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Abstract—In this paper we present a graph-based volumetric
data segmentation method based on a 3D hexagonal prismatic
lattice. We evaluate the advantages and disadvantages of using
this lattice in contrast with classic ones. One of the main
advantages are high isoperimetric quotient, near equidistant
neighbours (ability to represent curves better, resulting in a
better segmentation) and high connectivity. Disadvantages are
due to the main stream lack of interest in this area and thus
data sets must be converted back and forth from rectangular
to hexagonal latices both in acquisition and visualization
processes.
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I. INTRODUCTION

Recent advances in the study of the human visual system

have shown that the implicit arrangement of the sensor

array is hexagonal in nature. This implies that all the other

systems, wherever they may lie in the cortical hierarchy

depend on this arrangement. This fascinated people includ-

ing researchers and scientists, for a long time. The classic

example is that Pappus of Alexandria stated the Honeycomb

conjecture that says that the best way to partition a plane into

regions of equal area is a regular hexagon. This conjecture

have recently been proven by Hales [1].

In this paper we examine the possibility and the effects of

changing the classical sampling lattice from cubic to hexag-

onal. Switching to the new lattice will influence data aquisi-

tion, indexing, storage and processing algorithms. Based on

it’s geometry the lattice has advantages and disadvantages

that are also discussed.

We propose a pseudo-hexagonal prismatic lattice and

for it a volumetric segmentation algorithm is approached

theoretically. Experimental results cannot be provided at this

stage.

II. VOLUMETRIC DATA SAMPLING LATTICE

Volumetric data can be obtained mainly from two sources:

1) Acquisition of discrete representations of real objects

with medical imaging technologies like:

a) Computed Tomography (CT)

b) Magnetic Resonance Imaging (MRI)

c) 3D Ultrasound

2) Computer generated 3D textures:

a) Polygonal object voxelization

b) Interactive voxel editors

c) Procedural objects defined by 3D functions

A. Classic lattice systems

Usually the volumetric data is defined by a scalar 3D func-

tion discretized into a set of cells or points using a regular

lattice. Formally, a lattice is a discrete subgroup of Rn that

can be generated from a vector basis by linear combination

with integer coefficients: L = {∑n

i=1 aivi|ai ∈ Z}, where

vi is a generation vector from the vector basis.

The most frequently used lattice is the Cubic Cartesian

lattice with generation vectors X = (1, 0, 0), Y = (0, 1, 0)
and Z = (0, 0, 1). The lattice depends of course on the

modality of the volume data. While CT and MRI scans

use the CC lattice, the volumetric data for 3D ultrasound

uses a non-Cartesian grid called acoustic grid, similar to a

truncated pyramid or a cone.

Other lattice systems such as Body-Centred Cubic (BCC),

Face-Centred Cubic (FCC) and Hexagonal Close Packing

(HCP) also can be used. Kepler conjecture states that the

highest average density of sphere packing is ≈ 74%. Hales

shows that only FCC and HCP are the only lattices that offer

this property [2].

Most research is focused on rectangular lattices because

this is the most common lattice system used by the acqui-

sition devices (2D, 3D or 4D) and so, hexagonal lattices

are left in the shadow even if they present interesting

properties. One of the major advantages of the hexagonal

lattice is higher connectivity and the neighbouring points

are equidistant, while on a rectangular lattice the distance

between neighbours depends on whether the neighbour is

directly adjacent or diagonal. The fact that hexagons are

rounder than squares make image processing algorithms,

such as edge detection or image segmentation, provide better

results when they are applied on a hexagonal lattice.

On the other hand, it’s impossible to build a regular 2D

hexagonal lattice right on top of a rectangular lattice. The

new sampling points will not match the original points and

thus the reconstructed lattice will have to suffer in resolution.
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B. The proposed lattice

To overcome these problems we introduce a new pseudo-

hexagonal lattice which is created by simply shifting the

even scan-line with half a unit. This is the 3D extension of

the ”Brick Wall” lattice first proposed by Fitz and Green

[3] for hexagonal image latices. It’s possible to achieve this

shift by sampling at midpoints in every even scan-line or it

can be implemented in the input device hardware itself. We

denote this lattice as the Solid Brick Wall lattice or SBW.

In 2D the compactness factor is determined by the isoperi-

metric quotient Q = 4πA
L2 , where A is the area and L is

the length or object perimeter. The compactness factor of a

brick wall element is Q = 3π
(1+

√
5)2
≈ 89, 99% higher than

the one if the lattice was rectangular Q ≈ 78, 54% or if

the lattice was pseudo-hexagonal build using the rectangular

lattice sample points Q ≈ 85, 74% disregarding two inner

pixels as in [4].

