taken

into account by limiting to λ the number of vertices per tree.

Fig.3 shows how the LCU rule works. Suppose T = {0, 1, 2, 3}.

Then N(T) = {X,Y, Z}. All vertices in N(T) have only one free

adjacent vertex, except X, so ψ1 = {Y,Z}. The cumulative sum

of free adjacents for Y is 1, whereas it is 3 for Z , so ψ2 = {Y }.

B. Pheromone Structures

The pheromone allows the artificial ants to learn what the

attributes of a good solution are. The candidate set must be

coherent with the choice. Since in this problem it is necessary

to learn how link vertices together, the following possibilities

have been tested:

1) Direct Edges (DE): θ is defined as the set of edges

linking a candidate vertex and a vertex in current tree,

i.e.,

CRISTIANO NATTERO, MASSIMO PAOLUCCI ET AL.: EXPERIMENTAL ANALYSIS OF DIFFERENT PHEROMONE STRUCTURES 435

Fig. 3: Candidate set generation.

θDE , {e ∈ E, e = (v, i) ∨ e = (i, v) : v ∈ ψ ∧ i ∈ T} (22)

The pheromone trail is associated with each edge e ∈ E
and is indicated as πe.

2) Cumulative Edges (CE): in this case

θCE = ψ (23)

and the value of the corresponding pheromone trail πv
is averaged over all possible edges e linking v to a vertex

in T , i.e.,

πv ,

∑

e∈ET (v) πe

|ET (v)|
(24)

where ET (v) ⊆ E is defined as:

ET (v) , {e ∈ E, e = (v, i) ∨ e = (i, v) : v ∈ ψ, i ∈ T} (25)

This is the pheromone structure originally adopted by

the authors [1].
3) Direct Pairs (DP): θ is the set of (virtual) edges linking

all vertices in T with all vertices in ψ, i.e.,

θDP , {e ∈ PT (v)} (26)

where

PT (v) , {e = (i, j), i < j : (27)

(i ∈ ψ ∧ j ∈ T) ∨ (i ∈ T ∧ j ∈ ψ)}

The pheromone is associated with the same edges.

4) Cumulative Pairs (CP): as in CE but applied to pairs

defined in the previous case, i.e.,

θCP = ψ (28)

and the pheromone trail is averaged over all edges in

PT (v) ending or beginning in v, i.e.,

πv ,

∑

e∈PT (v) πe

|PT (v)|
(29)

5) Naive Clustering (NC) in this final case, the element to

be inserted is a vertex, i.e.,

θNC , ψ (30)

and the pheromone πc is associated to the couple

c = (T, v), where T is the tree under construction

and v ∈ θNC. This representation is the only one

which works also with empty trees, whereas the others

require the adoption of dummy edges to bootstrap the

construction.

VI. EXPERIMENTAL ANALYSIS

The MSH and the ACO algorithms, the latter with all

of the pheromone configurations described above, have been

tested on the same instances and with the same termination

condition, i.e., a maximum time of 300 seconds. No results

of a MIP solver are reported as it has already been shown

that the formulation as-is is definitely not competitive [1].

Since both algorithms are randomized, 10 independent runs

were executed for each instance. All tests were executed on

a 2.83 GHz Intel Core 2 Quad CPU Q9550, with 4GB of

RAM, running Linux (Ubuntu with 3.2.0-26-generic-pae, 32

bit). Instances are grouped in two datasets: the first contains

instances corresponding to patches for some real parts of the

iCub robot platform1, which have a number of vertices ranging

from 6 up 232; the second contains artificially generated

instances with a number of vertices ranging from 35 up to

2470. In the following, the instance associated with real parts

from iCub are identified by the prefix “i”. These instances

correspond respectively to: i1 = Left Upper Arm, lower part,

i2 = Left Hip, i3 = Right Upper Forearm, i4 = Torso, i5 =

Lower Torso; whereas instances in the synthetic dataset have

a prefix “s” followed by the number of vertices. The first four

columns of Table I show, for each instance, the number of

vertices, microcontrollers and the desired occupancy level λ.
Robot designers require a lexicographic ordering O1 ≺

