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Abstract—With a large number of different standards of
sample rates we often need to use sample rate conversion
algorithms. If the resampling ratio is not expressed as the ratio
of small integer numbers or is not a fixed value, the sample
rate conversion algorithm based on fractional delay filters might
be used since it allows for arbitrary resampling ratios. The
performance of such algorithm depends solely on the method
used to design fractional delay filters. In this paper we propose
a novel classification of fractional delay filter design methods
dividing them into three general categories: optimal fractional
filter design, offset window method and polyphase decomposition.
The proposed classification is based on differences in properties
of the sample rate conversion algorithm based on fractional delay
filters.

I. INTRODUCTION

D IGITAL representation of analog signals has a lot of

advantages but the problem arise when the sample rate

with which signal was recored is different from the sample

rate required for further processing. With a large number of

sample rate standards available today such situation is quite

common. A typical example is the CD (compact disc) to DAT

(digital audio tape) conversion, when a signal sampled with

the sample rate Fs,CD = 44.1 kSa/s needs to be converted

into a signal with the sample rate Fs,DAT = 48 kSa/s [1].

The classic approach to the sample rate conversion (SRC)

is presented in Fig. 1 [2]. First, the input sample rate Fs1

is increased L-times by inserting L − 1 zeros between each

two input samples. Next, a lowpass filter is used to remove

spectral images located at multiples of the input sample rate.

This replaces zeros, which have been previously inserted, with

values of the interpolated input signal. Finally, a sample rate

is decreased M -times by leaving only every M -th sample,

thus signal with the sample rate Fs2 = L/MFs1 is obtained.

Interpolation and decimation factors used in this process can

be computed using the following formulas

L = Fs2/ gcd(Fs1, Fs2) (1)

M = Fs1/ gcd(Fs1, Fs2) (2)

Such an approach to the SRC is relatively simple in imple-

mentation and interpretation but at the same time computa-

tionally inefficient. Nevertheless, computational efficiency can

be readily improved with polyphase structures [3]. The more

serious problem is that when L or M are about a hundred or

larger, like in the aforementioned CD to DAT conversion with

L = 160 and M = 147, design of the interpolation filter

is problematic. The required transition band becomes very

narrow and a very long impulse response of the interpolation

filter is required. Therefore the main challenge in the SRC

algorithm implementation is the interpolation filter design.

A designer tries to obtain a shortest possible filter, which

means lower computational costs and filter delay, fulfilling

given specification described by passband ripples, stopband

attenuation, and width and location of transition band. For

very long impulse responses optimal solutions might not be

reachable and less efficient filter design methods need to be

used, like the window method. Moreover, when a ratio of input

and output sample rates is an irrational number or when it

varies in time, the factors L and M cannot be determined and

the interpolation filter cannot be specified.

Fig. 1. Classic sample rate conversion algorithm.

Therefore, in practice, the classic sample rate conversion al-

gorithm can be used only to resample a signal by factors which

can be represented as a ratio of two relatively small integer

numbers. For other resampling ratios a different approach to

the resampling needs to be used.

Let us notice that the SRC algorithm actually has to compute

values of signal samples in new time instants located between

original samples (Fig. 2) [1], [4]–[6]. This means that we can

treat each output sample of the SRC algorithm as an input

sample delayed or advanced by a fraction of the input sampling

period.

The fractional delay (FD) between the current output sample

y[m] and the nearest input sample x[n] can be computed using

the following recursive formula [7], [8]

d[m] = d[m− 1]− Fs1/Fs2 +∆n[m] ∈ [−0.5, 0.5) (3)

where the resampling ratio Fs1/Fs2 = M/L and ∆n[m] is

a number of new samples required in the input buffer for
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Fig. 2. Presentation of resampling process in the time domain. Black arrows
show the delay between output samples and closest input samples. L = 5,
M = 4.

computation of the next output sample

∆n[m] = round(Fs1/Fs2 − d[m− 1]) (4)

Using those two parameters we can formulate the resam-

pling algorithm (Fig. 3):

1) start with d[0] = 0 and ∆n[0] = 0,

2) wait for ∆n[m] new samples in the input buffer,

3) compute the output sample y[m] delayed by d[m],
4) calculate ∆n[m] and d[m] for the next m and go back

to step (2).