An equivalent quotient can be expressed for 3D as well:

Q = 36πV 2

S3 , where V is the volume and S is the surface of

the polyhedron. The 3D SBW lattice cell with the generation

vectors X = (1, 0, 0), Y = ( 12 , 1, 0) and Z = (0, 0, 1) has

the compactness factor of Q ≈ 52, 47%. Nonetheless, the

highest compactness factor known can be realized with the

Weaire-Phelan structure (Q ≈ 76, 5%) [5] but our structure

is simpler and has a slightly better quotient than that of

a cubic lattice cell with ∆Q ≈ 0, 11%. We can increase

the compactness factor even further up to Q ≈ 59, 99% if

we were to allow the Z axis generation vector to be Z =
(0, 0, 6

1+
√

(5)
) but as it is better to have rational sampling

points locations rather than real values we will remain at

our first variant.

It can be easily be shown that the 3D Delaunay triangu-

lation can be generated if we decompose an SBW cell into

six triangular prisms and each prism into three tetrahedrons.

Each tetrahedron point will be circumscribed by the same

sphere if it belongs to the same prism and the sphere will

contain no other point within.

III. PRACTICALITY OF USING SBW LATTICE

A new lattice system that rejects the common square

lattice must face first some serious considerations on which

one must ponder upon.

1) Data acquisition Hardware capable of sampling vol-

umetric data from the real world directly onto the

a hexagonal lattice are not generally available for

use. Therefore, data resampling on the standard cubic-

latticed volumetric is required before any processing

can be performed.

2) Indexing and Storage Before any processing, the

volumetric data must be indexed to be able to address

individual voxels from the SBW lattice. The voxel

form is a pseudo-hexagonal prism (rather than cubes)

being the Voronoi cell of the proposed lattice. Storing

Figure 1. 2D brick wall lattice

Figure 2. 3D solid brick wall lattice
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should be made also in hexagonal form to avoid

conversion every time data is accessed. The indexing

system should allow simple arithmetic functions to be

able to have random access on volumetric data.

3) Data Processing Volumetric data processing algo-

rithms must be redesigned or adapted to be able to

exploit the strengths of the new pseudo-hexagonal

lattice system, particularly the high node connectivity,

high compactness quotient and near equidistant voxel

nodes.

4) Visualization Nowadays, volumetric data visualization

methods are specialized for cubic lattices. Therefore

hexagonal 3D images must suffer another conversion

prior to the visualization so that it can benefit from

the display hardware features such as fast 3D texture

sampling. This conversion process depends on the in-

dexing method used: reversing the original conversion

process or possibly a convolution.

A. Data acquisition

As stated earlier, hardware based acquisition can be

unavailable but existing hardware systems can easily be

modified by shifting alternate scan-lines. Using the proposed

lattice, the modification can be cost-effective. Staunton [6]

designed an architecture capable of sampling hexagonal

images on the brick wall lattice, injecting a delay to alternate

lines; his work being extensible to 3D scanners as well. Inter-

estingly, hexagonal sensors are already being implemented

in medical imaging hardware [7] but the applications are

limited.

Software based resampling can be a more straightforward

alternative. To resample volumetric data for a SBW lattice,

first we have to apply a weighted average and a down-

sampling to halve the resolution on X and Y axes and then

we apply the half unit shift on alternate rows.

B. Indexing and Storage

Due to the nature of prismatic hexagonal lattices, the

points are not aligned in three orthogonal directions as for

cubic lattices. Because the hexagon is only 2D, we can use

only two skewed axes as in figure 1. Those axes are used in

literature by Snyder and Watson [8], [9].

For storage and indexing we can use a simple two-

dimensional array treating lattice cells in a zig-zag pattern,

row by row. With this method we can achive fast random

access to lattice cells.

Another interesting approach is a 7L layered indexing

system named HIP developed by Middleton in [10], [11].

Layer 0 is defined by a single hexagon from which the

whole lattice is generated. Layer 1 is simply made out of

the surrounding hexagons of Layer 0 laid down in counter-

clockwise order. Layer 2 is a Layer 1 tile surrounding Layer

1, and so on for each layer. It’s easy to see that there

are 7L hexagons in a layer L tile. Using HIP indexing

system it’s possible to uniquely index every hexagon in a tile

using an L-digit septenary numbers. The diagram in figure 3

demonstrates this. For volumetric data, this indexing system

can easily be extended by adding another number for the Z

axis and the lattice can be stored as a grayscale image.

Figure 3. HIP Indexing

IV. VOLUMETRIC DATA SEGMENTATION

As mentioned earlier, volumetric data processing algo-

rithms need to be redesigned in order to take full advantage

of the new lattice.

