
Context Aware Services for Mobile Users:

JQMobile vs Flash Builder Implementations

Alfio Costanzo, Alberto Faro, Daniela Giordano, Concetto Spampinato
 Department of Electrical, Electronics and Computer Engineering,

University of Catania, viale A. Doria 6,

Catania, 95125, Italy

Abstract─Current information systems that help user mobil-
ity, i.e., mobility information systems, generally lack of the basic
context information that support people activity in time-chang-
ing environments: they do not take into account current traffic,
weather or car pollution conditions, nor the mobile users are
timely informed about accidents, or road works. Also, such sys-
tems do not consider the user personal information that influ-
ences the user context awareness such as age, or health status.
 Aim of the paper is to illustrate how context aware services
may be offered by an implementation architecture based on a
server following the Model-View-Controller paradigm, i.e.,
Ruby on Rails (RoR), whose controllers implement the use sto-
ries of the mobile users, and whose views are JQMobile scripts
that provide for each story the most suitable scenario by an
user interface based on the familiar Google Maps. How Flash
Builder applications resident on the user mobiles may provide
the users with similar RoR views, but saving RoR time, is also
widely discussed. Furthermore the paper claims that involving
actively the mobiles into the mobility information system may
support more effectively the context aware decisions of the mo-
bile users.

I. INTRODUCTION

URRENT information systems that help user mobility,

i.e., mobility information systems, generally lack of the

basic context information that may help people in environ-

ments where the state is time and location dependent: they do

not take into account current traffic, weather or pollution

conditions, nor the mobile users are timely informed about

accidents, strikers or road works. Also, such systems do not

consider user personal information and activities that influ-

ence their context awareness such as age, health status, time

limits to decide, or most suitable services for their task.

C

For these reasons, several functional architectures, e.g.,

[1], have been proposed to merge in some intelligent system

both external and personal information to support user deci-

sions. However, functional architectures are too abstract in

location and context aware applications where it is important

not only what information is offered by the system to the

users, but also how the system is implemented. Indeed, the

aim of the location and context aware applications is to help

the users in taking the most appropriate decisions to support

the activity to accomplish a task.

Consequently, not only the user interface but also the sys-

tem internal structure should be analyzed carefully in all the

cases in which the information system is conceived to im-

prove the user location and context awareness, e.g., in all the

time-varying scenarios where the user activity is highly de-

pending on the user decisions and where interference due to

not relevant information, e.g., information dealing with other

scenarios, should be reduced to a minimum.

This assumption is partially at the basis of the User Cen-

tered System Design (UCSD) [2]. Indeed, in UCSD system

internal structure is not analyzed specifically, whereas the

main effort is dedicated to design human-computer interfaces

that allow the users to afford the needed information, accord-

ing to the well known Gibson's theory on the human percep-

tual processes [3]. Criticisms to the little attention given by

the UCSD approach to the internal structure has been widely

advanced in the past by the authors claiming that, according

to the situated cognition paradigm [4], [5] also the system in-

ternal structure should be designed suitably to support ade-

quately the user activities. In particular, it has been suggested

to structure the software per use stories [6] to support speci-

fications, verification, testing and reuse [7].

The same point of view has been embraced in the last

years by the design paradigm called Model-View-Controller

(MVC) [8], where the use stories are implemented by spe-

cific controllers, the related interfaces by views, whereas

data are modeled as objects although they are physically or-

ganized in MySQL tables or XML files.

Aim of the paper is to illustrate how location and context

aware services [9], [10], may be offered by an implementa-

tion architecture based on a server following the MVC para-

digm, i.e., Ruby on Rails (RoR) [11], whose controllers im-

plement the use stories, and whose views are JQMobile

scripts [12] that implement for each story the most suitable

scenario by an user interface based on the familiar Google

Maps. Also, how Flash Builder by Adobe[13] may be used to

implement applications resident on the user mobiles for pro-

viding the users with similar RoR views, but saving RoR

time, is discussed.

Transition from a centralized urban database that is at the

core of a central data warehouse for the mobile users of a

city to a distributed data warehouse organization consisting

of datasets resident on separate servers is also outlined in the

paper so that privacy, updating policies and management

may be favored by a proprietary solution running on the

proper machine, whereas data integration is obtained by

transforming each dataset in an XML or RDF archive [14].

