



�������������� ���	
��
� ����������
���
�
���� ���� ���	���

�������� ��� ������ �
����� ��� ������ ����
���	��� 	����	����

�������
������������������	��������
�����	���������
����
�
����

��� ������� ���
��� ����� ����������
��� ��������
� ����
��� ��������
�

�������������
�������������
��������������������������	
����
��
�

	���� �

�
���� ���� ��

�
���� ���� �
���� ��� ����������� ����

���������� ������	���� ���� ������
���� ����
���� ���
��
��� �����

����� �
����!� ������
���� �����
	���� ����
��
� ����� ���� ��������

����� �
�����
���������

I.� INTRODUCTION

HE increasing popularity of Flash RAM used as

storage media forces the need for mechanisms to

ensure an adequate level of protection of data stored on

them. This is particularly important in the case of sensitive

data which has significant impact on the safety of the

institution.

For this purpose, the most commonly used is the software

(e.g. USB Flash Security, Secure Traveler, Rohos Mini

Drive, etc.) that must be installed on the media prior to its

use. During the installation of such software in Flash RAM it

is created an encrypted volume that is accessed using a

password defined. The power of safeguard of the medium

using this type of software depends on the used symmetric

encryption algorithm and key length. This type of security is

sufficient in the event of such loss or theft of the media. Use

this solution to transfer data between the various entities that

use such media poses problems arising mainly from the need

to provide the transfer the medium and an encryption key

with help which the media has been encrypted. In addition,

the data sender is not certain that the data will be available

only for the recipient, and the recipient is not certain that it

has received data from the expected sender.

The article presents a solution enabling to such

preparation of data stored in Flash RAM, so that the

recording medium can be used for secure transfer of data

files, during which the sender of data (i.e., the creator of the

protected media content) is assured that data will be

available only for designated recipient and the recipient is

assured that the data received come from the expected

 This work was supported by The National Center for Research and

Development, Project OR00014011

sender. The described mechanism uses both symmetric

encryption algorithms and asymmetric. The presented

solution uses a filter driver [1][3][4]. In this solution, it is

assumed that in terms of operating system data can be

processed in two directions: from plain text form stored on

your hard disk to secure form on removable media (e.g.

Flash RAM, hard drive) connected to the system via the

USB bus and, conversely, from secure form on removable

media to plain text form on the hard drive. Do not allow the

possibility of using the software for the direct exchange of

data files between removable media (e.g. flash memory)

connected to the system via the USB bus.

The process of securing the exchange of data should

satisfy the following functional requirements:

−� should be implemented in a manner transparent to the

user;

−� should not cause any noticeable to the user loads of the

operating system;

−� should not have a significant impact on the speed of read

and write data onto data media;

−� should allow the use of various encryption algorithms to

ensure the required level of confidentiality;

−� should build on removable media, protected file and the

signature for this file;

−� should allow to perform any operation allowed for data

storage media, such as volume, surface checking for

errors, and defragment the disk8based data.

These requirements force the use of the process of

securing the data separate modules (drivers) operating at the

kernel8level of operating system [2][3][6]. Schematic

representation of a solution being developed is shown in

Figure 1.

Described solution is available for a user through the

control application (AST). The main elements of the built

system are interacting drivers: encryption driver [1] and

driver supporting, which are compatible to the Windows

Driver Model [5]. Both elements work in kernel mode

operating system and communicate with each other using the

internal mechanisms of the operating system (in the figure

these mechanisms are labeled as IRP 8 Input8Output Request

Packet) [2][5].

T

����
�
����������	�����
���"�������	���������������
�����

Jan Chudzikiewicz
Military University of Technology

 ul. Kaliskiego 2,

008908 Warszawa, Poland

Email: jchudzikiewicz@wat.edu.pl

Janusz Furtak
Military University of Technology

ul. Kaliskiego 2,

008908 Warszawa, Poland

Email: jfurtak@wat.edu.pl

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 621–625

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 621

Fig. 1 Schematic diagram of securing data stored on removable media

The purpose of the encryption driver (STS) is the

realization of the process of encryption / decryption of data

and determination of its hash value for these data. The driver

supporting (STW) sets the signature for protected data

(according to the algorithm presented in the next section)

and mediates the transfer of messages / commands between

STS and AST. The other components of the system are: the

.DLL library that provides the functionality of the

implemented encryption algorithms, module of generation of

session key, and the database of public keys of users.

The product of the process to secure the original file are

two files: a file with encrypted data and the file containing

the signature for the encrypted file. Both files can be stored

on one medium or each file on a different medium. Choosing

a storage location of the signature file is defined by the user

through AST. It should be noted that saving the encrypted

file and the signature on separate media increases the

security of stored data, but it is cumbersome to use.