In the variable (or adjustable) fractional delay (VFD) ap-

proach to the SRC, computation of each output sample re-

quires the FD filter with the impulse response approximately

L-times shorter than the length of interpolation filter required

in the classic approach. Moreover, contrary to the classic SRC,

the resampling ratio doesn’t need to be rational. To achieve this

we need, however, to calculate a new set of filter coefficients

for every output sample.

II. FRACTIONAL DELAY FILTER

The SRC based on FD filters has many advantages over

the classic approach but its performance depends on a method

used to design FD filters. The ideal frequency response of the

FD filter with the total delay τd is defined by the following

formula [9]

Hid(f) = exp(−j2πfτd), f ∈ [−0.5, 0.5) (5)

which corresponds to the ideal impulse response

hid[n] = sinc(n− τd) (6)

Since the ideal impulse response is infinite and non-causal,

in practical applications, the frequency response (5) must be

approximated with an finite order filter. In this paper we will

consider the approximation with the use of FIR FD filter with

the frequency response

HN (f) =

N−1∑

n=0

h[n] exp(−j2πfn) (7)

where h[n] is the impulse response of the length N .

Fig. 3. Diagram of VFD based SRC algorithm.

Because of the causality requirement, FD filters are usually

characterized with a nonzero integer delay D = round(τd),
which for FIR filters is commonly selected close to the bulk

delay τN = (N − 1)/2. With those two delays defined, we

receive the following formula for the total delay

τd = D + d = τN + ε (8)

where d ∈ [−0.5, 0.5) is the fractional delay and ε is the net

delay.

The performance of the FD filter is usually evaluated using

the frequency domain error function [9]

E(f) = HN (f)−Hid(f) (9)

but it is not sufficient to know just the errors of FD filters

to assess the performance of the SRC algorithm based on FD

filters. Relations between all FD filters used in the resampling

are also important. These relations can be readily taken into

account if we observe that the SRC algorithm based on FD

filters (Fig. 1.3) is equivalent to the classic approach (Fig. 1)

[7]. We only need to replace the interpolation filter with

the overall filter, obtained by polyphase composition of FD

filters used in resampling. This can be done only for rational

resampling rates but the conclusions resulting from the overall

filter can be readily adapted to arbitrary resampling ratios.

The composition of the impulse response of the overall filter

is defined by the following formula [7]

ho[m+ nL] = hd[m][n]; m = 0, 1, . . . , L− 1 (10)

where hd[m][n] is the impulse response of the FD filter with

fractional delay d[m]. In order to obtain a proper overall filter,
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delays d[m] need to be organized in the decreasing order

d[m− 1] = d[m] + 1/L; m = 1, . . . , L− 1 (11)

Using the overall filter we can readily analyze distortions in-

troduced by SRC algorithm based on FD filters since this filter

should fulfill the same design requirements as the interpolation

filter in the classic approach (Fig. 1).

It is worth noting that SRC algorithms with different dec-

imation factors M , but with the same interpolation factor

L, operate on the same set of fractional delays. Therefore,

since the same set of FD filters is used, the overall filter also

stays the same. Nonetheless, we must remember that when

the output sample rate is smaller than the input sample rate

(M > L) the cutoff frequency fc of the interpolation filter

should be lower

fc = min(0.5/L, 0.5/M) (12)

which must be taken into account in the SRC algorithm design.

III. FD FILTER DESIGN FOR SRC

There are numerous approaches to FD filter design [9].

