
Producing the Platform Independent Model
of an Existing Web Application

Igor Rožanc, Boštjan Slivnik
University of Ljubljana

Faculty of Computer and Information Science

Tržaska 25, 1000 Ljubljana, Slovenia

Email: {igor.rozanc, bostjan.slivnik}@fri.uni-lj.si

Abstract—A reverse engineering procedure for producing a
platform independent model (PIM) of an existing Web application
is presented using a case study. It focuses on extracting the
domain knowledge built into the application and thus it produces
the PIM, leaving the hypertext and presentation models aside.
It is especially focused on reverse engineering of applications
produced using agile software development methodology where
documentation is scarce, and as it assumes that in large part the
activity diagrams are produced and refined manually, it is par-
ticularly useful in environments where at least some developers
of the original agile team are still available. Rather than being a
result of a theoretical work, the method has crystallized during
a lot of practical work. As such it is aimed at practitioners and
following the spirit of its formulation, it is presented as a case
study where it has been applied.

I. INTRODUCTION

REVERSE engineering of a software application is most

often performed for one of the following two reasons

[1]. First, to gain an insight into a competitors’ product

and either learn how to replicate its design or to discover

possible patent infringements. Second, to produce various

kinds of documentation of the software application when the

documentation is either outdated or even nonexistent.

Although a software specification, i.e., a technical documen-

tation, can be either missing or outdated simply because of a

professional misconduct, the deficient software specification

can result from a particular software development model used

to produce the application. For instance, if agile software

development methodology is used [2], it is quite possible

that no detailed software specification will ever be produced

since one of the main principles of the “Manifesto for Agile

Software Development” explicitly values working software

over comprehensive documentation [3].

However, if the application proves to be successful, it

inevitably grows in both size and complexity, and the environ-

ment the application now lives in changes. Hence, although it

can be a key factor for success during the design, the agile

approach to software development can become an obstacle for

the maintenance of the application later on. The reasons are

many. First, porting an application from the existing platform

to a new one might be difficult (sometimes even if the new

platform is in fact only a major new version of the old

platform). Second, business processes might change and since

the existing processes are hard-wired in the code, a significant

amount of the code must be changed. Third, in time people

initially working on the application, either business people or

developers, are replaced by new people with less insight into

the application.

Therefore, at certain point in the application’s life cycle the

existence of a model at a higher abstraction level becomes ben-

eficial for both managers and programmers [4]. Furthermore,

if designed properly, the appropriate model can also reduce

maintenance costs [5]. The generation of the appropriate model

might be focused on two different issues:

• extracting the model from the existing application in

the situation when no domain knowledge nor application

architecture is known, or

• producing the model of the existing application using a

(limited) domain knowledge and insight into the applica-

tion architecture.

In both cases, reverse engineering of the application is to be

performed. However, in the first case, the reverse engineering

must be started from scratch while in the second case the

model generation, although still complex, is much simpler (or

at least feasible).

An important issue is the final result of the reverse engi-

neering. By definition it is a description of the application at

a higher level of abstraction, but this can mean very different

things to different people. Usually the reverse engineering is

aimed towards the most useful form of description for some

latter. These forms include, among others,

• diverse design models needed for the reengineering of the

existing application, or

• a formal text description in case when only the documen-

tation has to be obtained.

As the model-driven development (MDD) promotes a defi-

nition of the software development through a hierarchy of

defined models at different levels of abstraction, it seems a

natural choice for the formulation of the results obtained by

the reverse engineering [6], [7]. These models are defined by

the model-driven architecture (MDA) which implements the

MDD. An important characteristic of MDA is promotion of

the automatic generation of the lower level description models

- the application code in the selected technology. Thus by

selecting the platform independent model (PIM) as defined in

MDA for the final result of the reverse engineering we gain

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1341–1348

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 1341

Fig. 1. The idea of reimplementation of an existing application using model-
driven approach.

an important advantage for the following reconstruction of the

application in the selected technology whatever it might be.