II.�THE PROCESS OF CREATING AND READING A PROTECTED

FILE

The process of creating a protected file on removable

flash memory (that is, to create an encrypted file and the

signature of this file) and reading (decryption) file from the

removable flash memory needs attributes of a user which

creates a protected file (file sender) and a user for which a

secured file will be created (file recipient). When a protected

file is created the user logged into the system is the sender,

and he specifies the file recipient using the AST. When

reading a protected file with using the AST logged user is

the file recipient, a sender's attributes are read after

successful decryption of signature that file with using a

private key of the logged user. The situation in which at the

same time the logged user is the sender and the recipient of

the data is acceptable.

The process of creating a protected file includes the step

of encryption, and then creating a signature for that file.

However the process of reading a protected file in a first step

obtains from file signature the attributes needed for

decrypting that file and in the second step the protected file

is decrypted.

�	�
�����
�������������������

The process of writing the file, including file encryption

and hash generation, is performed by the STS. Operation of

STS has been presented in [1]. The diagram describing the

process of writing the file is shown in Figure 2. Dashed line

in Figure 2 indicates operations implemented by the STS.

During the process of file encryption is determined the value

of the hash function to ensure the integrity of the file.

Fig. 2 The process of writing data to removable flash memory

Determined value of the hash function, and the generated

session key after completion of record are transferred to the

STW in order to generate a signature for the stored data. The

process transferring the hash function value and the session

key transferring is implemented using the system

mechanisms marked in Figure 2, as the IRP.

�	��������
�
���������
������

For each of the protected file the signature is generated

which containing the information needed to read of this file.

Signature of the file contains the following fields:

KSY 8 random key to encrypt / decrypt the secure file;

SK 8 value of hash function which is determined

based on the content of protected file after

encrypting this file;

ID_SZY 8 identifier of the algorithm used to encrypting;

ID_SKR 8 identifier of the algorithm used to generate the

hash;

ID_OPER 8 identifier of the logged user (the sender) who

initiated the operation of data write 8 this

identifier is required to determine the public key

of sender when the file is read;

TMS 8 time stamp of file creation 8 this value

corresponds to the date of file creation.

The structure of signature is shown in Figure 3, and

process of signature creation proceeds according to the

diagram is shown in Figure 4.

622 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

����� ���� ����	�� ������� ���
����
���

�

�

�

Fig. 3 The structure of signature secure file

Fig. 4 The algorithm of signature generation for protected file

	������
�������������������

The process of reading the file requires that the signature

was read before and then decrypted. These activities are

performed by the logged user (recipient of file) using AST.

The process starts with decrypting the signature file using

the private key of the logged user, then reading time stamp

and user identifier (ID_OPER) which assumed the role the

sender creating a protected file. The time stamp protects the

an encrypted file before moving it to another medium than

that on which was originally written. Incompatibility of date

and time stored in the time stamp and date and time the file

was created displays the message and terminates the

procedure of file reading. With compatibility of the

parameters the next part of the signature is decrypted using

the user public key which identifier (ID_OPER) has been

read. The next steps of file decoding are schematically

shown in Figure 5.

Fig. 5 The process of data reading from an external file

On the Figure 5 operations performed by the STS are

marked using thick dashed line, and the operations

performed by the STW are marked using the thinner line

(two dots dash).

During the read data the value of hash function

(SKR_Wyz) is determined. If the value SKR_Wyz is

different from the values obtained from the signature

(SKR_Zap) a message is displayed and the decrypted file,

which was saved on hard disk, is being deleted.

III.� HANDLING FOR CREATING AND READING A SECURE FILE

Logged user (file sender) configures the parameters of the

process of creating and reading a protected file using AST

whose window is shown in Figure 6.

Fig. 6 The window of control application AST

The process of creating protected file requires first of all

connection one or two (depending on where the file with the

signature will be stored) removable Flash RAM memories to

encryption using the sender

private key

encryption using the recipient public key

JAN CHUDZIKIEWICZ, JANUSZ FURTAK: THE METHOD OF SECURE DATA EXCHANGE 623

a computer through USB interface. The devices are

automatically detected by STS, which transmits information

about them via the STW to AST. The logged user should

determine the parameters required for encrypting the file and

generating a signature. He does this by selecting the:

−� drive in which will be stored the protected file (field

"Data Drive" in Figure 6);

−� drive and path to the directory in which will be stored the

file with the signature (field "Signature Drive" in Figure

6);

−� identifier for the algorithm used to encrypt (field "The

encryption algorithm" in Figure 6);

−� identifier for the algorithm used to generate Hash value

for the protected file (field "The Hash function algorithm"

in Figure 6);

−� identifier for user (recipient) encrypted data (field “Data

Recipient" in Figure 6);

−� location of public key data recipient file (field "Location

of Public Key" in Figure 6).