Typically, the FD filter design is discussed in the literature

as a problem of approximation of the ideal FD filter. If the

filter has to be used for the SRC such an approach is not

always satisfactory. In this paper we propose to organize

FD filter design methods into three general categories: the

optimal FD filter design, the offset window method and the

polyphase decomposition. As we will present further in this

paper, SRC algorithms based FD filters belonging to each

of those categories demonstrate different properties. In this

paper only FIR FD filters are considered since the design and

analysis of the SRC algorithm based on such filters is simpler

than in case of IIR filters.

A. Optimal FD filters

In the optimal FD filter design an error dependent on given

criteria based on complex approximation error (9) is mini-

mized. The most commonly used criteria are maximal flatness

of error frequency response (MF) and minimization of least

square error (LS) or maximum magnitude of approximation

error (minimax) in a given approximation band defined by its

upper frequency fa [9].

The design of optimal FD filters is quite complex since it

involves solving matrix equation [9], in a case of recursive

algorithms even several times [9], [10].

Optimal FD filters might seem to be the best choice for

the SRC since they offer the best possible approximation of

the ideal FD filter for particular filter length and approxima-

tion band. Nevertheless, each filter is optimized separately,

which means that relations between all the filters used in

the resampling process are neglected. In the result magnitude

response of the overall filter obtained from optimal FD filters

(Fig. 4) exhibits large lobes in the stopband, at the frequencies

corresponding to the components of the input signal located

above fa and images of those components (Fig. 5) [7].

Fig. 4. Examples of impulse responses of overall filters. For FD filters of the
length N = 51, black - maximally flat, green - minimax with fa = 0.45 and
red - LS with fa = 0.475. Interpolation factor L = 10. Frequency normalized
by the input sample rate.

Fig. 5. Magnitude responses of overall filters from Fig. 4

Thus, the SRC algorithm implemented using optimal filters

performs correctly only for signals with band limited to the

approximation band of FD filters used in the resampling.

For fullband signals the additional filter preceding the actual

resampling, limiting the band of the input signal, is required.

Such a prefilter increases computational cost of the resampling

but with multistage implementation [1], [11] which improves

computational efficiency of the resampling, the prefiltering can

be readily incorporated into the interpolation filter of the first

resampling stage.

The additional advantage of the optimal FD filter approach

is that when such a filter is implemented using the extracted

window concept (Fig. 6) [12]–[14], parameters of the resam-

pling algorithm can be readily modified during runtime since

only a symmetric window wref [n] and coefficients of a low

order polynomial used for computation of gain correction α(d)
need to be replaced. This makes such an approach well suited

for SRC algorithms prototyping, when we need to verify which

filter type or approximation band width should be selected

in the final implementation or when a versatile application,

which leaves the decision on selection of the filter type and

its specification to the user, is needed.

Fig. 6. Optimal FD filter structure based on the extracted window method
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B. FD filter design using offset window

The second approach to the FD filter design is based on the

window method with window which is offset accordingly to

the fractional delay of the designed filter [15]–[18]. The filter

design formula is simple

hd[n] = wd[n]hid[n] (13)

where

wd[n] = w((n− d)Ts1) (14)

is the offset window which is a sequence of samples of pro-

totype continuous time window w(t) sampled with sampling

period Ts1 in instants delayed by d.

Let us notice that the impulse response of the overall filter

composed of truncated impulse responses of the ideal FD

filter (6) is the truncated ideal response of the 1/L-th band

interpolation filter

hLPF,id[n] = sinc(2fcn) (15)

where cutoff frequency fc = 0.5/L and the gain of the filter

is equal to L.

