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Abstract—This paper shows a proposal for Type-reduction of
an Interval Type-2 fuzzy set composed from α-cuts done over
its primary membership functions. The definition of available
Type-reduction methods for Interval Type-2 fuzzy sets are based
on an homogeneous subdivision of the universe of discourse, so
we propose an approximation algorithm for Type-reduction of
an Interval type-2 fuzzy set through its primary α-cuts.

Some definitions about the α-cut of a Type-2 fuzzy set are
provided and used for computing the centroid of an Interval
Type-2 fuzzy set through a mapping of its membership function,
instead of its universe of discourse.

I. INTRODUCTION AND MOTIVATION

TYPE Reduction of a Type-2 fuzzy set (T2FS) is a key

aspect of fuzzy inference and its computation is an

important step in practical applications. The computation of

the centroid of an Interval Type-2 fuzzy set (IT2FS) has well

known results (See [1], [2], [3], [4], [5], [6], [7], [8], [9],

and Melgarejo [10], [11], [12] and [13]) which are based on

a mapping of the universe of discourse of x, x ∈ X as the

common way for computing a Fuzzy Logic System (FLS).

Some applications of Type-1 Fuzzy Relational Equations

(T1FRE) are based on a mapping of the membership space

through α-cuts (See Chanas and Kamburoswk [14], Shih-Pin

Chen [15], and Chanas, Dubois and Zieliński [16]), so its ex-

tension to IT2FS is an interesting approach. Some definitions

about the concept of the α-cut of an IT2FS are referred and

discussed to define the representation of an IT2FS through

its α-cuts, and finally an approximation method for Type-

reduction of an IT2FS through this representation is presented.

This paper focuses on the use of Interval Type-2 L-R fuzzy

sets applied to FRE’s for computing its centroid. This does not

imply that the proposed method cannot be applied to other kind

of IT2FS, but in this paper only L-R IT2FS are addressed. In

addition, an optimization example which uses L-R IT2FS and

α-cuts is solved by the proposed method and its results are

discussed.

This paper is divided into seven sections. Section 1 in-

troduces the problem. In Section 2 some basic definitions

about IT2FS are given; in Section 3, the Enhanced Karnik-

Mendel (EKM) algorithm for Type-reduction is presented,
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some improvements are referred, and a discussion about the

way how the EKM algorithm operates through a mapping

of X , is presented. Section 4 presents the decomposition of

an IT2FS into α-cuts, and some key aspects for computing

its centroid. In Section 5, a proposal for computing the

approximated centroid of an IT2FS based on its α-cuts is

presented. In Section 6 an application example is presented

and the Section 7 presents the concluding remarks of the study.

II. BASIC DEFINITIONS OF IT2FS

A Type-2 fuzzy set is a collection of infinite Type-1 fuzzy

sets into a single fuzzy set. It is defined by two membership

functions: The first one defines the degree of membership of

the universe of discourse X and the second one weights each

one of the first Type-1 fuzzy sets.

According to Jerry Mendel [1], [2], [3], [4], [5], [6], [7],

[8], [9], and Melgarejo [10], [11], [12] some basic definitions

of Interval Type-2 fuzzy sets are given next:

Definition 2.1 (Type-2 fuzzy set): A Type-2 fuzzy set, Ã, is

described as the following ordered pairs:

Ã = {(x, µÃ(x)) |x ∈ X} (1)

where µÃ(x)) is composed by an infinite amount of Type-1

fuzzy sets in two ways: Primary fuzzy sets Jx weighted by

Secondary fuzzy sets fx(u). In other words

Ã = {((x, u), Jx, fx(u)) |x ∈ X ;u ∈ [0, 1]} (2)

Therefore, the FOU evolves all the embedded Jx weighted

by the secondary membership function fx(u)/u. These Type-

2 fuzzy sets are known as Generalized Type-2 fuzzy sets,

(T2FS), since fx(u)/u is a Type-1 membership function. Now,

an Interval Type-2 fuzzy set, (IT2FS), is a simplification of

T2FS in the sense that the secondary membership function is

assumed to be 1, as follows

Definition 2.2 (Interval Type-2 fuzzy set): An Interval

Type-2 fuzzy set, Ã, is described as:

Ã =

∫

x∈X

∫

u∈Jx

1/(x, u) =

∫

x∈X

[
∫

u∈Jx

1/u

]/

x, (3)

where x is the primary variable, Jx is the primary member-

ship function associated to x, u is the secondary variable and
∫

u∈Jx
1/u is the secondary membership function. Uncertainty
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about Ã is conveyed by the union of all of Jx into the Footprint

Of Uncertainty of Ã [FOU(Ã)], i.e.