Note that the OMG’s Architecture-Driven Moderniza-

tion(ADM) proposals suggest this kind of solution: this pa-

per presents a tipical Application / Data Architecture-Driven

Modernisation through a case study of an existing application

redesigned using MDA [8].

Using a case study, the paper describes an agile method-

ology of reverse engineering that can be applied in order to

produce the platform independent model as used by the MDD

as shown in Figure 1: the paper focuses on reverse engineering

of the existing application to produce the platform independent

model, a step performed by a mostly manual transformation

since at the current state of technology it cannot be fully

automated. It is especially targeted for Web applications that

were produced using agile software development. It is assumed

that to apply the methodology the team producing the model

includes at least some members of the original development

team.

Nowadays a baffling number of different tools for the devel-

opment of Web applications is available. Hence, a completely

general description of reverse engineering is almost impossible

to formulate: either it is to general to be valuable as no

concrete actions and procedures can be described or in trying

to be comprehensive it becomes to large and imprecise. To

ensure the paper has a practical value, the approach is given

for the Oracle DB and Oracle Portal1 as the selected case

study is based on this technology. It is believed the Oracle

technology is a good choice for presenting the new approach

as it is (1) wide spread, (2) suitable the implementing the

most complex Web applications, and (3) a market leader

and model for others. However, as PL/SQL is not object

oriented (OO), the reverse engineering of an existing PL/SQL

1The company, product and service names used in this paper are for
identification purposes only — all trademarks and registered trademarks are
the property of their respective holders.

application and generation of the PIM involve the shift to the

OO-design.

Hence, the paper starts with Section II containing a short

overview of the Web application used as a case study and the

events that triggered the introduction of major modifications

that actually caused the shift from the agile to the model-

driven approach. Section III gives a short introduction into

what the PIM of a Web application should be made of, and

Section IV, the core of the paper, describes how a PIM can be

extracted from a existing Web application by using a case

study. The paper concludes with a section on the lessons

learnt in producing the PIM for the actual real world Web

application, and conclusion.

II. A CASE STUDY

As the procedure presented in this paper sprang from

practice, a case-study based on a web student information

system named e-Študent (developed and initially deployed

at the Faculty of Computer and Information Science of the

University of Ljubljana, Slovenia) is to be introduced first [9],

[10].

e-Študent is a three-tier Web application built using the

Oracle DB and Oracle Portal technology, and written primarily

in PL/SQL with some JavaScript. Technically speaking it

has over 800 different programming objects (namely dynamic

pages, stored procedures and functions) with over 220 KLOC

in total, 130 different reports, and its database contains more

than 160 tables. As it has been designed and developed at the

Faculty of Computer and Information Science, the developer

team consisted of people who were themselves developers and

users at the same time, and the agile methodology seemed a

natural choice [2], [3].

The development of e-Študent started way back in 2001 and

by 2003 the initial release has been used by most faculties

of the University of Ljubljana. Its main functions are pro-

viding electronic support for student enrolment, managment

of examination records and grades, and keeping the alumni

records. All together it has been used by approx. 20000

users (students, lecturers and staff). In 2008 the University

of Ljubljana decided to replace e-Študent with, at that time,

yet nonexistent successor. The reasons were many. First,

the existing e-Študent was designed to be used by a single

faculty and therefore different faculties were running their

own instances instead of a single inter-faculty instance desired

by the University. Second, as the number of elective courses

increased dramatically by the introduction of the imminent

new Bologna study programs (compared with the old pre-

Bologna programs), the structure of the study programs was

modified significantly and, sometimes even within the same

faculty, in different directions.

The new system built after 2008 did not meet the expec-

tations as it was focused more on implementing additional

functionalities and less on suitable implementation of the

existing, i.e., essential, ones. After the new system was made

and evaluated it has been realized that during the development

and maintenance of the original e-Študent a huge amount of

1342 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

the domain knowledge had been accumulated. In fact, due

to the turbulent times of the Bologna reform, the source

code of e-Študent is most likely the most comprehensive

and the most formal specification of the student examination

processes at the University of Ljubljana. It is precisely this

domain knowledge that should be extracted during the reverse

engineering, and it should be extracted as a model suitable for

the development of the next e-Študent successor.

