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Abstract—We have applied the methodology combining
Bayesian inference with Markov chain Monte Carlo (MCMC)
algorithms to the problem of the atmospheric contaminant source
localization. The algorithms input data are the on-line arriving
information about concentration of given substance registered
by sensors’ network. A fast-running Gaussian plume dispersion
model is adopted as the forward model in the Bayesian inference
approach to achieve rapid-response event reconstructions and
to benchmark the proposed algorithms. We examined different
version of the MCMC in effectiveness to estimate the probabilistic
distributions of atmospheric release parameters by scanning 5-
dimensional parameters’ space. As the results we obtained the
probability distributions of a source coordinates and dispersion
coefficients which we compared with the values assumed in
creation of the sensors’ synthetic data. The annealing and burn-
in procedures were implemented to assure a robust and efficient
parameter-space scans.

I. INTRODUCTION

I
N MANY fields of applications we face the task of having

to draw conclusions from imperfect, very often fragmentary

information. In those cases it become important to estimate

model’s unknown parameters to predict more precisely the

underlying dynamics of a considered physical system. In this

context the Bayesian approach is a powerful tool to combine

observed data along with prior knowledge to gain a current

(probabilistic) understanding of unknown model parameters.

In particular, it provides a very natural framework for updating

the state of knowledge about a considered dynamic system the

more precisely, the more new data are available. For complex

systems, such updating needs to be carried out via stochastic

sampling of unknown model parameters.

One of the fields of application of the Bayesian approach

is the problem of the location of the dangerous substance

release given the concentration of the released substances in

the points where the sensors are placed. Knowledge of the

temporal and spatial evolution of a contaminant released into

the atmosphere, either accidentally or deliberately, is funda-

mental to adopt efficient strategies to protect the public health

and to mitigate the harmful effects of the dispersed material.

This work was supported by the Welcome Programme of the Foundation
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Operational Programme 2007-2013

In this context there arise the questions to be answered: What

was released? When and where was it released? How much

material was released? Moreover, we have to answer these

questions as soon as possible. In general, we are able to

develop a model to predict precisely concentration fields of a

pollutant provided its release source, weather and terrain data.

However, to create the model realistically reflecting the real

situation based only on a sparse point -concentration data is

not trivial. This task requires specification of set of parameters,

which depends on the considered model. The stated problem

is in some sense ill-posed. It should be noted, that only given a

downwind concentration sparse measurement and knowledge

of the wind field, the determination of the source location and

its characteristics could be ambiguous. Non-inverting problems

of this type are termed inverse problems: problems that can

be solved in one direction but for some physical reason

cannot be solved in the opposite direction. Such problems

are widely encountered in several fields e.g. [1]. In all such

inverse problems the aim is to infer the unknown state from

measured consequences of that state. In the case of gas

dispersion, the unknown state is the gas source distribution

of strengths and locations; and the measured consequences

are the gas concentrations for the associated wind conditions

and measurement locations. Our aim is to find the source

distribution that will generate predicted concentrations closest

to those actually measured. To do this we have developed a

dynamic data-driven event reconstruction model which couples

data and predictive models through Bayesian inference to

obtain a solution to the inverse problem.

The key idea behind statistical inversion methods is to recast

the inverse problem in the form of statistical inference by

means of Bayesian statistics. In the framework of Bayesian

statistics all quantities, included in the mathematical model,

are modeled as random variables with joint probability dis-

tributions. This randomness can be interpreted as parameter

variability, as it is related to the uncertainty of the true

values. This unsertanity is expressed in terms of probability

distributions. The solution of the inverse problem corresponds

to summarizing a probability distribution when all possible

knowledge of the measurements, the model and the available

prior information, have been incorporated. This distribution
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Fig. 1. Distribution of the sensors and the releases source.

which is referred to as posterior distribution describes the

degree of confidence about the estimated quantity conditioned

on the measurements [2].