Identifier (ID_OPER) and the private key of the sender

(the elements required to generate the signature) are

automatically retrieved from the system. After determining

the data configuration logged user can begin the process of

copy the file using , e.g. Windows Explorer. The name of

file which stores the signature will be concatenation of the

name of protected file and string "SIG". The process of

creating a file with the signature is started after the

encryption process is finished and is, just as the encryption

process, invisible to the user. When next file for the same

recipient is being encrypted it does not need to change the

configuration data unless the other parameters (that is the

identifier of encryption algorithm or identifier of algorithm

generating of hash value) will be changed. Always for the

next file a new session key will be automatically generated.

The process of reading protected file requires connection

to a computer through USB interface one or two (depending

on where is stored the file with the signature) removable

Flash RAM memories. The devices are automatically

detected by STS, which transmit information about them via

the STW to AST. The logged user (recipient of the data)

using AST has to specify the drive on which is stored

encrypted file and indicate the file with the signature

corresponding to the encrypted file. He does this by

selecting the:

−� drive on which will be stored the protected file (field

"Data Drive" in Figure 6);

−� drive and path to the directory on which will be stored the

file with the signature (field "Signature Drive" in

Figure 6).

Other parameters required to decrypt the file are

determined based on the signature. After initializing by the

logged user the process of copying a file STS sends to the

STW the name of the copied file and pauses the copy

process to the moment when receives data required to

decrypt the file (that is the identifier of encryption algorithm,

session key and identifier of algorithm generating of hash

value). Based on submitted by the STS the name of

encrypted file, STW identifies a file containing the signature

and performs the process of signature decryption and

reading the configuration data. Then performs the

verification process read out TMS with the date and time of

the creation of an encrypted file. In the case of inequality of

these values message is displayed and the file reading

process is interrupted. In the case of equality of those values

other configuration data read from the signature are passed

to STS, which resumes the process of decryption. During the

proces of decrypting the file the STS determines the value of

a hash function for that file. After completion the process of

copy STS transmit to STW determined value of the hash

function for verification. If the designated hash value is not

equal to the value read from the signature a message is

displayed and the STW deletes the file.

IV.� CONCLUSION

Currently widely available tools to secure the contents of

removable Flash RAM uses symmetric encryption when

writing files. In these solutions, it is assumed that the key

needed for encryption / decryption is determined by the user

who creates protected file, and during reading the protected

file this key is known for the user. When a user saves a

protected file on removable medium, and another user of this

medium reads this file, the problems associated with the

transmission of the key between the users are not taken into

consideration, which is a significant lack of such solutions in

terms securing of transfer of saved data on media Flash

RAM.

The solution presented in this paper is unique and more

complicated than the commonly used. Users using this

solution do not see the problem with the transmission of the

key, because they are using the advantages of asymmetric

encryption which gives assurance secured transfer of

encryption key between parties involved in the exchange of

data. The developed system requires the user who is creating

a protected file, to determine file recipient and the

parameters to encrypt the file. The process of protecting file

is closely linked with the mechanisms of systemic support

for removable media Flash RAM, and is transparent to the

user. When the protected file is read, user is not burdened

with any additional activities. In addition, security is so

constructed that the reading of the file is only possible with

the medium on which the file was originally saved.

Attempting to copy a protected file to a different medium

locks the ability to read the file. This scheme has been tested

in a Windows environment.

The described method for protecting data on removable

Flash RAM protects data from unauthorized access, for

example in case of loss or theft of the medium, but also

makes it possible to secure transfer of that data through an

unsecured transmission channel, for example using a courier.

This approach is necessary in systems that process data

belonging to different security domains (with different

624 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

classification levels) in which the flow channel of data must

be strictly controlled

REFERENCES

[1] J. Chudzikiewicz, “Zabezpieczenie danych przechowywanych
nadyskach zewnętrznych” in Metody wytwarzania i zastosowania
systemów czasu rzeczywistego, 2nd ed. vol. 3, J. Peters, Ed.
Warszawa: Wydawnictwo Komunikacji i Łączności, 2010, pp. 211–
221.

[2] Microsoft Windows Driver Kit (WDK), Technical Documentation,
Redmond, Microsoft Corporation, 2009.

[3] R. Nagar, Filter Manager. Redmond, Microsoft Corporation, 2003.
[4] R. Nagar, OSR's Classic Reprints: Windows NT File System Internals.

Redmond, OSR Press, 2006.
[5] W. Oney, Programming the Microsoft® Windows® Driver Model,

Redmond, Microsoft Press, 2003.
[6] M. E. Russinovich, D. A. Solomon, Microsoft® Windows® Internals,

Fourth Edition: Microsoft Windows ServerTM 2003, Windows XP,
andWindows 2000, Redmond, Microsoft Press, 2005.

JAN CHUDZIKIEWICZ, JANUSZ FURTAK: THE METHOD OF SECURE DATA EXCHANGE 625