III. PLATFORM INDEPENDENT MODEL

OF A WEB APPLICATION

Model-driven development is based on a notion of an

automatic transformations between different models describing

an application on different levels. In the ideal situation, a

developer would produce a platform independent model (PIM),

add some platform specifications to reach the platform specific

model (PSM), and finally generate the application.

For Web applications in particular, it has been advised [12]

that the PIM should consist of

• a business model,

• a hypertext model, and

• a presentation model.

Apart from the (usual) business model describing the business

processes, the hypertext model describes how Web-pages are

built and linked while the presentation model contains details

of the graphic appearance of a Web application.

Leaving the hypertext and presentation models aside and

concentrating on the business model, it has been shown that

by using the appropriate MD methodology, namely URDAD

[13], out of 13 different kinds of UML diagrams only the

following 4 kinds of diagrams are sufficient to produce the

PIM:

• class diagram,

• activity diagram,

• use case diagram, and

• sequence diagram.

The first three types are usually produced during the analysis

phase (which is not an issue in reverse engineering) while all

four types are needed during the design phase: class diagrams

for the services contract and for the collaboration context,

sequence diagrams for the user work flow and for the success

scenario, a use cases for the responsibility identification and

allocation, and finally a set of activity diagrams for the full

business process specification [13].

IV. A PROCEDURE FOR PRODUCING THE PIM

USING REVERSE ENGINEERING

Even thought the four types of diagrams aforementioned in

Section III were identified as the minimal requirements for

the PIM [13], it is much easier to talk about these diagrams

rather than actually produce the concrete instances of these

diagrams by reverse engineering an existing (Web) application.

To produce the PIM of a Web application not by analysis of a

problem domain but by reverse engineering of an existing Web

application, the appropriate diagrams can only be produced

using the combination of both static and dynamic analysis.

More precisely, there are basically two phases of constructing

PIM by reverse engineering:

1) A static phase of reverse engineering is performed first:

a class diagram, a number of use case diagrams, activity

diagrams, and sequential diagrams are produced, in this

particular order.

2) A dynamic phase of reverse engineering comes second:

sequence diagrams are upgraded with additional infor-

mation on the data flow.

Finally, a third phase, namely the optimization of the reverse

engineered PIM, can be performed. In the following four

subsections the procedure of producing each type of diagram

by reverse engineering is outlined.

A. Class Diagrams

Class diagrams represent the static structure of software

systems and subsystems in a graphical way [14]. In the case

of the non-OO business applications database objects are

typically modeled in this way.
Class diagrams are the easiest to produce: the relational

database tools are capable of producing entity relationship

model (ERM) and there exists a relatively simple transforma-

tion from the ERM to a class diagram. More precisely, as the

behaviour information is ommited, we produce a conceptional

class diagram. The transformation is done by applying the

following rules:

• each entity is transformed into its own class with no

methods and stereotype “DatabaseTable”;

• each composite data type appearing in the ERM is

transformed into its own class;

• entity fields are mapped into attributes of the class

corresponding to the entity the field belongs to;

• relations between tables are mapped as dependencies

between classes.

The names of classes and attributes are the same as the names

of the corresponding entities and fields; classes corresponding

to composite types are named using synthetic names.
The list of different tools that can carry out this transforma-

tion (at least to some degree if not entirely) includes among

others tools like ‘UML Modeller for SQL’ by Entrionics [15]

and ’Altova UMODEL 2012’ by Altova [16].
In our case the database has a quite simple structure with

no composite types. Hence, the mapping between tables from

ERM and UML classes is quite straighforward. As this study

is focused primarily on the data layer, the presentation layer

description is left for further work.
However, the database can contain “garbage”, i.e., currently

unused tables that were either used in the past or were used

during development. Although all such tables should have been

removed, one cannot assume that they actually were. This is

usually not a problem: for instance, if Oracle DB is used, one

can use the data available in the Oracle DB Data Catalogue

to remove all unused tables.