A comprehensive literature review of past works on

solutions of the inverse problem for atmospheric contaminant

releases can be found in [3]. In [4] was implemented

an algorithm based on integrating the adjoint of a linear

dispersion model backward in time to solve a reconstruction

problem. In [5], [6] was introduced dynamic Bayesian

modeling, and the Markov chain Monte Carlo (MCMC) [7],

[8] sampling approaches to reconstruct a contaminant source

for synthetic data.

A. Synthetic data

In this paper we have implemented stochastic models based

on the MCMC sampling to find the contamination source

location based on the concentration of given substance regis-

tered by the 14 sensors distributed over 15km x 15km (Fig.1).

The synthetic concentration data (Fig.2), used in testing the

algorithm, were generated with use of the atmospheric dis-

persion Gaussian plume model [9], [10]. In this experiment

the contamination source was located at x = 2km, y = 5km,

z = 50m within the domain (Fig. 1). The release rate was

assumed to change with time within interval q ≈ 5000g/s
up to q ≈ 7000g/s which resulted in the change of the

concentration measured by the sensor in subsequent time

intervals (Fig. 2). The wind was directed along x axis with

speed 5m/s.

II. RECONSTRUCTION PROCEDURE

A. Bayesian inference

A good introduction to Bayesian theory can be found in [8]

and [11]. Bayes’ theorem, as applied to an emergency release

problem, can be stated as follows:

P (M |D) =
P (D|M)P (M)

P (D)
(1)
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Fig. 2. The synthetic concentration registered by the 14 sensor in 6

subsequent intervals (time steps)

where M represents possible model configurations or param-

eters and D are observed data. For our application, Bayes’

theorem describes the conditional probability P (M |D) of

certain source parameters (model configuration M ) given

observed measurements of concentration at sensor locations

(D). This conditional probability P (M |D) is also known as

the posterior distribution and is related to the probability of

the data conforming to a given model configuration P (D|M),
and to the possible model configurations P (M), before taking

into account the measurements. The probability P (D|M), for

fixed D, is called the likelihood function, while P (M)-the

prior distribution. P (D) is the marginal distribution of D and

is called prior predictive distribution [8]; it serves as a scaling

factor; so the Bayes’ theorem can be written as follows:

P (M |D) ∝ P (D|M)P (M) (2)

To estimate the unknown source parameters M using (2),

the posterior distribution P (M |D) must be sampled. P (D|M)
quantifies the likelihood of a set of measurements D given the

source parameters M .

Value of likelihood for a sample is computed by running

a forward dispersion model with the given source parameters

M and comparing the model predicted concentrations in the

points of sensors location (within a considered domain) with

actual observations D. The closer the predicted values are to

the measured ones, the higher is the likelihood of the sampled

source parameters (Fig. 3).

As the sampling procedure we use an MCMC with the

Metropolis-Hastings algorithm to obtain the posterior distribu-

tion P (M |D) of the source term parameters given the concen-

tration measurements at sensor locations [7], [8]. This way we

completely replace the Bayesian formulation with a stochastic

sampling procedure to explore the model parameter space and

to obtain a probability distribution for the source location.
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Fig. 3. The values of the likelihood function versus number of iterations for
one of the MCMC algorithms with marked the annealing and burn-in phases

The Markov chains are initialized by taking samples from

the prior distribution (in different ways presented further in this

paper). To lower the computational cost, we limit the prior

distribution to the two dimensional space fixing the vertical

position constant both for the source and sensors location

at 50m.

B. The likelihood function

A measure indicating the quality of the current state of

Markov chain is expressed in terms of a likelihood func-

tion. This function compares the predicted from model and

observed data at the sensor locations as:

ln[P (D|M)] = ln[λ(M)] = −

∑N

i=1
[log(CM

i )− log(CE
i )]2

2σ2

rel
(3)

where λ is the likelihood function, CM
i are the predicted by

the forward model concentrations at the sensor locations i,
CE

i are the sensor measurements, σ2

rel is an error parameter

chosen accordingly to expected errors in the observations and

predictions, N is the number of sensors.