This transition will lead, as envisaged in the paper, to re-

think the role of the user devices from more or less passive

visualization systems to active nodes of a new generation of

mobility information systems, where we claim that the user

mobiles powered by suitable programming environments like

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1185–1192

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 1185

Flash Builder, may host mobile data and rules dealing with

the user status to be linked to the ones dealing with

conditions external to the users resident on public databases

This will give rise to information systems that support more

effectively the context aware decisions of the mobile users.

Sect.2 proposes two implementation architectures to offer

the sought support to location and context aware decisions of

the mobile users: one based on an RoR server provided with

JQMobile user interface and the other on Flash Builder

applications resident on the mobiles. Sect.3 shows how the

urban road graph and the current position of the user and

destination in such graph (needed by the location aware

systems) may be obtained by using Google Maps APIs.

Sect.3 points out that both the proposed implementations

outperform the current GPS navigation systems since they

offer real time information and make feasible mobile

applications that support the user tasks such as m-commerce

(e.g., buying on the fly), m-government (e.g., everywhere

digital certification), and m-bureaucracy (e.g., document

management in mobility). Also, this section illustrates how

an effective decision support system for mobile users that

takes into account external conditions and personal data may

be obtained by the joint work of the RoR server and the

Flash Builder application resident on the mobile. Finally, in

sect. V and sect. VI we compare the JQMobile and Flash

Builder solutions and point out future works.

II. REAL TIME CITY INFORMATION SYSTEMS

Fig.1 shows how the traffic information needed to

compute the travel time of each road segment is obtained in

our system dividing the city into zones controlled by

computing nodes that collect the measurements on traffic

taken by in situ technologies and from perceptions issued by

authorized people, as proposed in [15].

Figure 1. Traffic information system based on real time information: current
frontiers

Such nodes should compute the travel times of each road

segment of their zone by using suitable formulas depending

on the car flow conditions and on the type of road

intersection, e.g., the ones pointed out in [16]. We envisage

that the travel times will be stored in XML files resident at

the zone nodes, where they are updated at regular time

intervals or when traffic conditions change suddenly for

dangerous events, e.g., accidents or storms. These XML data

are collected by a central server that is able to compute the

best path for any source-destination pair.

In this architecture, walking and driving users may ask the

RoR server, through their mobiles, to suggest the best path to

a destination chosen by them or to a destination chosen by

the system to best fit the user needs. The display of the path

on the mobile is obtained by a JQMobile application resident

on the server that uses the relevant Google Maps APIs or by

a specialized software, based on Flash Builder, resident on

the user mobile.

The former solution has the advantage of informing the

users even when they are provided with simple mobiles, but

it increases the processing load of the server, especially if it

has to behave as a Decision Support System (DSS) to help

the mobile user activities. The latter solution relieves the

server from the task of displaying the geo-referenced

information on the maps; also, it may evolve into a more

general software that implements on the mobile, in

collaboration with the central server, a sort of city mobility

personal assistant that takes into account the current traffic

and weather conditions, and the user profile, as will be

illustrated in sect.IV.

Let us note that the development of the mentioned

personal assistant on the mobile avoids that the server has to

create the view that displays on the mobile the map and the

graphical frames (i.e., buttons, text boxes, divisions, etc.);

but, this is not easy since it requires that the mobile is

provided with a software to allow the users to issue their

queries and to receive the system responses by a graphical

interface comparable with the one obtainable with JQMobile.

Also, the mobile should have enough memory and

processing speed. Fortunately, the latter requisite may be

fulfilled by using the modern cellular phones or PDAs (e.g.,

iphones, android phones, iPADs, etc.), whereas the former

requisite may be satisfied by developing the mobile

application using Flash Builder. Consequently, both the

solutions drawn in fig.1, as well as both the mentioned

implementations are currently feasible.

III. LOCATING THE USERS AND THEIR DESTINATION IN THE

URBAN ROAD GRAPH

To compute the minimum path from a source to a

destination of a traffic network is necessary: to represent the road graph of the traffic network by a

mathematical description such as the following array:

 road_segment(ia, ib, dab, tab) (1)

where ia, and ib, are road intersections whereas dab and tab

are the distance and the travel time associated to the road

segment from intersection ia to intersection ib.