FOU(Ã) =
⋃

x∈X

Jx (4)

A FOU is bounded by two membership functions: An Upper

membership function (UMF) µ̄Ã(x) and a Lower membership

function (LMF) µ
Ã
(x).

For discrete universes of discourse X = {x1, x2, · · · , xN}
and discrete Jx, an Embedded T1 FS, Ae has N elements, one

each from Jx1
, Jx2

, · · · , JxN
, namely u1, u2, · · · , uN , e.g.

Ae =

N
∑

i=1

ui/xi ui ∈ Jxi
⊆ [0, 1] (5)

Its graphical representation is shown in the Figure 1

x

Ae

1

µÃ

x ∈ Xx̌ x̌ x̂ x̂

αµA

αµ
A

x̄

FOU

Fig. 1. Interval Type-2 Fuzzy set ã with Uncertain ⊳ = ⊲

Here, ã is a Type-2 fuzzy set, the universe of discourse is the

set x ∈ X , the support of Ã, supp(Ă) is the interval x ∈ [x̌, x̂]
and µÃ is a linear function with parameters x̌, x̂, x̌, x̂ and x̄.
α µ̄A(x) is the degree of membership an specific value x has

regarding the upper fuzzy set Ā and αµ
A
(x) is the degree of

membership an specific value x has regarding the lower fuzzy

set A. FOU is the Footprint of Uncertainty of the Type-2 fuzzy

set and Ae is a Type-1 fuzzy set embedded in its FOU.

III. THE ENHANCED KARNIK-MENDEL (EKM)

ALGORITHM

Wu and Mendel in [17] and [18] defined the Enhanced

Karnik-Mendel algorithms for Type-reduction of an IT2FS.

The EKM algorithm for computing yl is as follows

1) Sort xi (i = 1, 2, ..., N) in increasing order, and call the

sorted xi by the same name, but now, x1 6 x2 6 · · · 6
xN . Match the weights wi with their respective xi and

renumber them so that their index corresponds to the

renumbered xi.

2) Set k = [N/2.4] (the nearest integer to N/2.4), and

compute

a =
k
∑

i=1

xiwi +
N
∑

i=k+1

xiwi (6)

b =

k
∑

i=1

wi +

N
∑

i=k+1

wi (7)

y =
a

b
(8)

3) Find switch point k′ (1 6 k 6 N − 1) such that

xk′ 6 y 6 xk′+1

4) Check if k′ = k. If yes, stop, set yl = y, and call k L.

If no, continue.

5) Compute s = sign(k′ − k), and

a′ = a+ s

max(k′,k)
∑

i=min(k′,k)+1

xi(wi − wi) (9)

b′ = b+ s

max(k′,k)
∑

i=min(k′,k)+1

(wi − wi) (10)

y′ =
a′

b′
(11)

6) Set y = y′, a = a′, b = b′, and k = k′. Go to step 3).

The EKM algorithm for computing yr is as follows

1) Sort xi (i = 1, 2, ..., N) in increasing order, and call the

sorted xi by the same name, but now, x1 6 x2 6 · · · 6
xN . Match the weights wi with their respective xi and

renumber them so that their index corresponds to the

renumbered xi.

2) Set k = [N/1.7] (the nearest integer to N/2.4), and

compute

a =

k
∑

i=1

xiwi +

N
∑

i=k+1

xiwi (12)

b =

k
∑

i=1

wi +

N
∑

i=k+1

wi (13)

y =
a

b
(14)

3) Find switch point k′ (1 6 k 6 N − 1) such that

xk′ 6 y 6 xk′+1

4) Check if k′ = k. If yes, stop, set yr = y, and call k R.

If no, continue.