Case study: The transformation of the e-Študent ERM to a

class diagram was straightforward — the e-Študent ERM does

IGOR ROŽANC, BOŠTJAN SLIVNIK: PRODUCING THE PLATFORM INDEPENDENT MODEL OF AN EXISTING WEB APPLICATION 1343

not even contain any composite type. A class diagram of e-

Študent, immensely simplified for the presentation purposes,

is shown in Figure 2.

Fig. 2. An example of a class diagram obtained by reverse engineering of
e-Študent (the class diagram is significantly simplified: in reality there are
approx. 160 classes and some classes might contain dozens of attributes).

B. Use Case Diagrams

A use case diagram represents system functionality by

exhibiting the interactions between system users and the trans-

actions that provide value to users. They display relationship

between actors and use cases and dependencies that exist

between users [14].
As they describe user requirements use case diagrams

should be among the first artifacts produced by both software

development and reverse software engineering. In reverse

engineering they are important as they offer unrivaled top-

down insight of system functionality. Furthermore, as the

system is being reverse engineered it is assumed the system is

adequate and thus the use case diagrams produce a very clear

top-down picture of the problem domain.
In most Web applications, use case diagram specifies a set

of actions that can be performed by a certain actor (describing

a user role for a group of users). In fact, as each user may

play different roles, each use case diagram specifies functions

that can be performed by a particular user role. Hence a list

of user roles (actors) must be retrieved from the system using

one of the following two methods:

• by checking the list of user roles stored in the database

or within the application server;

• by inspecting the system from the user’s point-of-view (in

most cases, user roles can be determined by inspecting

how each user logs into the application or how the user

can explicitly change its role afterwards).

Once the list of user roles is established, one use case

diagram per each user role should be produced. The generation

of the use case diagram depends heavily on the technology and

tools the Web application is made with, and therefore no list

of procedures applicable to all and every tool can be given

here (for the Oracle DB/Portal case, see the ‘Case Study’ at

the end of this subsection).

Users performing different user roles might be allowed to

perform functions common to many different roles. Although

a clear sign of an incautious design, two situations can

nevertheless arise in practice:

• One particular function is found in different use case

diagrams, either under the same name or under different

names.

• Two functions found in two different use case diagrams

share the same name but denote two substantially differ-

ent actions.

Using the static analysis of the code it is possible to check

whether two functions are carried out by the same code.

However, if they are not, the resolution must be made manually

by a developer.

Case study: Initially, the five user roles of e-Študent have been

determined using the domain knowledge. However, checking

the list of user roles kept by the Oracle Portal has been

performed as well.
As the application front-end of e-Študent has a simple

single-level menu structure, the use case diagrams for e-

Študent were obtained from the menu files especially de-

signed for e-Študent. These files, written in Javascript, have

a very indicative structure that allowed the entire structure

of menus, submenus and options to be obtained by simple

parsing. Hence, under the assumption (based upon the domain

knowledge) that a single menu option reflect a single function

a user can perform, the generation of use case diagrams was

more or less reduced to parsing Javascript menu files. The

smallest of the five resulting diagrams is shown in Figure 3.

Fig. 3. A use case diagram for user role ‘student’ obtained by reverse
engineering of e-Študent (the leaves of the tree represent the functions this
particular user role can perform).

C. Activity Diagrams

Activity diagrams are the most important artifacts in terms

of the future reimplementation of the existing application

as they denote the operational semantics of business pro-

cesses [14].

1344 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

At first glance, activity diagrams can be produced auto-

matically from the existing code. Certain tools are available,

each specialized for a particular platform. However, no tool

seems to be capable generating adequate activity diagrams

automatically for the real world applications — adequate in

terms of the forward software development phase. In fact, in

most cases the generated activity diagrams are simply distilled

code shown in a different form. Hence, they are not to be used

in the subsequent MDD for the following reasons:

• The generated diagrams face granularity problem: un-

derstanding of the diagrams is obstructed as too many

unnecessary details are included while sometimes some

important details are systematically omitted [17], [18],

[19].