Zone 1

Node

XML

Traffic

Measures

Zone n

Node

XML

Traffic

Measures

RoR Server

Google

Maps

JQMobile

XML

DB

XML

DB

XML

DB

Distributed DBs of City Interest
(outside the scope of the paper)

Real Time Traffic

Monitoring System

JQ

Mobile

Flash

Builder

Mobile

1186 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

 to identify in what road_segment the users are located,

and in what position of the segment, when they issued to

the server the request to know the minimum path to the

destination. The user position may be identified by

adding the following two rows to the road array:

 road_segment(user, ib, dub, tub)

 (2)

road_segment(ia, user, dau, tau)

 to identify in what road_segment the destination is

located and in what position. This may be obtained by

adding other two rows of the road array:

 road_segment(dest, ib, ddb, tdb)

 (3)

road_segment(ia, dest, dad, tad)

Fig.2 shows how the road graph should be modified to

compute the minimum path. The nodes dealing with the user

and destination positions may be deleted after having

computed the minimum path, whereas the ones related to the

road intersections are fixed points of the traffic network.

Figure 2. Inserting in the urban road graph, drawn on the left, the current
user position at the right distance from the intersections (as shown on the
right). If the user segment does not belong to the graph, then a novel
segment is added to the road graph (see the dotted segment on the right). For
simplicity, the road_segments are two ways streets.

 In principle the geo-coordinates of the intersections may

be obtained by adopting suitable procedures in the most

diffused CAD environments, e.g., Arcinfo [17] or Autocad

Map [18], but using Google Maps and related APIs has the

advantage of providing the designers with the same

programming interface in both building the cartography and

in visualizing the information on the user interface.

 For this reason, we assume that the road graph consists

of a set of geo-referenced intersections derived from Google

Maps that can be superimposed to the Google Maps thus

making possible to inform timely and in a familiar Google

Maps interface the users about changes of the road status

(e.g., works in progress, blocked by an accident, or closed

for excessive pollution), as well as to take into account the

current traffic and weather conditions.

In the Google Maps terminology, such intersections are

points located at the crossroad of two or more roads that

have the property of being connected by the get_distance

API with a path of only one step to the adjacent intersections.

These intersections can be found by our novel function,

called get_intersections(first_road, second_road) obtained

by using the API get_directions with the walking option to

go from the first_road to the second_road. Indeed, the

sought intersection is the first point of the path, if any, whose

second_road is indicated in its info window.

This function has been put at the core of an automated

procedure to find the intersections of any city called

get_all_intersections(from_road, to_road) that, using the

names of the city roads stored in an XML file, computes the

intersections of each road in the interval [from_road,

to_road] with all the other roads of the city by applying the

above mentioned function get_intersections. In our

implementation, the intersections identified by the procedure

are stored either into an MySQL table and XML file. Since

each intersection between two roads is identified by calling

the Google Maps API get_directions, we have based our

implementation on a listening process that waits 1 second for

the response to the query sent to get_directions stored on the

Google Maps site.

To save processing time the roads of the city have been

subdivided into segments belonging to only one

neighborhood. Thus, for example for a medium city, as our

city, with 2000 roads and 20 neighborhoods we need about

10.000 seconds to find all the intersections of a

neighborhood. This time can be further decreased if one

executes get_all_intersections by a cloud of computing

nodes working in parallel. In our case, by a cloud of 10

computing nodes we obtained the intersections of a

neighborhood in about 15 minutes that is quite acceptable

because get_all_intersections is a batch procedure to be

executed at a very low rate (e.g., one time per month).

In the implemented procedure the user may choose the

city and the road interval [from_road, to_road]. The

intersections are stored only if they are featured by a pair

(latitude, longitude) different from (0, 0). Of course, an

intersection is not stored if it has the same geo-coordinates of

a previous stored intersection. This allows us to store only

one time the intersection among several roads (see fig.3).

In this way we may obtain incrementally all the road

intersections of a city that are displayed by small red circles

super-imposed on the relevant Google Maps, as shown in

fig.4. The user should check the final result to add manually

the few intersections that cannot be identified by the

mentioned procedure, e.g., since they are related to roads that

are not labeled by names.

ia

ib

user

ia

ib

road_segment(ia, ib, dab, tab) road_segment(ia, ib, dab, tab)

road_segment(user, ib, dub, tub)

road_segment(ia, user, dau, tau)

user

Figure 3. Intersection among more than two roads is identified by only
one record on the MySQL intersection table and consequently
represented by only one red point on the relevant Google Maps.