O2 ≺ O3, where a ≺ b means that a has a priority higher

than b. In fact, they consider unacceptable (or at least very

low quality ones) those solutions that do not assign all the

skin elements to the microcontrollers (1), and microcontroller

load balancing (2) is considered more important than skin

element spreading (3). To model this priority, the weights

in the objective function (5) must be set in order to satisfy

w1 ≫ w2 and w2 ≫ w3. In particular the following set

of values was considered suitable for the objective weights:

w1 = 1000, w2 = 10, w3 = 1. Although all of the algorithms

described explicitly enforce the required lexicographic order-

ing of solutions, this assignment allows the comparison with

the solutions obtained with a MIP solver [1].
Table I summarizes the performance of the algorithms: the

first column (ID) indicates the instance, the second (BV) the

value of the best solution found during the experiments and

the remaining columns report the average Relative Percent

Deviation (RPD) of MSH and of the ACO algorithms with

the different pheromone configurations (DE, CE, DP, CP, NC).

The last two column report the range between the worst and

the best solution found respectively by all algorithms and

by ACO algorithms only. Each row is dedicated to a single

instance, and the best value is highlighted in boldface. The

last two rows show the average and the standard deviation

respectively. The RPD is calculated as follows:

RPD =
z − BV

BV
· 100 (31)

where z is the value of the objective function found by the

algorithm under test.

1Please refer to the official iCub website at www.icub.org.

436 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

TABLE I: Instances characteristics and computational results.

ACO range (all) range (ACO)
ID |V | |K| λ BV MSH DE CE DP CP NC (max - min) (max - min)
i1 6 2 3 0.3851 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0 0
i2 9 1 9 0.6792 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0 0
i3 37 4 13 3.1087 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0 0
i4 125 9 16 1.4905 0.023% 0.032% 0.033% 0.022% 0.030% 0.035% 0.01 0.01
i5 232 15 16 0.3899 0.240% 0.018% 0.010% 0.165% 0.171% 0.215% 0.23 0.21

s35 35 3 12 0.5193 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0 0
s40 40 3 14 0.7179 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0 0
s54 54 4 14 0.5406 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0 0
s60 60 4 15 0.1798 0.006% 0.217% 0.000% 1.385% 0.063% 0.063% 1.38 1.38
s77 77 5 16 0.5219 0.093% 0.000% 0.076% 0.678% 0.000% 0.630% 0.68 0.68
s84 84 6 14 0.1230 2.069% 0.000% 0.000% 0.000% 0.000% 2.107% 2.11 2.11
s104 104 7 15 0.2027 0.768% 0.320% 0.360% 0.332% 0.000% 1.962% 1.96 1.96
s112 112 7 16 0.1063 1.834% 0.327% 1.906% 0.966% 0.105% 0.121% 1.8 1.8
s135 135 9 15 0.0840 4.900% 0.000% 0.000% 4.035% 1.527% 4.336% 4.9 4.34
s170 170 11 16 0.4137 0.482% 0.150% 0.012% 0.521% 0.283% 0.271% 0.51 0.51
s198 198 13 16 0.5440 0.263% 0.150% 0.125% 0.079% 0.052% 0.216% 0.21 0.16
s252 252 16 16 0.2070 0.730% 0.199% 0.150% 0.349% 0.357% 0.372% 0.58 0.22
s322 322 21 16 0.4570 0.201% 0.091% 0.079% 0.126% 0.175% 0.178% 0.12 0.1
s432 432 27 16 0.0312 1.970% 0.133% 0.511% 0.705% 0.622% 1.152% 1.84 1.02
s608 608 38 16 0.0225 2.230% 0.309% 0.914% 1.205% 0.718% 1.128% 1.92 0.9
s874 874 55 16 0.0840 0.324% 0.041% 0.113% 0.128% 0.154% 0.135% 0.28 0.11

s1344 1344 84 16 0.0105 1.125% 0.366% 0.106% 0.381% 0.665% 0.110% 1.02 0.56
s2470 2470 155 16 0.0461 0.082% 0.018% 0.013% 0.030% 0.044% 0.035% 0.07 0.03

average 0,754% 0,103% 0,192% 0,483% 0,216% 0,568%
stdev 1,174% 0,127% 0,431% 0,876% 0,364% 1,024%

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

MSH

DE

CE

DP

CP

NC

Fig. 4: Algorithms performance.

