
Abstract—We address in this paper the parallelization of a
recursive algorithm for triangular matrix inversion (TMI)
based on the ‘Divide and Conquer’ (D&C) paradigm. A series
of different versions of an original sequential algorithm are
first presented. A theoretical performance study permits to es-
tablish an accurate comparison between the designed algo-
rithms. Afterwards, we develop an optimal parallel communi-
cation-free algorithm targeting a heterogeneous environment
involving processors of different speeds. For this purpose, we
use a non equitable and incomplete version of the D&C para-
digm consisting in recursively decomposing the original TMI
problem in two subproblems of non equal sizes, then decompos-
ing only one subproblem and so on. The theoretical study is
validated by a series of experiments achieved on two platforms,
namely an 8-core shared memory machine and a distributed
memory cluster of 16 nodes. The obtained results permit to il-
lustrate the interest of the contribution.

Keywords—communication free; divide and conquer;
heterogeneous platform; parallel algorithm; recursive algorithm;
triangular matrix inversion

I. INTRODUCTION

RIANGULAR matrix inversion (TMI) is a basic kernel
in large and intensive scientific applications. TMI is

commonly performed when calculating the explicit inverse of
a (dense) matrix from its LU factorization. Given its cubic
complexity i.e. O(n3) in terms of the matrix size (n), several
works addressed the design of efficient parallel algorithms
for solving this problem. Apart the standard TMI algorithm
consisting in solving n linear triangular systems of size n, n–
1,…,1 [1], a recursive algorithm, of same complexity, has
been proposed by Heller in 1973 [2][3][4]. It uses the ‘Di-
vide and Conquer’ (D&C) paradigm and consists in succes-
sive decompositions of the original matrix. To our knowl-
edge, few original works have been devoted to the paral-
lelization of this algorithm [5][6][7][8][9]. Our first objective
here is the design of a series of sequential algorithms based
on Heller’s algorithm. Our second and main objective is the
design of efficient parallel algorithms based on the former
ones. The efficiency we target is in fact two-fold i.e. cost-op-
timality as well as communication free.

T

We have proposed in [10] a particular study on the
parallelization of a divide and conquer algorithm for p
homogeneous processors, ending up to a cost optimal parallel
communication free algorithm. In this paper, we are
interested in the generalization of this study to an
heterogeneous platform.

The remainder of the paper is organized as follows. In

section 2, we detail a theoretical study on diverse sequential

versions of Heller’s algorithm. Section 3 is devoted to the

parallelization of the former designed algorithms. Finally, we

present in section 4 an experimental study achieved on two

target parallel machines i.e. an 8-core shared memory

machine and a distributed memory cluster of 16 nodes.

II.SEQUENTIAL RECURSIVE TMI ALGORITHMS

We first recall that the well known standard algorithm
(SA) for inverting, say a lower triangular matrix [1], say A
of size n, consists in solving n triangular systems
AB(i) = e(i) of size n–i+1 (i=1...n) where B(i) (resp. e(j)) is
the i-th column of the inverse matrix B (resp. identity
matrix). The complexity of (SA) is as follows [1][6][7]:

 CSA=n3/3+n2/2+n/6. (0)

I. Heller’s Recursive Algorithm (HRA)

Using the Divide and Conquer (D&C) paradigm, Heller
proposed in 1973 a recursive algorithm [2][3][4] for TMI.
The main idea he used consists in decomposing matrix A as
well as its inverse B (both of size n) into 3 submatrices of
size n/2 (see Fig 1, A being assumed lower triangular). The
procedure is recursively repeated until reaching submatrices
of size 1. This original decomposition will be called
henceforth complete equitable decomposition (CED). Here
‘complete’ means that the binary decomposition is applied
to each triangular submatrix and ‘equitable’ means that, at
each decomposition level, the submatrices are of same size.

We hence deduce:

Β1=
1

1A−
, Β3=

1
3A−

, Β2= − Β3Α2Β1.
 (2)

Therefore, inverting matrix A of size n consists in
inverting 2 submatrices of size n/2 followed by two matrix
products (triangular by dense) of size n/2. In [6][7] Nasri
proposed a slightly modified version of the above algorithm.