• The generated diagrams include many system design

elements, including bad ones which, since the diagrams

are to be used in forward system design, would be

propagated to the next versions of the application [17].

To conclude, as the tools cannot distinguish between the

business process and its implementation, i.e., between what

should be done and how it is done, producing the adequate

activity diagrams is essentially a human lead process. Nev-

ertheless, we promote the use of tools as they can quickly

generate syntaticaly correct diagrams. These can be used

as an additional input for further manual processing. To be

precise, our activity diagram definition process is based on

the generated activity diagrams if they are of moderate size.

Otherwise, it is better to start from a scratch due to the

granularity problem of generated diagrams.

Case study: To actually produce the activity diagrams for

e-Študent, the following sources needed to be reverse engi-

neered:

• dynamic pages (HTML + PL/SQL),

• stored procedures and functions (PL/SQL),

• reports (SQL),

• triggers (PL/SQL), and

• JavaScript code.

A naive approach of using a tool to generate activity

diagrams, e.g., ‘UML Modeller for SQL’ as

PL/SQL code: DynPages,procedures,functions

↓ UML Modeller for SQL

Activity Diagrams,

failed exactly for the reasons outlined above. For a single

procedure of approx. 300 lines of PL/SQL code, the tool

produced the activity diagram shown in Figure 4. The number

of elements in the diagram is proportional to LOC, and such

a diagram is not readable even in case of modarate size

procedures.

Furthermore, tools mentioned above couldn’t merge

PL/SQL code that is embedded into the dynamic pages with

PL/SQL code found in the stored procedures and functions

(however, this is a deficiency of the tools used, not a problem

per se).
Fig. 4. An example of a generated activity diagram for a PL/SQL procedure
of approx. 300 lines of code (the diagram is rotated 90 degrees leftward).

IGOR ROŽANC, BOŠTJAN SLIVNIK: PRODUCING THE PLATFORM INDEPENDENT MODEL OF AN EXISTING WEB APPLICATION 1345

The difference between the PL/SQL code and SQL queries

must be noted at this point. While the structure of the first can

be clearly described in the activity diagram using sequence,

selection and iteration elements, the second demands a dif-

ferent approach [20]. For this reason the reverse engineering

tools simply skip the analysis of SQL chunks in PL/SQL code

and present them as a simple activity. Thus, the analysis of

SQL code should be done separately. At present the reverse

engineering of the existing e-Študent is limited on collecting

all SQL code chunks, forming a list of them, and establishing

two-way references between items from the list of SQL chunks

and the resulting activity diagrams.

a) Dynamic pages, procedures and functions: Dynamic

pages are basically HTML pages with fragments of embedded

PL/SQL code while procedures and functions are written in

pure PL/SQL. To extract the workflow and create an activity

diagram representing the action performed by a particular

dynamic page, no lightweight tool was available. Thus, the

reverse engineering was performed manually using the fol-

lowing steps:

1) Establishing a proper list of dynamic pages:

A proper list of dynamic pages must be defined on the

application server since a number of unused dynamic

pages exists as well. To do this, parsing the menu

structure can be used in a similar way as in use case

diagram case. Each menu option references a particular

Oracle Portal user page, each consisting of a predefined

structure of portlets where main portlet points to a

specific dynamic page.

2) Obtaining the code of dynamic pages:

PL/SQL code of all dynamic pages from the list com-

piled in the previous step is to be collected. Unfor-

tunately, the dynamic pages are stored at the Oracle

Portal and thus not directly available in the Oracle DB,

which would facilitate the access and analysis. Each

dynamic page has to be extracted using Oracle Portal

functionality which takes a lot of time. However, each

dynamic page is stored in the database as a compiled

package as well (dynamic page can be identified, but

the code is not available) and this information can be

used to cross-check whether all code has been pro-

cessed.