The same values are visualized in Fig. 4, which plots the

results as a function of the number of vertices.

First of all, although not shown, it is remarkable that every

algorithm was able to produce a complete solution, i.e., with

O1 = 0, in every run on every instance. This is a very satisfy-

ing performance on the point of view of the subject matter ex-

perts. From the Table it stems out that every algorithm proved

to be very efficient on the less challenging instances, namely

i1-i3 and s0035 - s0054: not only 0% RPD was achieved on

all of them, but they actually constantly kept finding a solution

with the same (best) cost in all of the replications. In the graph

in Fig. 4, this corresponds to those points, on the left, where all

the lines reach the horizontal axis. At this stage of the analysis,

it is not possible yet to state that an algorithm was clearly

dominated by some other, although the ACO with the Direct

Edges pheromone structure achieves the best average results

and the tightest standard deviation. Considering the averages

TABLE II: 95% confidence intervals.

lo avg up stdev
MSH 0.42% 1.02% 1.62% 1.27%
DE 0.08% 0.14% 0.20% 0.13%
CE 0.03% 0.26% 0.49% 0.49%
DP 0.19% 0.65% 1.11% 0.97%
CP 0.10% 0.29% 0.48% 0.40%
NC 0.23% 0.77% 1.31% 1.13%

Fig. 5: Average results for MSH and ACOs with 95% confi-

dence intervals.

the remaining algorithms ranked as follows: CE, CP, DP, NC

and MSH; whereas looking a the standard deviation the order

was: DE, CP, CE, DP, NC and DE. The right part of the graph

reinforces the observation that DE, CE and CP perform better

on large scale instances. To gain some more insight, it is useful

to filter out the simplest instances and compute the confidence

intervals. Table II shows, on the rows, the average RPD (avg)

of each algorithm, together with the 95% confidence intervals

(lo, up) and the standard deviation (stdev). For convenience,

the same intervals are also plotted in Fig. 5.

The confidence interval of DE does not overlap with that

associated to MSH, which allows to conclude that the improve-

ment obtained with the Direct Edge pheromone representation

CRISTIANO NATTERO, MASSIMO PAOLUCCI ET AL.: EXPERIMENTAL ANALYSIS OF DIFFERENT PHEROMONE STRUCTURES 437

is statistically significant. It pays to add this learning mech-

anism to the purely random constructive mechanism adopted

by the MSH. Interestingly, DE is also better than NC, for

which the interval is largely coincident with that of MSH,

and this is remarkable: apparently, the clustering information

associated with the couple c = (T, v), where T is a tree

and v is a vertex is not powerful enough. The reason cannot

depend on the choice of the edge to be inserted in T because,

given vertex v, the contribution to the objective function is

univocally defined. To understand one possible reason why

NC did not perform well, consider a graph for which the set

of vertices can be partitioned into two disjoint subsets V1 and

V2, and suppose that it is possible to obtain a solution for

which V1 and V2 are assigned to trees T1 and T2 respectively.

Then, a completely equivalent solution can be obtained by

swapping the assignments, i.e., by assigning V2 to T1 and V1
to T2. This kind of representation suffers the inefficiency due

to its embedded strong symmetry: since equivalent solutions

can be obtained simply by performing cyclic permutations

of the assignments represented in couples c, the algorithm

probably wastes a lot of CPU time to determine which of these

equivalent assignments works best. It can be concluded that, at

least on the given instances, it is not efficient to represent the

clustering information by specifying the tree to which a vertex

must be assigned. Instead, remaining structures try to represent

the fact that two or more vertices must be grouped together in

a good solution. The performance of DE are superior also of

those of DP: even if there is a minimal intersection between

the two, the interval of DP is almost entirely contained into

that of NC. DE, CE and CP look the best configurations. The

interval of DE is embedded into that of CE and overlaps for

almost its 80% with that of CP, so no statistical significance

of the superiority of DE can be inferred.
If a single pheromone had to be selected, then DE would

be a good choice, as it is the only that guarantees superior

performances with respect to those offered by MSH. CE and

CP would be the next best alternative. This ranking allows

to speculate that two characteristics of a good pheromone

structure are: (i) the use of topology and (ii) the information on

the fact that two or more elements (i.e., vertices) must belong

to the same cluster. DE and CE have both characteristics, while

CP only have the second one. Finally, it is worth noting that on

the two largest instances, those with 1344 and 2470 vertices,

the situation changes: CE performs best, and NC and DP close

the gap. These two final observations will be addressed in

future research.