Indeed, since we have B2= – B3A2 B1= – 1
12

1
3 AAA −− , let

Q=
2

1
3 AA− . From (2), we deduce:

Α3Q=Α2 ; Β2Α1= −Q. (3)

Parallel Communication-Free Algorithm for Triangular Matrix
Inversion on Heterogenoues Platform

Ryma Mahfoudhi, Zaher Mahjoub
University of Tunis El Manar, Faculty of Sciences of

Tunis, Manar II 2092, Tunis, Tunisia
Email: rimahayet@yahoo.fr, zaher.mahjoub@fst.rnu.tn

Wahid Nasri
Higher School of Sciences and Techniques of Tunis

(ESSTT), Montfleury-Tunis 1008, Tunisia
Email: wahid.nasri@ensi.rnu.tn

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 553–560

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 553

Hence, instead of two matrix products needed to

compute B2, we have to solve 2 matrix systems of size n/2

i.e. A3Q=A2 and (A1)
T
(B2)

T
=–Q

T
. The interest of such

version is that neither B1 (=
1

1A) nor B3 (= 1
3A) are needed

to compute B2. The impact of this property will be seen

when parallelizing the algorithm (see section 3). We

precise that both versions are of n3/3+O(n2) complexity

[6][7].

Now, for sake of simplicity, we assume that n=2
q

(q≥1).
Let RCA_0.5*_k be the (Recursive Complete) Algorithm

designed by recursively applying the complete equitable

decomposition (CED) until reaching a threshold size n/2
k

(1≤k≤q), the factor 0.5 meaning here that at each

decomposition the matrix size is divided by 2 (i.e.

multiplied by 0.5). The complexity of RCA_0.5*_k is as

follows [6][7]:
CRCA_0.5*_k=n

3
/3+n

2
/2

k+1
+n/6.

B. Variations of the D&C Paradigm

The standard D&C paradigm [4][11] is based on the CED

as previously seen. As a matter of fact, we may derive other

versions based on the notions of incomplete and non

equitable decompositions as depicted in Fig 2. We precise

that a decomposition is called non equitable (NE) when a

given problem is decomposed into subproblems of different

sizes, whereas ‘incomplete ’designates the fact that the

decomposition is not applied on all the derived

subproblems.

Since the recursive TMI algorithm is binary, we’ll

associate to the non equitable decomposition (NED) a set of

decomposition factors (i.e. ratios between the size of a

subproblem and the size of its father problem) λi ≠ ½,

i=1…k. Remark that λi=½, corresponds to an equitable

decomposition (ED) done at level i. The incomplete

decomposition is achieved when, at each decomposition

level, only one subproblem is decomposed. Furthermore,

the decomposition is called static (resp. dynamic) when λi,

i=1…k is constant (resp. varies) at each decomposition level

i. We summarize in Table I, the complexities of the

standard algorithm SA, the recursive algorithm with

complete dynamic non equitable decomposition

RCA_λ1…k_k (denoted RCA_λ*_k when λi=λ : i=1…k) and

the recursive algorithm with incomplete dynamic non

equitable decomposition RIA_λ1…k_k (denoted RIA_λ*_k
when λi=λ : i=1…k).

Fig 1. Matrix Decomposition in Heller’s algorithm

Fig 2. Versions of the D&C paradigm

Remark that RCA (resp. RIA) may be represented by a

complete (resp. an incomplete) binary tree as depicted in

Fig 3.

Fig 3. Recursive binary trees for algorithms RCA and RIA

From Table II, we may deduce the following: We always have an n
3
/3+O(n

2
) complexity. The recursive versions are (slightly) better than the

standard one as far as the O(n
2
) term is concerned. The complete decomposition version is slightly better

that the incomplete one as far as the O(n
2
) term is

concerned. The complexities of the recursive versions decrease

when k increases as far as the O(n
2
) term is concerned,

the best case occurring for k=q=logn i.e. we obtain

n
3
/3+2n/3 for RCA_0.5*_q and n

3
/3+n

2
/6+n/6+1/3 for

RIA_0.5*_q.