After calculating value of the likelihood function (Fig.3) for

the proposed state its acceptance is performed as follows:

ln(λprop)

ln(λ)
≥ RND(0, 1) (4)

where λprop is the likelihood value of the proposal state, λ
is the previous likelihood value, and RND(0, 1) is a random

number generated from a uniform distribution in the interval

(0, 1).
It is important to note that condition (4) is more likely to

be satisfied if the likelihood of the proposal is only slightly

lower than the previous likelihood value. It gives a chance to

choose even a little "worse" state, because the probability of

acceptance depends directly on the quality of proposed state.

Different likelihood functions can also be developed [12].

C. Posterior distribution

The posterior probability distribution (2) is computed di-

rectly from the resulting Markov chain paths defined by the

algorithm described above and is estimated as;

P (M |D) =
1

n

n
∑

i=1

δ(Mi −M) (5)

which represents the probability of a particular model con-

figuration giving results that match the observations at sensor

locations. Equation (5) is a sum over the entire Markov chain

of length n of all the sampled values Mi. Thus δ(Mi−M) = 1
when Mi = M and 0 otherwise. If a Markov chain spends

several iterations at the same location the value of P (M |D)
increases through the summation (increasing the probability

for those source parameters).

D. Forward dispersion model

A forward model is needed to calculate the concentration

CM
i at the points i of sensor locations for the tested set of

model parameters M at each Markov chain step. As a testing

forward model we selected the fast-running Gaussian plume

dispersion model [9], [10].

The Gaussian plume dispersion model for uniform steady

wind conditions can be written as follows:

C(x, y, z) = (6)

q

2πσyσz ū
exp

[

−
1

2

(

y

σy

)]

×

{exp

[

−
1

2

(

z −H

σz

)2
]

+ exp

[

−
1

2

(

z +H

σz

)2
]

}

where C(x, y, z) is the concentration at a particular location,

U is the wind speed directed along x axis, q is the emission

rate or the source strength and H is the height of the release; y
and z are the distance along horizontal and vertical direction,

respectively. In the equation (6) σy and σz are the standard

deviation of concentration distribution in the crosswind and

vertical direction. These two parameters are defined empiri-

cally for different stability conditions [13], [14]. In this case

we restrict the diffusion to the stability class C (Pasquill type

stability for rural area). Thus, in creation of the testing data

we have fixed this coefficient as:

σy = 0.22x · (1 + x · 4 · 10−5)−0.5, σz = 0.2x. (7)

However, we assume in scanning algorithm that we do

not know exact behavior of the plume and consider those

coefficients as unknown. Thus, the parameters σy and σz are

taken as:

σy = ζ1 · x · (1 + x · 4 · 10−5)−0.5, σz = ζ2 · x (8)

where values ζ1 and ζ2 are sampled by algorithm within

interval [0, 0.4].
To summarize, in this paper the searched model’s parameter

space is

M = (x, y, q, ζ1, ζ2) (9)

where x and y are spatial location of the release, q release

rate and ζ1, ζ2 are stochastic terms in the turbulent diffusion

parametrization given in (8).
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Algorithm 1 Pseudo code of the scanning algorithm

FOR TimeStep =1:6

FOR j =1 : ChainNumber

Draw M from a p r i o r i d i s t r i b u t i o n ;

F o r w a r d D i s p e r s i o n (M) ;

Read C o n c e n t r a t i o n (M) ;

Compute l i k e l i h o o d (M) ;

FOR i =1 :N

Chain ( j , TimeStep ) . Add (M( i ) ) ;

M’=M( i )+N( 0 , sigma ) ;

F o r w a r d D i s p e r s i o n (M’ ) ;

Read C o n c e n t r a t i o n (M’ ) ;

Compute l i k e l i h o o d (M’ ) ;

IF l i k e l i h o o d (M’ ) / l i k e l i h o o d (M’ )

>=RND( 0 , 1 )

THEN

M( i )=M’ ;

l i k e l i h o o d (M)= l i k e l i h o o d (M’ ) ;