VII. CONCLUSIONS

Five different pheromone structures for an Ant Colony Op-

timization have been designed and tested to solve a minimum

cost Constrained Spanning Forest problem arising in robotic

skin design. These are Direct Edges (DE), Cumulative Edges

(DE), Direct Pairs (DP), Cumulative Pairs (DP) and Naive

Clustering (NC). The proposed heuristics were tested against

real and synthetic instances: results show the effectiveness of

all methods but suggest that some structures work better than
others. The simplest structure (DE), performs definitely better

than the simple randomized restart MSH algorithm obtained

disabling the learning capability given by the pheromone and

than the Naive Clustering structure. DE is superior also of

the CP method but no statistical evidence that DE is better

than CE, DP has been found. Moreover, the behaviour of the

algorithms seems to be sensitive to the scale of the problem.

At the same time, there is a need for automatic methods

that can handle an ever increasing number of sensors per

area unit, obtained thanks to miniaturization and technology

improvements, so even larger cases will be considered in future

research.

ACKNOWLEDGEMENT

The research leading to these results has received fund-

ing from the European Community’s Seventh Framework

Programme (FP7/2007-2013) under grant agreement no.

231500/ROBOSKIN.

REFERENCES

[1] D. Anghinolfi, G. Cannata, F. Mastrogiovanni, C. Nattero, and
M. Paolucci, “Heuristic approaches for the optimal wiring in large scale
robotic skin design,” Computers & Operations Research, vol. 39, no. 11,
pp. 2715 – 2724, 2012.

[2] G. Cannata, M. Maggiali, G. Metta, and G. Sandini, “An embed-
ded artificial skin for humanoid robots,” in Proceedings of the 2008

IEEE International Conference on Multi-sensor Fusion and Integration

(MFI’08), Seoul, Korea, August 2008.
[3] G. Cannata, R. Dahiya, M. Maggiali, F. Mastrogiovanni, G. Metta, and

M. Valle, “Modular skin for humanoid robot systems,” in Proceedings

of the 4th International Conference on Cognitive Systems (CogSys’10),
Zurich, Switzerland, January 2010.

[4] Schmitz A., Maiolino P, Maggiali M., Natale L., Cannata G., and Metta
G., “Methods and Technologies for the Implementation of Large Scale
Robot Tactile Sensors,” IEEE Trans. on Robotics - Special Issue on

Robot Sense of Touch, vol. 27, no. 3, pp. 389–400, 2011.
[5] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:

algorithms and complexity. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1982.

[6] A. Gupta, J. Lafferty, H. Liu, L. Wasserman, and M. Xiu, “Forest density
estimation,” Carnegie Mellon University, Tech. Rep., 2010.

[7] C. Imielinska, B. Kalantari, and L. Khachiyan, “A greedy heuristic for a
minimum-weight forest problem,” Operations Research Letters, vol. 14,
no. 2, pp. 65 – 71, 1993.

[8] J. Monnot and S. Toulouse, “The path partition problem and related
problems in bipartite graphs,” Operations Research Letters, vol. 35,
no. 5, pp. 677 – 684, 2007.

[9] C. Bazgan, B. Couëtoux, and Z. Tuza, “Complexity and approximation
of the constrained forest problem,” Theoretical Computer Science, vol.
412, no. 32, pp. 4081 – 4091, 2011.

[10] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming
formulation of traveling salesman problems,” J. ACM, vol. 7, pp. 326–
329, October 1960.

[11] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey.”
Theoretical Computer Science, vol. 344, pp. 243–278, 2005.

[12] D. Anghinolfi and M. Paolucci, “A new ant colony optimization
approach for the single machine total weighted tardiness scheduling
problem.” International Journal of Operations Research, vol. 5, pp. 1–
17, 2008.

[13] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem.” IEEE Trans. on

Evolutionary Computation, vol. 1, pp. 53–66, 1997.
[14] T. Stützle and H. H. Hoos, “Max-min ant system.” Future Generation

Computer System, vol. 16, pp. 889–914, 2000.

438 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