By sorting the algorithms in decreasing performances, we

get:

 RCA_0.5*_k (Equitable Complete Decomposition) RCA_λ1…k_k (Dynamic Non Equitable Complete

Decomposition) RIA_0.5*_k (Equitable Incomplete Decomposition) RIA_λ1…k_k (Dynamic Non Equitable Incomplete

Decomposition) SA

554 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

TABLE I. COMPLEXITIES OF THE DIFFERENT ALGORITHM VERSIONS

We detail further in section 4, an experimental study

validating the previous study and permitting to determine

for each matrix size the best sequential algorithm.

III. PARALLELIZATION OF THE RECURSIVE TMI ALGORITHM

A. Brief State-of-the Art

The parallelization of the standard algorithm (SA) has

been largely studied [12][13]. As to the recursive one, its

parallelization interested fewer researchers to our

knowledge. We may particularly cite [6][7] where Nasri

studied TMI in both homogeneous and heterogeneous

environments to design cost optimal parallel algorithms i.e.

whose efficiency is asymptotically equal to 1. This

performance could be reached thanks to a recursive task

segmentation fitted to the number of available processors,

who are recursively decomposed then grouped. The aim is

to guarantee a perfect load balancing. Experimentations

achieved only on two homogeneous multiprocessors show

the practical efficiency of the approach.

In [8], the parallelization of the original Heller’s

algorithm is studied in a shared memory environment for

p≤n processors and the designed algorithms are sub-

optimal. Recently, Keqin Li [9] presented, in a survey

paper, a deep theoretical study and gave precise optimal

complexity results as well as a bounding interval for the

minimal number of processors required to reach the optimal

parallel complexity. However, the practical performances

lack since no experimental study is achieved.

To conclude, the main remark one may make here is the

fact that even if the designed algorithms known so far are

optimal or (sub) cost-optimal, they all require inter-

processor communications which may generate important

overheads. On top of that, no original work has been

devoted to the experimental study on heterogeneous

platforms. Therefore, our contribution is to intend to fill this

gap.

B. Machine model

We assume that the target multiprocessor system we use

consists of a collection of ,p ,heterogeneous processors,

denoted Pi (i = 1,…,p), each provided with a local memory,

a cycle time ti (i = 1,…,p) and connected by an

homogeneous interconnection network [6]. Moreover, we

assume that the speed of each processor (vi for Pi) is known

and does not vary during the program execution.

C. Parallel Algorithm

As previously seen, the designed algorithm in the

(dynamic) incomplete decomposition case denoted

RIA_λ1…k_k, requires much less decompositions steps than

its homologous RCA_λ1…k_k in the complete case. We

have shown that RIA has a much better degree of

parallelism than RCA [10]. Therefore the study is limited to

the incomplete decomposition case.

1)Description of the heterogeneous ARI algorithm for

p=2

 We start our study by describing the case where p=2

processors are available. So, we assume that we have at

one’s disposal two processors P1 and P2 with speeds v1 and

v2 respectively (v1v2). We note v = v1 + v2 and ρ=v1/v2. Let

us first consider the RTMI algorithm with only one level

decomposition, namely algorithm RCA_λ_1. We define the
3 following tasks:

T1: B1= ,A 1
1
 T2: B3= ,A 1

3
 T3: {A3Q=A2, T

2
T
1 BA = –Q

T
}

It is easy to notice that the 3 tasks are independent.

However, if we consider the original Heller’s algorithm

consisting in two matrix inversions followed by two matrix

products and adopt a similar task decomposition i.e. T1:

B1= ,A 1
1
 T2: B3= ,A 1

3
 T3: B2= – B3A2B1, we’ll have the

following precedence relations: T1→T3, T2→T3. i.e. T1 and

T2 are independent but must be finished before T3 can

begin. Therefore the modified version exhibits a higher

parallelism (see Fig 4).