5) Compute s = sign(k′ − k), and

a′ = a− s

max(k′,k)
∑

i=min(k′,k)+1

xi(wi − wi) (15)

b′ = b− s

max(k′,k)
∑

i=min(k′,k)+1

(wi − wi) (16)

y′ =
a′

b′
(17)
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6) Set y = y′, a = a′, b = b′, and k = k′. Go to step 3).

A. Mapping Y

Some improvements of this widely used algorithm was

proposed by Miguel Melgarejo in [11], [13]. These Type-

reducers are based on a mapping of Y , this means that wi

and wi are obtained from the bounds of Ỹ as its lower and

upper membership degrees µ(xi) and µ(xi), respectively.

Some common facts about the computation of Ỹ are:

1) Ỹ is obtained from Fuzzy Logic Systems (FLS), usually

composed by a rule base.

2) The computation of Ỹ comes from a discretization of

the universe of discourse of the antecedents of the FLS.

3) The upper and membership functions of Ỹ are obtained

from fuzzy relations among the antecedents, so its

membership degrees depends on the mapping done in

the antecedents.

4) The α-cut1 approach to compute Ỹ is not widely used.

Some applications of IT2FS are based on α-cuts instead

of a mapping of each antecedent e.g. fuzzy relational equa-

tions, decision making, fuzzy optimization, among others. Its

extension to IT2FS is an upcoming field to be treated, since

decision making under uncertainty is an open problem.
The decomposition of IT2FS into its α-cuts for composing a

response surface and the computation of the resultant centroid

is an emergent problem for decision making, so the use of the

α-cuts appears as a new way to map IT2FS. In the following

Section, some useful definitions are presented to illustrate how

the α-cuts change the behavior of the EKM algorithm.
Remark 3.1: Although the EKM algorithm is defined for

non-α convex IT2FS, this proposal is intended for α convex

IT2FS e.g. L-R fuzzy sets. Its use in non-α convex IT2FS is

an extension which is not considered in this work.
In following sections, some basic definitions about α-cuts

are presented in order to illustrate the problem.

IV. COMPUTING α-CUTS OF AN IT2FS

The α-cut of an IT2FS is defined by the bounds where all

embedded T1FS into the FOU fulfill the condition of a Type-

1 α-cut on its primary membership function. Mendel in [19],

[20] and Liu in [21] and [22] defined a secondary α-cut called

α-plane which is specially useful to compute the centroid of

a Type- fuzzy set. According to Figueroa [23], an α-cut of an

IT2FS is
Definition 4.1 (Primary α-cut of an IT2FS): The Primary

α-cut of an Interval Type-2 fuzzy set αÃ is the union of

all Type-1 fuzzy sets which fulfill the condition αJx =
{x|µA(x) > α} on its primary membership function.

Here, αJx = {x|µA(x) > α} is the Type-1 α-cut on the

primary membership function of Ã, defined as follows

αÃ =

∫

x∈X

[
∫

u∈Jx>α

fx(u)/u

]/

x ; α ⊆ [0, 1] (18)

αÃ =

∫

x∈X

∫

u∈fx

{(x, u)|Jx > α} ; α, fx ⊆ [0, 1] (19)

1An α-cut over Ỹ is the α-cut made over µ
Ỹ

and µ
Ỹ

.

An alternative representation is

αÃ =
⋃

x∈Jx

{µÃ(x, u)|Jx > α} (20)

αFOU(Ã) =
⋃

x∈X

{Jx > α} (21)

In this way, the crisp bounds of the primary α-cut of a

Type-2 fuzzy set are defined as the αI -cut, fx, α ⊆ [0, 1] (See

Figueroa in [24]):

αI

Ã =

∫

x∈X

∫

u∈fx

{(x, u)|Jx = α}} (22)

αI

Ã =
⋃

x∈X

{µb̃(x, u)|Jx = α} (23)

This primary α-cut of a Type-2 fuzzy set can be seen as a cut

of the FOU of the set because it encloses all values of fx(u)
which are contained on the interval [ µÃ(x) = α, µ

Ã
(x) = α ],

so all these values are cuts of all primary memberships of Ă.

A graphical representation of αÃ and αI

Ã defined as IT2FS

is presented in Figure 2.