In the same way as the overall filter is created, the overall

window can be composed of windows used to design each FD

filter. For the window offsetting method, the overall window is

simply the L times interpolated window of the same type as the

protopype window used to design FD filters. Thus, using FD

filters designed with offset window we actually design overall

filter using window method while designing only a fraction of

the whole filter with each FD filter. Therefore, although the

performance of FD filter designed using offset window method

is worse than the performance of optimal filters, the overall

filter performs better in the stopband (Fig. 7). The magnitude

response of the overall window does not exhibit large lobes

in stopband which are typical to the overall window extracted

from overall filter of the SRC algorithm based on optimal FD

filters (Fig. 8). In consequence the overall interpolation filter

also does not exhibit large lobes (Fig. 9) [18] in stopband,

which means that the SRC algorithm based on FDs filter

designed with this method can be used in the resampling of

fullband signals without need for a prefilter.

Additionally, using this approach we can readily manipulate

the location of the transition band of the interpolation filter.

The impulse response of the fullband FD filter (6) needs only

Fig. 7. Magnitude responses of overall filters for optimal FD minimax filters -
black, and filters designed using offset window method with window extracted
from optimal FD minimax - red. fa = 0.45, N = 51 and L = 10.

Fig. 8. Overall windows corresponding to filters presented in Fig.7.

Fig. 9. Magnitude responses of windows for Fig.8.

be replaced with ideal impulse response of the bandlimited

FD filter

hid[n] = sinc(Lfc(n− τd)) (16)

where fc is the assumed cutoff frequency of the ideal overall

filter (15).

The concept of the design based on offset window is simple

when a prototype window w(t) is given as a continuous

function of time, like in case of raised cosine windows [19].

The problem with raised cosine windows is, that even with

optimized coefficients, filter designed using such a window is

worse than the optimal filter by few dB. On the other hand,

offsetting other types of windows is more problematic. For

example, the Kaiser window [20] is defined as a continuous

function of time variable but coefficients recalculation for

different delays is numerically too demanding for most real

time applications of the SRC. If the window is not defined in

the time domain as a continuous function, like the Chebyshev

window [20] which is defined in the frequency domain, then in

addition to coefficients calculation formula being too complex,

the window offsetting procedure is not straightforward.

Offsetting procedures for such windows are based on the

fact that window offsetting can be interpreted as delaying a

discrete symmetric prototype window by a fraction of the

sampling period. Thus, when a prototype window is not a

continuous function, it might be resampled using a delay

operator implemented either in the frequency domain [21],

[22] or in the time domain, e.g. using short FD filter [18].

If we want to decrease computational costs of window

offsetting even more, after computing several offset windows

for different delays, the discrete window prototype can be

approximated with piecewise polynomial. Precise window

offsetting can be then performed in time domain with separate

polynomials approximating window segments corresponding

to each sample of impulse response of the designed FD.

Usually second or third order polynomials offer a sufficient

performance [23].
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C. Polyphase subfilters

The last category of FD filter design methods suited for the

needs of the SRC is directly related to the classic approach.

Let us notice that a polyphase decomposition of 1/L-th band

optimal interpolation filter [3], designed for example using the

Parks-McClellan algorithm, into L subfilters

hd[m][n] = hLPF [m+ nL]; m = 0, 1, . . . , L− 1 (17)

gives us L fullband FD filters, each with different delay d[m].
With those filters stored in memory we can implement the

SRC algorithm with interpolation factor L. The problem is

that for large L we need to design and store very long impulse

response of the interpolation filter, in some cases even longer

than several thousands samples. Such optimal filter design

might not be possible due to accumulation of numerical errors

during design. Additionally, a particular interpolation filter

can only be used for the resampling with the given factor

L. On the other hand, for a given length of the overall filter

we gain a possibility to improve the attenuation in stopband

of the overall filter in the exchange for increased ripples

in passband (Fig. 10). This is a significant advantage. For

example with stopband attenuation equal to 86 dB (Fig. 10)

with two previous approaches to the FD filter design, when

no prefilter is used, passband ripples of the overall filter are

about 10−3 dB. In most application we don’t need such a high

precision in passband. Relaxing the specification in passband

and allowing ripples equal to 0.02 dB, improves stopband

attenuation by 30 dB (Fig. 10) for the same filter length.
This approach might seem inappropriate for incommensu-