ALFIO COSTANZO, ALBERTO FARO ET AL.: CONTEXT AWARE SERVICES FOR MOBILE USERS 1187

Obtaining the array road_segment from the array

intersection(id, first_road, second_road, latitude, longitude)

is straightforward, since two intersections are linked by a

segment if they are connected by get_directions in only one

step. Tracking the position of the users in a road graph

visualized on the mobile screen is very easy if one uses the

GPS of the adopted navigation system, but describing

mathematically their position according to (2) is slightly

more complicated. Indeed we have to find the address

nearest to the GPS position and then the two addresses

associated to the intersections of the same road that are

nearest to the current user address. Fig.5 shows how this can

be obtained very fast by a Flash Builder mobile without the

intervention of the server. Analogously we should operate to

find the two road_segment of the destination indicated in (3).

Of course, in the JQMobile version the four

road_segment are computed by the RoR server, whereas in

the Flash Builder implementation this is done by the mobile

that sends such segments together with the identifiers of the

origin and the destination to the server where a minimum

path program will find the shortest path,, e.g., [19]. In our

implementation, this program has been written in Prolog [20]

consisting of facts and rules since we have found that it has

the same time performance of the traditional program written

in C and allows us to solve different problems by simply

modifying the facts [15].

For example, with a simple modification of the facts, it is

easy to find the minimum path for other location services,

e.g., a) to find the nearest park and b) the minimum path to

reach the park nearest to the destination.

In the former case, all the city parks are linked to a node,

let say parking_node, with a road_segment having distance

and travel time equal to zero, as shown in fig.7. The

minimum path to go from the user position to the

parking_node gives the minimum path to reach the nearest

park, being the nearest park the one located at the

penultimate node. The same approach may be used to find

the nearest hotel, pharmacy and so on.

In the latter case, first, we have to find the park at the

minimum distance from the destination following the same

approach described above, i.e., finding the minimum path, let

say path1, from the parking_node to the destination and

then we have to find the minimum path from the current

position to the park located at the second node of the

previous path path1. These steps are also illustrated in fig.6.

IV. FROM LOCATION AWARE TO

CONTEXT AWARE CITY SERVICES

In principle, all the mobility information services that take

into account the user location and current traffic may be

viewed as location aware services, such as the services

outlined in the previous section, where the system takes into

account the current position of the users and the current

travel time featuring the roads to find the best path to

destination. Context aware services have a wider scope, since

they should take into account also the user personal

information and the current user activity. Of course, it is

difficult to provide services for each specific user activity,

but structuring the city services as use stories certainly may

favor the transition from location to context aware systems.

Indeed parking reservation may be viewed as a typical

use story where both location and context issues have to be

taken into account specifically since they differ from the

ones to be taken into account to support the users to enact

another story, e.g., to find a pharmacy. For this reason, the

paradigm MVC suggests that all the actions and their order

in time to be carried out for obtaining a specific service may

be conveniently organized in a software module called

controller. According to MVC, each action of an use story is

supported by a proper view displayed on the user device,

including the initial action to start the service. For this reason

the main interface of our location/context aware city service

provider consists of icons related to the first actions of the

stories the are relevant for the current user activities.

For example, fig.7 shows the main screen of an

user interested in carrying out bureaucratic practices at

institutions located in different places and who has to buy

some specific drugs; in this case the user may need

Figure 4. Intersections of a city obtained by the get_all_intersections
function proposed in the paper.

Figure 5. Inserting the user position in A increases the road graph with
two segments, but if A is not in a road of the graph the user is localized
by a new segment (in blue) that links A to the nearest intersection B
(on the right). This modification is found very fast by the program
implemented on the Flash Builder (see its operations on the left).

A

B

Figure 6. Typically, users are driving/walking in the road graph, e.g.,

USERin, but if the user is not within such graph, e.g., USERout, a new

segment is added to the road graph. The nearest park is the penultimate node

of the minimum path to reach the Parking_node, i.e., park PKa. The park

nearest to the destination is given by the second node of the minimum path

connecting Parking_node to the destination, i.e., park PKb.