Let T23 be the (supertask) consisting in grouping T2 and

T3 i.e. T23=T2T3. Remark that now, any task corresponds

either to a matrix inversion or to an inversion followed by

Algorithm
RCA_λ1…k_k RIA_λ1…k_k

Complexity
6

n
)1i2i2(

2

n

3

n
k

1i

2
23 6

n
)1(

2

n

3

n
k

1i

2
k

1j

k

1ji

ij

2

i

23

Best case

(ED: λi =1/2) 6

n

2

n

3

n
1k

23 6

n

2

1
1

6

n

3

n
12k

23

k=q
3

n2

3

n 3
3

1

6

n

6

n

3

n
23

RYMA MAHFOUDHI, ZAHER MAHJOUB, WAHID NASRI: PARALLEL COMMUNICATION-FREE ALGORITHM 555

two matrix system resolution. The size of A1 (denoted n1)

and that of A2 (denoted n2) are not necessarily n/2 (but in

general different) since the two processors have not the

same speed. In fact, n1 and n2 are chosen in terms of v1 and

v2 in order to guarantee the optimality of the algorithm (see

further). Therefore, the matrix A3 is rectangular.

Fig 4. Precedence graph corresponding to the modified version

Here, we can assign T1 to P1 and T23 to P2. In order to

guarantee a perfect load balancing, we have to

have Cost(T1) = Cost(T23). This leads (after equation

solving) to 3 1 .

It should be noted that the value of the ratio ρ and the size
of the matrix A are two factors that must be taken into

account to determine whether the use of the slower

processor is inefficient and hence decide to exclude it.

The calculation gives: 3/)/)1(1/(/)1(
33

nnnnn
2)Generalization to p processors

Let us recall that the target multiprocessor machine is

composed of p heterogeneous processors, denoted P1, P2, …,

Pp, with speeds v1 v2 … vp respectively. Let s= vi

(i=1..p).

 We detail now how to construct the optimal algorithm

when we dispose of p heterogeneous processors. The

principle consists in generalizing the approach developed in

section 3 (p=2) by recursively decomposing the p processors

into two sub-sets (each one corresponds to a virtual

processor) as follows: let L={P1,…,Pp}= L1L2. L1 involves

p1 processors (and corresponds to a virtual processor Ƥ1)

and L2 involves p–p1=p2 processors (and corresponds to a

virtual processor Ƥ2). Thus, we end up in the case already

seen of two processors Ƥ1 (whose speed is equal to the sum

of the speeds of the processors of L1) and Ƥ 2 (whose speed

is equal to the sum of speeds of the processors of L2). L1 and

L2 will then be decomposed each into two sub-sets and so

on. We therefore generate a recursive binary decomposition

tree.

The problem of the construction of this « optimal »

decomposition (in fact partition) is known as the Set

Partition Problem « SPP » [14]. It has been proved that the

SPP is NP-complete. In addition, this decomposition

generates communications (Fig 5). As an illustration, we

present below (Fig 7) the decomposition for p=4,

V={10,7,5,3}, s=vi=18, Ƥ1={P1,P4}, s1=13, Ƥ2={P2,P3},

s2=12, ρ=13/12=1.083. We first calculate the appropriate λ
to ensure the load balancing by solving the following

equation: cost (T1) = ρ (cost (T23)). The next step is to share

T1 (resp. T23) between processors Ƥ1 (resp. Ƥ2). This

division does not lead to communication between processors

P1 and P4 (constituting Ƥ1). However, it will lead to

communications between processors P2 and P3 (constituting

Ƥ2.). We add that the symmetric allocation i.e. which assigns

T1 (resp. T23) to Ƥ2 (resp. Ƥ1) will generate communication

between P1 and P4 but not between P2 and P3.

Fig 5. Communications generated by the equitable decomposition

The optimal solution consists in a recursive

decomposition of the p processors into two subsets L1 and

L2 such that L1 contains a single processor, i.e. the faster

(P1) and L2 contains the remaining p–1 processors.

Fig 6. Recursive binary tree corresponding to a non equitable

decomposition

T1 T2

T23

T3

Ƥ1

Ƥ2

P4

P1

 P2 and P3

Communication!!

Ƥ2

Ƥ1

P3

P2

P1 and P4

Communication!!

556 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Thus, we end up in the case already seen of two

processors. After this first step, L2 (of cardinality p–1) will

in turn be decomposed into two subsets and so on until

leading to singleton subsets while L1 is a singleton for each

decomposition (see Fig 6).