3) Parsing the PL/SQL code:

Once the PL/SQL code has been retrieved, it must

be processed. This can be performed partially using

the appropriate reverse engineering tool, but it must

definitely be completed manually.

At this point, specific knowledge about the programming

standards used by e-Študent team has been heavily used

since

• all dynamic pages have a limited size and a similar

structure, and

• a list of strict rules for content distinction be-

tween dynamic pages and stored procedures/func-

tions code has been applied, e.g., all SQL code is

in the stored procedures/functions and thus omitted

from the dynamic pages.

Furthermore, in the initial phase of the development,

strictly formalized comments have been systematically

inserted into dynamic page headers; later, during the

implementation of modifications needed due to the

Bologna reform, this practice was abandoned.

One activity diagram at a higher level of abstraction per

dynamic page is the main objective of this step, but a

separate lists of all called stored procedures/functions,

reports and JavaScript code is obtained for later use.

References to other dynamic pages can emerge as well

- they are added to the dynamic pages list and processed

in the same manner.

4) Parsing the PL/SQL code of stored procedures and

functions:

All PL/SQL code for all stored procedures and functions

used by dynamic pages must be processed. These pro-

cedures and functions are found on the list compiled in

the previous step.

The code of the stored procedures and functions is saved

in Oracle DB. The code can be retrieved from Oracle

Data Catalog and thus the process is much simplified as

a special step for obtaining the code is not needed.

On the other hand, the structure of actual procedures

and functions can be quite diverse in length, use of

comments and content. Just like in the previous step, the

use of a tool is suitable in the first place, but a careful

manual analysis must be performed to complete the task.

During parsing, several new procedures and functions

are added to the list and those have to be processed in

the same manner. Likewise, new reports can be added

to the report list as well, while one of the main artifacts

is a list of SQL code, which is collected and left for

processing later. Of course, references to all list items

are stored in the activity diagrams.

Once a member of reverse engineering team who was a

member of the development team as well took care of the

diagram in Figure 4, he was able to simplify it (by throwing out

design elements) and obtained the diagram shown in Figure 5.

Obtaining the right level of abstraction seems to be the most

difficult task at this point.

b) Reports, triggers and JavaScript code: In e-Študent,

reports were generated by Oracle Reports Designer tool. The

basic report information includes the identity and the layout

of how fields are to be displayed or printed out. However, a

report is in fact generated by executing an SQL query which

includes, alongside the appropriate data to be reported, data

and formatting transformation as well. All reports are saved in

separate files on the application server, the exact identity and

location of report files is defined in a special table. There is

no simpler way than checking all different reports manually,

collecting SQL code and adding it on the list of SQL code with

the proper references. Processing of SQL code is left for the

next version of reverse engineering process as stated above.

1346 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Fig. 5. An example of an activity diagram (a) based on the activity diagram
in Figure 4 but (b) created by a member of a reverse engineering team.

It is important to process the triggers as well as most of them

implement important data transformations and common safety

policies. The code of triggers for all used tables, obtained by

retrieving it from Oracle Data Catalog, is usually very simple.

Hence, an appropriate tool can be used in most cases, but the

results have been manually checked nevertheless.

JavaScript is a different language, but still JavaScript code

can be transformed to activity diagrams in the same way as

PL/SQL stored procedures and functions. The list of JavaScript

files is obtained in the previous steps by parsing dynamic

pages. Files are located on the application server, so they must

be retrieved using Oracle Portal. In the last step they have been

analyzed using the selected tool and manually post processed

as in the previous steps. The amount of JavaScript code is

quite small, so this part didn’t require much effort.

D. Sequence Diagrams

Sequence diagrams express the interactions and the data

flow between different objects within an application. In

PL/SQL, these interactions are most often representations of

procedure and function calls. While procedure and function

calls can be extracted from the source code during parsing, the

data flow, although not always needed, can only be obtained

by dynamic analysis of the application. Sequence diagrams

are needed to augment the activity diagrams, but they have a

limited role in this kind of application.