3

0

0

2

10

4

5

10

4

4
2

10

PKa

PKb

Parking_node

1

2

3

USERin

DEST.
1

3

USERout is driving/walking in

a road that is outside the road

graph.

1

1188 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

information on pharmacy, parking, minimum path to

destination, refueling and costs, the documents that are

needed for the relevant practice and the ones that may be

obtained automatically from the system, and where the

various institutions are located. Let us note that in the current

implementation it is the user who chooses from the list of use

stories the ones that are more relevant for the task. In future

this will be done with the help of an intelligent agent.

The location part of the pharms and parks has been

treated in the previous section. Fig.8 shows the display of

our Flash Builder navigator, running on an android mobile,

obtained when the user is searching for a given service, e.g.,

a pharmacy. On the left, the mobile shows the current

position computed on the basis of the mobile GPS and offers

two possibilities to reach the destination: the first according

to Google Maps and the other according to the minimum

path computed by the Prolog program. On the right, we show

the response computed by Flash Builder after the user

choice.

A further step towards context awareness may be

obtained by offering to the users the services that are most

suitable for their activity. For example in fig.9 the user has

increased the list of parks normally taken into account (i.e.,

the ones managed in our city by the company AST) with a

set of parks offered in our city by the company AMT that are

close to the public services so that they may be considered

when the user is searching for a park near to the today

destination. Let us note that the Flash Builder application

does not need to ask for the park list to the server since it is

able to go inside any publicly available XML databases and

to extract the relevant information. In our implementation

only the network addresses and the general descriptions of

the databases are collected into an XML file stored on the

server so that the Flash Builder mobile may be addressed to

relevant DBs, where it may find the relevant information.

Another step that may help the mentioned bureaucratic

user activities is the possibility to have in mobility

certificates and templates relevant for the task. For example

our Flash Builder application may access the Municipality

DB transformed into XML files to receive typical

demographic certificates. In particular, the data of such

certificates are taken from the Municipality DB and passed

to a PHP procedure resident on the RoR server to produce

the certificate in pdf that will be sent by the server to the user

e-mail.

To take into account the personal data and other context

conditions we may apply Fuzzy rules [21] in the following

form: if condition 1and and condition N are true then

the service should be reached in a short time.

As known, in fuzzy logic the truth degree of the

conclusion is given by its membership degree to the fuzzy set

associated to the conclusion, i.e., in our case the fuzzy set

short_time given by the minimum truth degree of the

antecedents. After having computed the truth degree of the

conclusion, it is easy to find the maximum distance or time

to destination that satisfies the rule by simply defuzzyfing

the fuzzy set of the conclusion, i.e., passing from the truth

degree (on the y-axis) to the value of distance or time (on the

x-axis) that qualifies the fuzzy set.

Thus, assuming that the fuzzy set short_time is the one

represented in fig.10, we have that if the membership degree

of the antecedent is ≈ 1, then the time to reach the service

should be between 0 and 3 minutes, let say 1,5 minute,

whereas if the degree ≈ zero, then the time to reach the

service may be greater, let say 2,5 minutes.

AMT

Figure 7. Main screen of an user interested in carrying out
bureaucratic practices at institutions located in different places and
who has to buy some specific drugs.

Use stories
1. pharmacy (find and buy)

2. parking (find and reserve)

3. driving (best path to destination)

4. refueling (most convenient)

5. bureaucratic practices (certification)

6. public office finder

1 2

3 4

5 6

Figure 8. Flash Builder version of the navigator. It shows the current
user position computed on the basis of the mobile GPS and offers two
possibilities to reach the destination (on the left). On the right the
response computed by Flash Builder after the user selection.

AST

Figure 9. The mobile collects from different sites the names of the parks
of possible interest for the today activity, i.e. the ones offered in the
downtown by public company named AST and the ones offered within
public offices by another company named AMT.