END IF

END FOR

END FOR

END FOR

E. Scanning algorithm

We assume that the information from the sensors arrives

subsequently in six time steps. We start to search for the

source location (x, y), release rate (q) and model parameters

ζ1 and ζ2 after first sensors’ measurements (based on the

data in time t = 1, see Fig. 2). Thus, scanning algorithm

is run with obtaining the first measurements from the sensors

(Fig. 2). Based on this information we obtain the probability

distributions of the searched parameters (9) starting from the

randomly chosen set of parameters M (i.e. first we start

from the "flat" priori). This assumption reflects initial lack

of knowledge about the release. The forward calculation are

performed for the actual state M and likelihood function λ is

calculated. Then we apply random walk procedure "moving"

our Markov chain to the new position. Precisely, we change

each model M parameter by the value draw from the Gaussian

distribution with the variance σ2

M equal 200 for x and y, 100

for q and 0.02 for ζ1, ζ2. Based on proposal state forward

calculation the likelihood function λprop is again estimated.

We compare this two values λ and λprop according to (4). If

comparison is more favorable than the previous chain location,

the proposal is accepted (Markov chain "moves" to the new

location). If the comparison is "worse", new state is not

immediately rejected. Bernoulli random variable (a "coin flip")

is used to decide whether or not to accept the new state of

chain. This random component is important because it prevents

the chain from becoming trapped in a local minimum. The

pseudo code of the algorithm is given above.

In our calculation we use 10 Markov chains in each time

step. The traces of five independent Markov chains in the x,y
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Fig. 4. The traces of five Markov chains in the x,y space. The source location
is marked by triangle and the sensors by squares. The samples came from
results of Standard MCMC algorithm.

space are presented in Fig. 4, the source location is marked

by triangle and sensors by squares.

The number of iteration for each Markov chain n = 10000.

This number was chosen based on the numerical experiments

as the number of iteration needed to reach convergence for

each sampled model parameters. Statistical convergence to

the posterior distribution is monitored by computing between-

chain variance and within-chain variance [8]. If there are m
Markov chains of length n, then we can compute between-

chain variance B with

B =
n

m− 1

m
∑

j=1

(M̄j − M̄)2 (10)

where M̄jis the average value along each Markov M̄ and is

the average of the values from all Markov chains. The within-

chain variance W is

W =
1

m

m
∑

i=1

s2i (11)

where

s2i =
1

n− 1

n
∑

j=1

(Mij − M̄i)
2 (12)

The convergence parameter R is then computed as

R =
var(M)

W
(13)

where var(M) is estimate variance of M and is computed as

var(M) =
n− 1

n
W +

1

n
B (14)

The convergence R values vs. the number of iteration for

searched parameters presents Fig. 5. One can see that the

10000 iterations satisfy the convergence condition R ≈ 1.

One of the important aspects of stochastic procedure of

calculating the posterior distribution is choosing burn-in phase.
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Fig. 6. The trace of x coordinate for all considered algorithms. The target
value is marked by horizontal line, the burn-in is marked by vertical line.

The burn-in factor represents the number of samples needed

at the beginning for the Markov chain to actually reach the

search state where it is sampling from the target distribution.

These initial samples are discarded and not used for inference.

In our calculation the burn-in was fixed at 2000 iterations.

This value was chosen based on the numerical experiments as

the number of iteration needed to reach the target distribution

with same approximation. Fig. 6 presents the trace of x and

y coordinates of source location vs. number of iteration. The

burn-in is marked by vertical line.

In the algorithm we have also applied the annealing process

technique which allows to escape from a bad initial location

and to get "flatter" likelihood (Fig.3). It is motivated by

willingness to accurately search the parameter space in the

initial iterations. This procedure involves the modification of

likelihood function during the initial phase of the algorithms.

For the first K = 1000 iterations (i = 1, ...,K) the likelihood

was taken as:

ln[λ(M)]
1

Ti , (15)

where Ti = 1 + (10i(10/K)). It is worth to note, that the

effect of Ti ratio decreases with increasing values of iteration

(up to a limit equal K).