Case study: The lists of all different sources, e.g., dynamic

pages, stored procedures and functions, etc., obtained while

producing the activity diagrams have been used.

Thus by analyzing this information we can produce ap-

propriate sequence diagrams. It is important to observe that

the sequential diagram usualy presents comunications between

different actors or objects, but this is not the case in our

situation. Furthermore, objects should be substituted with

diverse PL/SQL packages for suitable presentation of the

diagrams [21].

By parsing programming objects more data can be obtained

(or at least cross checked): dynamic pages, stored procedures

and functions have a clearly defined way of passing parameters

which are the essence of this diagrams. Reports, triggers

and JavaScript code can be processed similarly. In practice

parsing for this part has not been done as a separate step,

but it was performed together with previous parsing while

generating activity diagrams. An example of a very simple

sequence diagram is presented in Figure 6. Unfortunately, no

automatization can be used at this point and such a sequence

diagram is in fact an adaptation of parsing results performed

by a developer.

The dynamic analysis for upgrading sequential diagrams

should be performed by executing different scenarios on live

system, collecting data and defining diagrams through analysis

of those data. Careful preparation of data is needed, and

specific approaches from the field of software testing are

applicable here. This part is left to be done in the future.

V. LESSONS LEARNT

Once e-Študent application was developed and deployed, it

proved to be successful. However,

1) PL/SQL proves to be far too low-level formalism any

automatic transformation into the PIM could be suc-

cessful [22]. Even if activity diagrams are generated

automatically, they are too detailed and include too many

past design elements (including all bad solutions that

should not propagate to newer versions).

IGOR ROŽANC, BOŠTJAN SLIVNIK: PRODUCING THE PLATFORM INDEPENDENT MODEL OF AN EXISTING WEB APPLICATION 1347

Fig. 6. An example of a simple sequence diagram depicting the sequence
of calls of various stored procedures and functions from a dynamic page.

2) As it turns out, using the contemporary tools the reverse

engineering of PL/SQL code must be done by someone

who is pretty familiar with the design of the system

being reverse engineered. At the end the reverse engi-

neering turns into a more or less manual translation of

PL/SQL code into a model on a significantly higher level

of abstraction. The motivation is as follows:

a) If the produced model can be used by the MDD

tools to generate the new version of the application,

a lot is gained since the automated code generation

is less error prone and can be done quickly for

different platforms.

b) Otherwise, the produced model can serve as a well

formalized documentation and therefore it enables

the switch from agile software development to

other software development methodologies.

Furthermore, a lesson learnt the hard way is that if a reverse

engineering of a PL/SQL-based Web application that was

produced by agile development, is to be economically viable,

the reverse engineering must be performed by at least some

members with the domain knowledge who participated in the

development of the application.

Finally, even though PL/SQL is not a good starting point for

a reverse engineering towards the PIM, sometimes it simply

must be done. And although it might encompass a lot of

manual processing, the resulting model is worth the effort as

reimplementing the application might end in the same situation

in a few years time.

VI. CONCLUSION

Instead of yet another paper describing a procedure of a

reverse engineering for producing different models, we con-

centrated on an actual case study. Furthermore, some sources,

e.g., [23], describe what models are to be made without giving

any hints about how this models could be made. We find

these approaches inadequate as the problems are not with the

automatic model generation but in understanding the generated

models (which must afterwards be processed manually).

At present, the detailed eŠtudent model is still being com-

piled. In the future, the dynamic part of the reverse engineering

procedure presented in this paper must be refined and extended

further.

REFERENCES

[1] R. Akkiraju, T. Mitra and U. Thulasiram, “Reverse Engineering Platform
Independent Models from Business Software Applications”, chapter 4 in
Reverse Engineering - Recent Advances and Applications, InTech Press,
2012, pp. 83–94.