ALFIO COSTANZO, ALBERTO FARO ET AL.: CONTEXT AWARE SERVICES FOR MOBILE USERS 1189

If we have to meet more than one rule, we have to

compute the truth of each antecedent. As an example, if the

fuzzy rules are as follows:

 if the weather is bad, then the service should be

reached in a short time, if the current time is greater than 9 p.m. then the

service could be reached in a medium time if the user is an middle age people, then the service

could be reached in a medium time if the health status is not good the should be reached

in a short time.

we have to compute the membership degrees of each

antecedent by using the relevant fuzzy sets, i.e., bad weather,

nighttime, middle age and bad health status, drawn in fig.11.

Therefore, assuming that:

a) from some meteorological service on the web (e.g., yahoo)

we have that currently there is a medium rain,

b) the current time is 7,30 pm,

c) the user has forty-five years, and

d) a body temperature of 37,5 °C,

it follows that the maximum acceptable time to reach the

destination is given by the 2 Ma + 5,5 Mb / (Ma + Mb), i.e., by

the barycentre of the two masses in fig.12: Ma obtained by

intersecting the fuzzy set short_time with the line at = 0,5

(that is the minimum membership of the antecedents dealing

with short_time), and Mb obtained by intersecting the fuzzy

set medium_time with the line at = 0,6 (that is the

minimum membership of the antecedents dealing with

medium_time).

The services that are within the maximum time (or

distance) are then displayed to the users by a set of icons

enclosed within a circle (see fig.12). The users may inspect

the various services to decide their preferred service. Then

they may know the best path to the destination by a view

similar to the one displayed in fig.8.

Of course, in case the users are interested in the distance

of the services since they are walking, the circle gives to

them the better information to decide, whereas in case they

are driving the circle may induce the users to choose the

services nearest to their current position.

BAD WEATHER

no

rain

YOUNG

30 20 40 60

MIDDLE

AGED
ELDERLY

0.6

0.7

raining

degree

28

medium

rain

45

age

NIGHTTIME

6 pm 9 pm

0.6

time

7,30pm

BAD HEALTH STATUS

37 38

0.5

body

temperature

intense

rain

37,5

SHORT

TIME

5 3

1

t

membership

degree

0.5

0.6

8

MEDIUM

TIME

Ma

Mb

Figure 10. Fuzzy set associated to a position that can be reached in a
short or medium time.

Figure 11. Fuzzy sets associated to bad weather, nighttime, middle
age, and bad health status.

Figure 12. The services pointed out within the circle are the ones that
can be reached in an acceptable time (or are within an acceptable
distance from the current user position).

1190 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

V. COMPARING ROR-FLASH BUILDER AND ROR-JQMOBILE

NAVIGATION SYSTEMS

The location based services outlined in the paper,

including the proposed extensions dealing with the location

and context awareness functionalities, are available on both

PCs and mobiles: one version works in either PCs or mobiles

and makes use of RoR and JQMobile; the other is for

mobiles and is based on RoR and Flash Builder. In both the

versions, the server manages the registration process so that

the users may pass from the JQMobile to the Flash Builder

implementations and viceversa while maintaining their

profile. The server is also involved in both versions in

finding the basic arrays concerning the traffic, i.e., the arrays

intersection and road_segment, and in updating the travel

times for each road segment at a regular time interval.

However, the two developed versions show relevant

differences. Indeed, in the JQMobile version, all the

functions are carried out by the RoR server with an interface

that, due to the JQMobile features, has the same format in

both PC and cellular phone. The position may be obtained

by either a GPS connected to the PC or by the geo-

coordinates of the Access Point to which the PC or the

mobile is connected. The latter way of localizing the user is

not compatible with the precision requested by our method to

localize the user position in the road graph, but the former

method needs to implement a specific procedure that

communicates the GPS coordinates to the server. Also, the

server has the responsibility to search from relevant

databases the information that better meets the user needs,

and the one of managing the certification needed by the

mobile users. Moreover, in the JQMobile version the server

should display the best path passing to the API get directions

the relevant intersections computed by the Prolog program

that get directions has to consider as mandatory waypoints.

The main part of the mentioned work of the RoR server

may be avoided if one uses the Flash Builder approach. For

example, the mobile may find alone the acceptable

maximum time or distance from the current position by using

the mentioned fuzzy rules and may find also the list of

service points of interest by visiting the relevant databases

without the server intervention, as well as it cooperates with

the server to manage the certification phase. Furthermore,

although the server computes the minimum path, it does not

build the map for the user mobile. Indeed, it stores the path

in an XML file that will be read by the user mobile that will

display the path on the relevant Google Map by using the get

directions API, possibly enriching the screen with signals

useful for the user mobility as shown in fig.13.