In this paper we present a volumetric segmentation tech-

nique modified to use the SBW lattice. The whole idea is

to create a 3D graph using the new lattice and extend the

segmentation algorithm presented in [4] to volumetric data.

But first of all we can apply a manual volumetric segmen-

tation using a transfer function to remove noise and to select

the region of interest by selecting the hysteresis threshold

values. We perform this using cubic splines on the alpha

channel and use the output data for the visualization module.

A. Transfer functions

Histograms are useful for analysing which ranges of

values are important in the data and show distribution of

data but omit spatial distribution of samples in the volume.

However, for smooth transitions a cubic spline can be used

which can be controlled by control points called knots.

A cubic spline is a spline constructed of piecewise third-

order polynomials Yi(t) = ai+bi ∗ t+ci ∗ t2+di ∗ t3, where

t ∈ [0, 1] and i = 0..n− 1. The cubic spline passes through

a set of (n+1) control points (y0, y1, ..., yn). The second
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derivative of each polynomial is commonly set to zero at

the endpoints, since this provides a boundary condition that

completes the system of (n-1) equations. This produces a so-

called natural cubic spline and leads to a simple tridiagonal

system which can be solved easily to give the coefficients

of the polynomials [12].























2 1
1 4 1

1 4 1
1 4 1

...
...

...
. . .

. . .
. . .

...

1 4 1
1 2























D = 3























y1 − y0
y2 − y0
y3 − y1

...

yn−1 − yn−3

yn − yn−2

yn − yn−1























where D is D = (D0, D1, · · · , Dn)
T and represent the

end points derivatives of Y (t).
We then apply these equations for each RGBA colour

channel, using in fact a 4D cubic spline transfer function.

For example, we have these 5 colour knots:

0.18 0.81 0.81 0

0.3 0.75 0.25 50

0.93 0.93 0.07 100

0.8 0.32 0.2 200

0.0 0.0 0.0 255

and 7 alpha knots:

0.0 0

0.0 40

0.2 60

0.05 63

0.0 80

0.9 82

1.0 255

Figure 4. 4D Cubic Spline Spline Transfer Function

The transfer function for the knots is depicted in figure

4. We can observe that we have separated alpha knots from

color knots so that we can have a separate control function

for opacity. Usually, the visualization algorithm, take the

Figure 5. Transfer function applied on volume data

intensity of the voxel as it’s density and use it as opacity.

With this, a pre-segmentation step is realized in order to

remove unwanted background noise. In figure 5 we can see

the rendering result after applying the transfer function on

the bonsai volume data set (made publicly available by the

Visible Human Project).

B. Segmentation on a Graph

We create a weighted undirected graph G = (V,E)
between every lattice cell as depicted in figure 6. The weight

is determined computing the distance between the cell’s

average intensities.

D =
1

14
|

14
∑

1

V1 −
14
∑

1

V2|

where V1 and V2 represent the two lattice cells and each

of them containing 14 points. Adjacent cells will share some

points, 4 or 7 if the neighbouring cells are on Z axis.

Having the 3D graph we then apply a modified threshold-

ed version of Kruskal’s algorithm to find a forest of min-

imum spanning trees. Each tree corresponds to a different

object in the segmentation. The algorithm is described in

Algorithm 1.

V. CONCLUSION AND FUTURE WORK

In this paper we present the advantages and disadvantages

of using the Solid Brick Wall lattice system to acquire, index,

store, process and visualize volumetric data in contrast to the

classical cubic lattice. We we have extended a hexagonal

graph-based image segmentation algorithm to the new 3D
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Figure 6. Lattice cell graph

Algorithm 1 Graph-based segmentation

Require: Graph G, Threshold T

Ensure: MinimumSpanningTree MST

L← 0
SL = {{h1}, ..., {h|V |}}
Sort E in order of increasing weight

for k = 1→ |E| do

Let ek = (hi, hj)
ti ← FINDSET (hi)
tj ← FINDSET (hj)
if ti 6= tj then

if weight(hi, hj) ≤ T then

UNION(ti, tj , S
L)

L = L+ 1
end if

end if

end for

lattice [4]. The algorithm extension to the three dimensional

domain is straightforward as no planarity condition is re-

quired for the graph in order the algorithms to work.

The segmentation is now semi-automatic as it depends

on the selected transfer function and on the fixed threshold.

Future work will include adaptive transfer functions based

on histograms and adaptive threshold based on the difference

between internal and external contrast at which we add

the average of color distances and the standard deviation

[13]. We are targeting to develop an automatic graph-based

segmentation scheme for volumetric data and we hope to

have the same performances as in 2D.

To avoid transforming the volume back to the cubic lattice

to perform rendering we will consider using this lattice in a

volume global illumination technique as in [14].

This paper represents research at an early stage and so

experimental results will be provided in a future work.
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