[2] R. C. Martin, Agile Software Development, Principles, Patterns, and

Practices, Prentice Hall, Englewood Cliffs, NJ, USA; 2002.
[3] Manifesto for Agile Software Development, http://agilemanifesto.org

(retrieved April 17th, 2012).
[4] S. Rugaber, K. Stirewalt, “Model-driven reverse engineering”, IEEE

Software, vol. 21, 2004, pp. 45–53.
[5] W. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical

evaluation of the costs and benefits of UML in software maintenance”,
IEEE Transactions on Software Engineering, vol. 34, 2008, pp. 407–432.

[6] S. J. Mellor, K. Scott, A. Uhl, D. Weise, MDA distilled - principles of

model-driven architecture, Addison-Wesley, Boston, MA, USA, 2004.
[7] L. Favre, “Formalizing MDA-based reverse engineering processes”, Pro-

ceedings of the 6th International Conference on Software Engineering

Research, Management and Applications (SERA’08), Prague, Czech
Republic, 2008, pp. 153–160.

[8] White paper: Architecture-Driven Modernization: Transforming the
Enterprise, http://www.omg.org/cgi-bin/doc?admtf/2007-12-01.pdf (re-
trieved June 29th, 2012).

[9] V. Mahnič, S. Drnovšček, “Introducing agile methods in the development
of university information systems”, Proceedings of the 12th Interna-

tional Conference of European University Information Systems (EUNIS

2006), Tartu, Estonia, 2006, pp. 61–68.
[10] V. Mahnič, I. Rožanc, M. Poženel, “Using e-business technology in

a student records information system”, Proceedings of the 7th WSEAS

International Conference on E-Activities (E-Activities’08), Cairo, Egypt,
2008, pp. 589–594.

[11] P. Bulić et. al., “The professional study program ‘Computer and In-
formation Science”’ (in Slovene), University of Ljubljana, Faculty of
Computer and Information Science, Ljubljana, Slovenia, 2008.

[12] P.-A. Muller, P. Studer, F. Fondement, J. Bezivin, “Platform independent
Web application modeling and development with Netsilon”, Journal of

Software & System Modeling, vol. 4, 2005, pp. 424–442.
[13] F. Solms, D. Loubser, “Generating MDA’s platform independent model

using URDAD”, Knowledge-Based Systems, vol. 22, 2009, 174–185.
[14] R. Milles, K. Hamilton, Learning UML 2.0, O’Reilly Media, Sebastopol,

CA, USA, 2006.
[15] Entrionics UML Modelling for SQL, http://www.entrionics.com (re-

trieved May 7th, 2012).
[16] Altova UModel 2012, http://www.altova.com/umodel.html (retrieved

May 7th, 2012).
[17] B. Lieberman, “UML activity diagrams: versatile roadmaps for under-

standing system behaviour”, Rational Edge, 2001, pp. 12.
[18] Y. Zou, T. C. Lau, K. Kontogiannis, T. Tong, and R. McKegney, “Model-

driven business process recovery”, Proceedings of the 11th Working

Conference on Reverse Engineering (WCRE’04), Delft, The Netherlands,
2004, pp. 224–233.

[19] Y. Zou, J. Guo, K. C. Foo, and M. Hung, “Recovering business processes
from business applications”, Journal of Software Maintenance and

Evolution: Research and Practice, vol. 21, 2009, pp. 315–348.
[20] E. Song, S. Yin, I. Ray, “Using UML to model relational database

operations”, Computer Standards and Interfaces, vol. 29, 2007, pp. 343-
354.

[21] IBM, Rational Rose Forum, Sequence Diagrams for Stored Procedures,
https://www.ibm.com/developerworks/forums/thread.jspa?messageID=2-
907020� (retrieved May 7th, 2012).

[22] A. Billig, S. Busse. A. Leicher, J. G. Süss, “Platform independent
model transformation based on triple”, Proceddings of the 5th ACM/I-

FIP/USENIX International Conference on Middleware (Middleware’04),
New York, NY, USA, 2004, pp. 493–511.

[23] W. Raghupathi and A. Umar, “Exploring a model-driven architecture
(MDA) approach to health care information systems development”, Int.

J. of Medical Informatics, vol. 77, 2008, pp. 305–314.

1348 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