Finally, the Flash Builder version allows us to manage

the GPS of the mobile, and to compute autonomously the

four facts (i.e., road_segment) the are needed to localize

source and destination in the road graph. The distances

between the above source/destination intersections and the

adjacent ones can be derived by get_directions, whereas the

travel time should be estimated by using the formulas

described in [15].

Currently, in both versions the minimum path is

computed by the Prolog program executed on the server

since Flash Builder does not allow us to run executable codes

with the traditional command system, whereas this is

possible in the Ruby code. In future we plan to write this

program in Flash Builder, thus limiting at maximum the

computing load of the server.

Figure 13. Minimum path computed by the Prolog program and displayed
on the user mobile as a set of mandatory waypoints of the Google Maps API
get_directions.

VI. CONCLUDING REMARKS

The paper has illustrated how transition from traditional

GPS navigation systems to navigators implemented on smart

phones envisaged in many market studies, e.g. [22], became

a reality. Two versions have been presented that are the

metaphors of two smart phone navigators: one, i.e.,

JQMobile navigator, that is mainly supported by a mobility

server, the other, i.e., the Flash Builder navigator, that works

in a relatively autonomous way. Both the navigators are

displayed by a familiar Google Maps interface.

If one is provided with a powerful mobile, the Flash

Builder version is better then the JQMobile version since it

saves the RoR server time. Also, the minimum path program

could be implemented in the Flash Builder navigator at

condition of regularly updating the travel time of each road

segment. This operation is not time consuming if one

considers that in a medium city we have about 20000 road

segments and that, consequently, the updating implies the

download of a small file of about 20KB.

Both location and context awareness services to improve a

mobility information system have been addressed. This has

illustrated how this new generation of navigators may

support the user decisions taking into account real time

external conditions and personal constraints. Moreover, not

only the traditional supports to mobility/logistics and m-

commerce but also to bureaucratic tasks are provided with

the smart phones that may change the way the people works.

For example, a workflow similar to the one shown in fig.11

is followed by the Flash Builder version to help the user in

filling the declarations in lieu of a notarial act needed to

ensure the truth of a report.

Currently, the presented proposals are under test at our city

in a project, called K-Metropolis, supported by Regional

Funds. However, the use of urban ontologies [23], [24] to

represent objects and rules used in the navigational system

by a standard RDF notation will allow us to extend without

any change the approach to other cities.

Future scenarios, sketched in fig.14, are also under study

where the personal assistant resident on the user mobile is

able to read the XML file stored on the zone nodes

ALFIO COSTANZO, ALBERTO FARO ET AL.: CONTEXT AWARE SERVICES FOR MOBILE USERS 1191

containing the travel time of each road segment and to carry

out locally the computation of the best source-destination

path. This evolution seems feasible since the Flash Builder

based software is able to consult remote XML files and

thanks to the fact that the number of remote XML files deal-

ing with the traffic of a zone is limited. Indeed, the zone

number is equal to the number of city neighborhoods that is

generally limited to some tens (e.g., the New York neighbor-

hoods are about 50 and the ones of a medium city are

about 10).

Figure 14. Traffic information system based on real time information: future
directions

.

Finally let us note that in the paper we have not addressed

the role of the monitoring system of the traffic parameters,

i.e., car density, speed and flow, that are needed to compute

the travel time for each road since this is outside the scope of

the paper. However, it is important to point out that expen-

sive monitoring systems could limit the feasibility of the

navigators proposed in the paper. Fortunately, the studies

and the applications available in the literature, e.g., [15],

[25], [26], show that effective monitoring systems may be

obtained by not expensive webcams, complemented by tradi-

tional low cost techniques [27]. Consequently, this makes

feasible the real time services at the core of the location and

context aware city services proposed in the paper.