1

µ
Ã

x ∈ Xx1 x2 x3 x4

αÃ

αFOU(Ã)

Fig. 2. αÃ of an Interval Type-2 Fuzzy set Ã.

In Figure 2, the dashed line encloses the αÃ, the shaded

region is the αÃ of the FOU and the pointed line is the αI

Ã.

In other words, the bounds where [ µÃ(x) = α, µ
Ã
(x) = α ].

In other words, αI

µÃ ∈ [inf
x
{αµÃ(x, u)}, sup

x
{αµÃ(x, u)}],

which is equivalent to say αI

µÃ ∈ [[x1, x2], [x3, x4]]
If we map Ã through its α-cuts, there is a high probability

of not getting an uniform mapping of X . This means that an

α-cut made over µÃ has no an image over µ
Ã

, and viceversa.
To illustrate this problem, Figure 3 shows the difference of

mapping Ã through α-cuts instead of X .

Figure 3 is a discretization of Figure 1. It is composed by

α-cuts, so the accuracy level depends on the amount of α -

cuts done over Ã. A key aspect about this representation is

that there is no any guarantee that an α-cut made over µÃ has

an image over µ
Ã

and viceversa. This leads to the following

remark.

Remark 4.1: In Figure 3, note that x1 has only image over

µ
Ã

, but it has no image over µ
Ã

. This means that 0.2µ
Ã

gets

x1, but there is no any αµÃ. For x2, the analysis is similar.
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Fig. 3. Some α-cuts made on Ã

This is an important problem for the EKM and IASCO

Type-reduction algorithms since they need a complete map-

ping of Ã through X in order to start xi and xi. So a solution

for computing the absent values of wi and wi is needed.

This representation is specially useful in some punctual

applications as decision making, fuzzy optimization, fuzzy

regression, etc. As usual, its usage goes along with other clas-

sical techniques as relational equations, linear programming,

etc, so each application has different computational costs.

V. APPROXIMATION METHOD FOR COMPUTING THE

CENTROID OF AN IT2FS BASED ON α-CUTS

The EKM and IASCO Type-reduction algorithms are based

on a mapping of X and then compute wi and wi for each

of the two stages or the algorithm: yl and yr. When Ỹ is

composed through α-cuts as shown in Figure 3, there is a

high probability to have an incomplete map of wi and wi,

so we propose a simple strategy for computing the absent

values of wi and wi through linear interpolation, as presented

in Algorithm 1.

Therefore, from step 2 and forward, the IASCO and EKM

algorithms can be applied in its original way.

Remark 5.1: If having absent values of xm3
and/or xm4

for a particular value of xn1
and/or xn2

, then the Algorithm 1

cannot compute wn1
and/or wn2

. In this case, we recommend

to assign zero to wn1
and/or wn2

since it implies that µ
Ỹ
≈ 0.

VI. APPLICATION EXAMPLE

In this section we present an application of the proposed

method to a small optimization example, where all its techno-

logical coefficients are defined as IT2FS, so its optimal values

can be computed from solving the problem for each α-cut. The

obtained solution is also an IT2FS, but its type-reduced cannot

be computed using the classical IASCO and EKM algorithms.

The following is the addressed example:

max z = 3.5x1 + 2.5x2

s.t.