In subsequent time intervals (subsequent time steps) we

investigate different version of MCMC algorithms that use (or

not) the probability distributions obtained based on informa-

tion from previous measurements as the priori distribution in

(2) and update the marginal probability distribution with use of

the newly arrived measurements. The scanning algorithm can

(or not) take the advantage from the past MCMC realizations

in different ways. Each type of algorithm has unique properties

that have an impact on various aspects of the reconstruction

of events.

In this paper we examine the following MCMC algorithms:

Standard MCMC

In this algorithm, the parameter space scan in each time

step t is independent form the previous ones. So, in this case

we don’t use information from past calculations i.e. in each

time step the calculations start from scratch.

MCMC via Maximal Likelihood

This algorithm uses the results obtained in the previous time

steps to run calculation with use of the new measurements. As

the first location of Markov chain M t
0

it select the set of M
parameters for which likelihood function in previous time step

was the highest. So, for t > 1:

M t
0
∼ arg

max
M ∈

{

M t−1

0
, ...,M t−1

n

}ln[λ(M)] (16)

With this approach, we always start with the best values of

the model (previously found) and correct the result with new

information from sensor.

MCMC via Rejuvenation and Extension

This algorithm as the first location of Markov chain M t
0

at the time t > 1 chooses the set of parameters M selected

randomly from previous realization in t − 1 with use of the

uniform distribution:

M t
0
∼ U(M t−1

0
,M t−1

1
, ...,M t−1

n ) (17)

Applying the new knowledge (new measurements) the

current chain is "extended" starting from selected position

with use of the new data in the likelihood function calculation.

MCMC via Rejuvenation, Modification and Extension

This algorithm, similarly to the MCMC via Rejuvenation

and Extension algorithm, as the first location of Markov chain

M t
0

at the time t > 1 chooses the set of parameters M selected

randomly from previous realization t − 1 with use of the

uniform distribution as (17). However, additionally it modifies

the Markov chain path obtained in previous time step t − 1.
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Fig. 7. Posterior distribution as inferred by the Bayesian event reconstruction
for all applied algorithms for x parameter. Posterior distributions were
averaged based on the data for all time steps and all Markov chains. Vertical
lines represent the target x value.

So, if the M t−1

drawned = M t
0

is the dawned first location of

Markov chain in time t according to (17) then the chain in

time t− 1 is modified starting from this position with a new

data available in time t:

(M t−1

0
,M t−1

1
, ...,M t

drawned, ...,M
t
n). (18)

III. RESULTS

Figs. 7, 8, 9 and 10 presents the results of calculation with

use of all four above described MCMC algorithms for x, y, ζ1
and ζ2 parameters. Presented marginal probability distributions

were calculated based on the scanning algorithms’ results from

all time steps and all Markov chains.

Fig. 7 shows the marginal probability distribution for x
coordinate of source location within the considered domain.

One can see that the Standard MCMC algorithm do not marked

the target value of x as the value with the highest probability.

At the same time all other methods hit to the target value

of x. Additionally, algorithms MCMC via Rejuvenation and

Extension and MCMC via Rejuvenation, Modification and

Extension mark this value with higher probability than MCMC

Max Likelihood. The same in seen for the ζ1 parameter. On the

other hand all methods successfully find the correct value of

the y coordinate of the source. The reason of the high peek in

the histogram is that y is the crosswind direction, thus applied

model is quite sensitive to this parameter. In contrast, all

methods do not find the target value of the ζ2 parameter being

responsible for the dispersion in vertical direction which do

not influence the results much, as far we consider sensors and

source as fixed at z = 50m. We do not consider the probability

of the release rate distribution, as far it was changing during

creation of the synthetic data.
It is worth to mention that three algorithms for which we

obtain better results (i.e. MCMC Max Likelihood, MCMC
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Fig. 8. The same as in Fig.7 for y parameter.
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Fig. 9. The same as in Fig.7 for ζ1 parameter.

via Rejuvenation and Extension, MCMC via Rejuvenation,

Modification and Extension) use the probability distributions

obtained based on information from previous measurements

to update the distribution in subsequent time step with use

of the new data. In other word, the starting position of the

Markov chain in subsequent time step is sampled from the

posterior distribution in previous time step. This methodology

makes those algorithms more effective in localization of the

most probable value of considered parameters.