REFERENCES

[1] Bettini C., Maggiorini D., Riboni D., Distributed Context Monitoring

for Continuous Mobile Services, MOBILE INFORMATION

SYSTEMS II, IFIP, Vol.191, 123-137, 2005

[2] Endsley M.R., Jones D.G., Designing for situation awareness: an

approach to user centered design, CRC, 2009

[3] Goldstein E. B., The Ecology of J. J. Gibson's Perception, Leonardo,

Vol. 14(3), 191-195 , MIT Press, 1981

[4] Elsbach K. D., Barr P.S., Hargadon A.B., Identifying Situated

Cognition in Organizations, Organization Science Vol. 16(4), 422–

433, 2005.

[5] Faro, A, Giordano, D., Ontology, esthetics and creativity at the

crossroads in Information System design, Knowledge Based Systems ,

Volume 13 (7), 515-525, Elsevier, 2000

[6] Faro, A., Giordano, D. StoryNet : an Evolving Network of Cases to

Learn Information Systems Design. IEE Proceedings SOFTWARE,

119-127, 1998

[7] Faro, A., Giordano, D., Concept Formation from Design Cases: Why

Reusing Experience and Why Not. Knowledge Based Systems Journal,

vol. 11, n.7/8, p.437-448, 1998

[8] Dubberly Design Office, The Model-View-Controller Pattern in a

Rails-Based Web Server, http://www.dubberly.com/wp-content/

uploads / 2011/04/DDO_Article _MVC_ Pattern . pdf, 2011

[9] Surhone L.M. et al. Real-Time Locating, Betascript Publishing, 2010

[10] Mller P.F. et al., Context awareness, Alphascript Publishing, 2010

[11] Hartl M., Ruby on Rails 3, Addison Wesley, 2011

[12] David M., Developing Websites with jQueryMobile, Focal Press, 2011

[13] Corlan M., Flash Platform Tooling: Flash Builder, Adobe, 2009

[14] Powers,S. Practical RDF, O’Reilly Media, 2003
[15] Faro, A., Giordano, D. and Spampinato, C., Integrating Location

Tracking, Traffic Monitoring and Semantics in a Layered ITS
Architecture. Intelligent Transport Systems, vol.5(3), 197-206, 2011

[16] Faro, A., Giordano, D. and Spampinato, C.: Evaluation of the Traffic
Parameters in a Metropolitan Area by Fusing Visual Perceptions and
CNN Processing of Webcam Images, IEEE Transactions on Neural
Networks, Vol. 19 (6), 1108-1129, 2008.

[17] Ormsby T., et alii: Getting to Know ArcGIS Desktop, ESRI, 2008
[18] Aubin P.F., Gregg Stanley G., AutoCad Map 2011, Autodesk, 2010
[19] Zhan, F. B., Noon, C. E., Shortest Path Algorithms: An Evaluation

Using Real Road Networks, Transportation Science, Vol.32(1), 65–73,
2008

[20] Bratko, I., PROLOG Programming for Artificial Intelligence,
Addison-Wesley Educational Publishers Inc, 2011

[21] Wang P.P., 2001. Computing with words. Wiley Inderscience, 2001

[22] Telematics Reserach Group (TRG), Preview portable navigation: the

future is bright for connectivity, http://www.telematicsresearch.

com/press_data/pdfs/PortableNavigation.pdf, 2010

[23] Zhai, J., Jiang, J., Yu, Y. and Li, J.: Ontology-based Integrated

Information Platform for Digital City, IEEE Proc. of Wireless

Communications, Networking and Mobile Comp., WiCOM '08, 2008.

[24] Faro, A., Giordano D., Musarra, A.: Ontology Based Mobility

Information Systems. Proc. of IEEE Systems, Men and Cybernetics

SMC03, vol.3, 4288-4293, 2003.

[25] Faro, A., Giordano, D. and Spampinato, C., Adaptive background

modeling integrated with luminosity sensors and occlusion processing

for reliable vehicle detection. IEEE Transactions on Intelligent

Transportation Systems, Vol.12(4), 1398 - 1411, 2011

[26] Crisafi A., Giordano D., Spampinato C., GRIPLAB 1.0: Grid Image

Processing Laboratory for Distributed Machine Vision Applications.

Proc. Int. Workshop on Enabling Technologies: Infrastructure for

Collaborative Enterprises, WETICE '08. 188-191, IEEE, 2008

[27] Leduc, G., Road Traffic Data: Collection Methods and Applications,

Working Papers on Energy, Transport and Climate Change, N.1, JRC

European Commission, 47967, 2008

1192 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