Ã11x1 + Ã12x2 - 10

Ã21x1 + Ã22x2 - 12

Procedure 1 Linear Interpolation

Require: m,n ∈ [1, · · · , N ], αn ∈ [0, 1]
Compute αnµỸ for each n
Compute αnµ

Ỹ
for each n

for n = 1 → N do

return Set xn1
= inf

x
{αnµỸ } and wn1

= αn

return Set xn2
= sup

x
{αnµỸ } and wn2

= αn

return Set xn3
= inf

x
{αnµ

Ỹ
} and wn3

= αn

return Set xn4
= sup

x
{αnµ

Ỹ
} and wn4

= αn

end for

for n = 1 → N,m ∈ [1, · · · , N ] do

For xn1
find xm3

< xn1
< xm+13

set wn1
=

xn1
− xm3

xm+13 − xm3

(wm+13 − wm3
) + wm3

For xn2
find xm4

< xn2
< xm+14

set wn2
=

xm+14 − xn2

xm+14 − xm4

(wm+14 −wm4
)+wm+14

For xn3
find xm1

< xn3
< xm+11

set wn3
=

xn3
− xm1

xm+11 − xm1

(wm+11 − wm1
) + wm1

For xn4
find xm2

< xn4
< xm+12

set wn4
=

xm+12 − xn4

xm+12 − xm2

(wm+12 −wm2
)+wm+12

end for

Sort xn1
, xn2

, xn3
, xn4

(n = 1, 2, · · · , N) in increas-

ing order, create a vector of its corresponding weights

wn1
, wn1

, wn2
, wn2

, wn3
, wn3

, wn4
, wn4

and call the sorted

as xi, wi, wi, but now x1 6 x2 6 · · · 6 x4N

return xi, wi, wi for each i ∈ (1, · · · , 4N).

where xj ∈ R, each Ãij is an IT2FS and - is an IT2 fuzzy

partial order. The shapes of each Ãij are shown in Table I.

TABLE I
MEMBERSHIP FUNCTIONS OF Ãij

µ
Ãij

µ
Ãij

i, j j = 1 j = 2
i = 1 T (2, 6, 8) T (1, 4, 7) T (3, 6, 7) T (3, 4, 6)
i = 2 G(2, 9) G(2, 8) G(1.5, 9) G(1.5, 8)

Table I shows the parameters of two kind of membership

functions: Triangular and gaussian, denoted by T(a,b,c) and

G(µ, δ), respectively. We compute six α-cuts over each Ãij ,

α ∈ [0.05, 0.2, 0.4, 0.6, 0.8, 1] according to equation (22).

Each αÃij reaches a different value of z associated to α, so

a set Z̃ of 22 optimal solutions2 is obtained, which is shown

in Figure 4.

Note that all values of z are a function of α, so Z̃ is mapped

by α-cuts instead of z ∈ R. As we pointed out in Figure 3,

we have no all values of wi and wi, so the Algorithm 1 is

applied to complete the information we need to compute zl
and zr. The obtained results are shown in Table II.

2Each set of Ãij leads to solve a linear programming model, so we solved
22 linear models.

52 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012



3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum z

M
em

b
er
sh
ip

D
eg
re
e

Fuzzy set Z̃

z

Fig. 4. Fuzzy set Z̃ composed by α-cuts

TABLE II
OBTAINED RESULTS

αn
αnµz̃

αnµ
z̃

xi wi wi wi wi

0.05 3.0227 —- 3.0227 0.05 0 —- —-
0.05 —- 3.3144 3.3144 —- —- 0.1894 0.05
0.2 3.3365 —- 3.3365 0.2 0.0619 —- —-
0.4 3.5876 —- 3.5876 0.4 0.1974 —- —-
0.2 —- 3.5925 3.5925 —- —- 0.4044 0.2
0.4 —- 3.8075 3.8075 —- —- 0.5972 0.4
0.6 3.8106 —- 3.8106 0.6 0.4033 —- —-
0.6 —- 3.9939 3.9939 —- —- 0.7450 0.6
0.8 4.0635 —- 4.0635 0.8 0.6678 —- —-
0.8 —- 4.1992 4.1992 —- —- 0.8450 0.8
1 4.6667 4.6667 9.3334 1 1 1 1

0.8 —- 5.2513 5.2513 —- —- 0.8563 0.8
0.8 5.4802 —- 5.4802 0.8 0.6731 —- —-
0.6 5.612 5.612 —- —- 0.7511 0.6
0.6 6.0189 —- 6.0189 0.6 0.4038 —- —-
0.4 —- 6.0267 6.0267 —- —- 0.5976 0.4
0.2 —- 6.6572 6.6572 —- —- 0.4052 0.2
0.4 6.6741 —- 6.6741 0.4 0.1979 —- —-
0.2 7.76 —- 7.76 0.2 0.0650 —- —-
0.05 —- 7.8829 7.8829 —- —- 0.1925 0.05
0.05 10.231 —- 10.231 0.05 0 —- —-

In this table, wn and wn are the resultant values of their

respective αnµz̃ and αnµ
z̃

which are obtained by αn and the

parameters of the Table I. For instance, if we refer to xi =
3.5876 which is obtained through α = 0.4 (See first column),

then we get wi = 0.4, wi = 0.1974, and for xi = 4.1992
which is obtained through α = 0.8 (See first column), we get

wi = 0.845, wi = 0.8, and so on. Also note that xi (fourth

column) is composed by the ordered values of αnµz̃ and αnµ
z̃
,

and both first and last values of wi are zero as we pointed out

in Remark 5.1.