rate or variable resampling ratios, since we get only L FD

filters, but we actually don’t need to directly design the inter-

polation filter for the required ratio. We only need to design the

prototype interpolation filter for some low integer interpolation

factor, for example L = 10 (Fig. 10). Subsequently, using the

Farrow structure [11], [24]–[26] (Fig. 11) we can approximate

the FD filter and obtain the impulse response for any required

fractional delay.
The idea behind the Farrow structure is that the overall filter

impulse response is approximated with a low order piecewise

polynomial with each segment

h[n] =

p∑

m=0

cm[n]dm (18)

Fig. 10. Magnitude responses of overall filters combined from FD filters
designed using offset window (from Fig. 7) - black and minimax interpolation
filters with the same transition band and impulse response length designed
with similar passband ripple level like previous one - red and with larger
passband ripple level - green.

Fig. 11. Farrow structure of order p = 2 approximating the FD filter of the
length N = 6. Thick dashed box indicates structure coefficients cm[0] of the
polynomial approximating the first sample of the impulse response hid[0].

Fig. 12. Magnitude responses of overall filters obtained using the Farrow
structure for interpolation factor L = 35. Farrow structure coefficients
computed based on two first filters presented in Fig. 10. The length of the
impulse response of FD filters N = 51.

approximating separate sample of the FD filter impulse re-

sponse.

Thus using the Farrow structure we can keep the advantages

of the SRC algorithm specification flexibility resulting from

of the direct design of the interpolation filter and at the same

time implement any arbitrary resampling ratio (Fig. 12). That

way we can freely select cutoff frequency and adjust passband

ripple level while improving the stopband attenuation. How-

ever, for each different specification we need to replace all

coefficients of the Farrow structure.

It is worth noting that although the Farrow structure can be

used to implement the VFD filter belonging to any category

described in this paper, the structure is the most beneficial

when used with polyphase filters obtained from the lowpass

prototype of the interpolation filter.

IV. CONCLUSIONS

In this paper properties of the SRC algorithm based on

FD filters have been presented. The dissimilarities of different

methods of the FD filter design have been analyzed using the

overall filter or the overall window. Based on the observed

properties the classification of FD filter design methods into

three categories have been proposed. To the first category

belong the optimal FD filter design methods which offer

the smallest possible approximation error for a given filter

length and approximation band width. For this category the

overall filter of the SRC algorithm exhibits large lobes in

the stopband. This means that either the input signal must be

bandlimited or a prefilter needs to be used before resampling.
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Since FD filters belonging to this group are closely related

to the symmetric window design method, such an adjustable

FD filter can be implemented using extracted window method.

This implementation allows for simple change window type

or width of the approximation band which might be useful in

some applications.

If the properties of the overall filter in the stopband have

to be improved, the offset window method should be used to

design FD filters instead of the optimal filters. This results

in elimination of large lobes in stopband and additionally the

cutoff frequency of the overall filter can be readily changed.

A design of FD filters using the offset window method

when compared with design of optimal filters with symmetric

extracted window is more numerically complex but the SRC

algorithm based on the offset window approach does not

require additional prefilter since large lobes in stopband of

the overall filter are suppressed.

The last category includes FD filters designed by means

of polyphase decomposition of the interpolation filter. This

approach offers the best performance since we can directly op-

timize the interpolation filter. In this approach using polyphase

decomposition we obtain only few FD filters from the whole

family but the Farrow structure can be used to obtain FD

filters with any required fractional delay. This makes an

implementation of the arbitrary resampling ratio possible using

FD filters from this group. Unlike with previous categories,

polyphase filters and Farrow structure coefficients need to be

redesigned each time we want to change specification of the

SRC algorithm. This is the price we have to pay for the

flexibility of the overall filter specification.
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