Figs. 12 and 13 presents how the probability distributions of

x parameter are updated in subsequent time steps by MCMC

via Rejuvenation and Extension (Fig.12) and MCMC via

Rejuvenation, Modification and Extension (Fig.13) algorithms.

One can see that with time the probability of the target value

is reached with higher probability, at the same time the false

peak around x ≈ 12000m decreases. Moreover, the MCMC
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Fig. 12. The same as in Fig.11 for MCMC via Rejuvenation and Extension
algorithm.
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Fig. 13. The same as in Fig.11 for MCMC via Rejuvenation, Modification
and Extension algorithm.
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Fig. 10. The same as in Fig.7 for ζ2 parameter.
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Fig. 11. Posterior distribution of x parameter in subsequent time steps for
Standard MCMC algorithm. Vertical line represent the target value of x.

via Rejuvenation, Modification and Extension algorithm seems

to be more effective. On the contrary Fig. 11 presents that

Standard MCMC algorithm do not increase its efficiency in

finding the target value with time.

IV. CONCLUSION

We have presented a methodology to reconstruct a source

causing an area contamination, basing on a set of measure-

ments. The method combines Bayesian inference with Markov

chain Monte Carlo sampling and produces posterior proba-

bility distributions of the parameters describing the unknown

source. Developed dynamic data-driven event reconstruction

model, which couples data and pollutant dispersion simula-

tions through Bayesian inference. This approach successfully

provide the solution to the stated inverse problem i.e. having

the downwind concentration measurement and knowledge of
the wind field algorithm found the most probable location

of the source. We have examined usefulness of differ-

ent version of the MCMC algorithms i.e. Standard MCMC,

MCMC via Maximal Likelihood, MCMC via Rejuvenation

and Extension, MCMC via Rejuvenation, Modification and

Extension and its modification in effectiveness to estimate the

probabilistic distributions of searched parameters. We have

shown the advantage of the algorithms that in different ways

use the source location parameters probability distributions

obtained basing on available measurements to update the

marginal probability distribution of considered parameters

with use of the received new information. As the most effective

we pointed the MCMC via Rejuvenation, Modification and

Extension algorithm.

The probabilistic aspect of the solution optimally combines

a probable answer with the uncertainties of the available
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data. Among several possible solutions, the Bayesian source

reconstruction is solely able to find values of the model

parameters that are more consistent with the data available

and its uncertainties.

The stochastic approach used in this paper is completely

general and can be used in other fields where the parameters

of the model bet fitted to the observable data should be found.
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models via Monte CarloâĂřAn introduction with examples, Lawrence
Livermore National Laboratory Tech. Rep. UCRL-TR-207173, 53

[7] Gilks, W., S. Richardson, and D. Spiegelhalter, (1996): Markov Chain
Monte Carlo in Practice. Chapman & Hall/CRC, 486

[8] Gelman, A., J. Carlin, H. Stern, and D. Rubin, (2003): Bayesian Data
Analysis. Chapman & Hall/CRC, 668 pp.

[9] Panofsky, H. A., Dutton, J. A., (1984). Atmospheric Turbulence. John
Wiley

[10] Turner D. Bruce (1994) Workbook of Atmospheric Dispersion Esti-
mates, Lewis Publishers, USA

[11] Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian Theory. Wiley.
[12] Senocak I., N. W. Hengartner, M. B. Short, W. B. Daniel, (2008)

Stochastic Event Reconstruction of Atmospheric Contaminant Dispersion
Using Bayesian Inference, Atmos. Environ. 42(33) 7718-7727.

[13] Pasquill, F. (1961) The estimate of the dispersion of windborne material,
Meteorol Mag.,90, 1063,: 33-49

[14] Gifford, F. A. Jr. (1960). Atmospheric dispersion calculation using
generalized Gaussian Plum model, Nuclear Safety, 2(2):56-59,67-68

508 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012