Note in Figure 4 that µz̃ is composed by the values of

the second column of Table II, and µ
z̃

is composed by the

values of the third column of Table II, which are obtained by

optimizing the example for αnµÃij
and αnµ

Ãij
, respectively.

Now that we have all values of xi, wi and wi, we apply the

IASCO algorithm (Melgarejo [13]) for obtaining the centroid

of Z̃ as a deffuzzification value of the behavior of the optimal

values of the problem, namely zr, zl and zc. The obtained

results are as follows:

zr = 4.661

zl = 5.117

zc =
zr + zl

2
= 4.889

It is clear that by using the results of Z̃ composed only by

its α-cuts, we cannot compute zr, zl and zc, so the Algorithm

1 is an useful tool for completing wi and wi, which are needed

by either the EKM or the IASCO algorithms.

VII. CONCLUDING REMARKS.

Some conclusions and recommendations can be suggested:

1) Although there are different methods for computing

the centroid of an IT2FS, this paper focuses in the

computation of all memberships wi and wi for all the

available values of the universe of discourse xi ∈ X .

2) The presented approximation method can be applied to

a family of Type-2 fuzzy problems which are solved

through primary α-cuts, in a simple way.

3) The concept of primary α-cut is applied to an opti-

mization problem, using the presented algorithm for

computing its deffuzzified centroid, with successful and

consistent results.

4) Finally, the presented approximation algorithm can be

applied to any representation of an IT2FS with incom-

plete wi and wi, so its application to optimization and

decision making problems has a wide potential.

A. Further Topics.

The Generalized Type-2 Fuzzy Sets (GT2 FS) approach

arises as the next step on Type-reduction. This approach

uses the secondary membership function fx(u)/u of n T2FS,

inducing researchers to new directions.
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[16] S. Chanas, D. Dubois, and P. Zieliński, “On the sure criticality of tasks
in activity networks with imprecise durations,” IEEE Transactions on

Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 32, pp. 393–
407, 2002.

[17] D. Wu and J. M. Mendel, “Enhanced Karnik-Mendel algorithms for
Interval Type-2 fuzzy sets and systems,” in Annual Meeting of the North

American Fuzzy Information Processing Society (NAFIPS), vol. 26.
IEEE, 2007, pp. 184–189.

[18] ——, “Enhanced Karnik–Mendel Algorithms,” IEEE Transactions on

Fuzzy Systems, vol. 17, no. 4, pp. 923–934, 2009.
[19] J. Mendel, F. Liu, and D. Zhai, “α-plane representation for type-2 fuzzy

sets: Theory and applications,” IEEE Transactions on Fuzzy Systems,
vol. 17, no. 5, pp. 1189–1207, 2009.

[20] ——, “Comments on α-plane representation for type-2 fuzzy sets:
Theory and applications,” IEEE Transactions on Fuzzy Systems, vol. 18,
no. 1, pp. 229–230, 2010.

[21] F. Liu, “An efficient centroid type reduction strategy for general type-
2 fuzzy logic system,” IEEE Comput. Intell. Soc.,Walter J. Karplus
Summer Res. Grant Rep., Tech. Rep., 2006.

[22] ——, “An efficient centroid type reduction strategy for general type-2
fuzzy logic system,” Information Sciences, vol. 178, no. 5, pp. 2224–
2236, 2008.

[23] J. C. Figueroa, “Interval type-2 fuzzy linear programming: Uncertain
constraints,” in IEEE Symposium Series on Computational Intelligence.
IEEE, 2011, pp. 1–6.

[24] ——, “Linear programming with interval type-2 fuzzy right hand side
parameters.” in 2008 Annual Meeting of the IEEE North American Fuzzy

Information Processing Society (NAFIPS), 2008.

54 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012