To be consistent, we will assume that the speed of Ƥ1,

denoted v(Ƥ1) is always greater than or equal to the speed of

Ƥ2, denoted v(Ƥ2). In other words, the virtual processor Ƥ1

which may consist of one or more processors will always be

the fastest processor. Determining the values of λ reduces to

solving cubic equations. It should be noted that in order to

guarantee no communication at each level of decomposition,

task T23 is always assigned to one processor while task T1 is

assigned to p–1 processors at level 1, to p–2 processors at 2,

..., and to 1 processor at level p–1. The tasks that are

generated will be denoted
1p

1
1

1 T...T

and
1

23

1

23...
pTT .

As an illustration, we resume a previous example where p

= 4 and V = {10,7,5,3} (see Fig 7).

Step 1. Ƥ2 = P1 : Speed 10, Ƥ1={P2,P3,P4} : Speed 15,

ρ=15/10=1.5
1

1T (resp.
1

23T) is assigned to Ƥ1 (resp. Ƥ2 i.e. P1) with

cost (
1

1T) = ρ cost (
1

23T)

Step 2. Ƥ2 =P2 : Speed 7 et Ƥ1={P3,P4} : Speed 8,

ρ=8/7=1.14
2

1T (resp.
2

234T) is assigned to P1 (resp. Ƥ2 i.e. P2) with

cost (
2

1T) = ρ cost (
2

234T)

Step 3. Ƥ2 = P4 : Speed 3 et Ƥ1=P3 : Speed 5,

ρ=5/3=1.67
3.

1T (resp.
3

23T) is assigned to. P4 (resp. P3) with

cost (
3

234T) =ρ (cost (
3.

1T)

Fig 7. Processor decomposition in the example

In order to validate our theoretical contribution covering

both the sequential and the parallel cases, we present in the

next section an experimental study involving two parts. The

first (resp. second) deals with the sequential (resp. parallel)

algorithms.

IV. EXPERIMENTAL STUDIES

A. Sequential Algorithms

We discuss in this section the variations of the execution

time in terms of the matrix size n. For this purpose, n was

chosen in the range [64 6000], the input matrices involving

real floating point elements randomly generated. The target

machine is a 3 GHZ Fujitsu Siemens PC. C language under

Linux OS was used. Algorithms SA, RCA_λ1…k_k and

RIA_λ1…k_k (for different values of k) were implemented.

Remarks.

 As a first remark, we verified that for all the algorithms,

the execution time (denoted ext) follows a cubic relation in

terms of n (see Fig 8). On the other hand, the

decomposition factor λ as well as the recursivity

(decomposition) level k have important impacts on the

execution time. The execution time decreases when k grows until reaching

a threshold k*(n) which varies with n. For fixed k, the time ratio i.e. ext obtained for k divided

by ext obtained for any k’ such that k<k’≤k*(n) increases

with n. Hence better performances are reached for matrices

of large sizes.

In Table II, we give for some values of n, the values of

both k*, n*=n/2
k*

(the corresponding size) and the time

ratio ext(RCA_0.5_q)/ext(RCA_0.5*_k*). We deduce that

the threshold size n*=n/2
k*

from which RCA becomes more

efficient is around 32. Decomposition factor λ. We remark (see Fig 9) that, for

fixed n and k, the execution time (ext) is minimum for

λ=0.5 thus confirming our theoretical complexity analysis

(see section 2.2). In fact, the variations of ext in terms of λ
(for fixed n and k) are quadratic as precised in Table I. Let

us add that the largest value of ext (in terms of λ) is at most

equal to 1.15 (resp. 1.05) times its lowest one obtained for

n=1024 (resp. 6000). Hence this ratio decreases when n

increases and seems to converge to 1 for very large values

of n. For (the dynamic) algorithms RCA_λ1…k_k where a

different decomposition ratio λi is chosen at each

decomposition level i (=1…k), quite similar results were

obtained. The same results occur for RIA_λ*_k and
RCA_λ*_k as well for RIA_λ1…k_k and RCA_λ1…k_k.

RYMA MAHFOUDHI, ZAHER MAHJOUB, WAHID NASRI: PARALLEL COMMUNICATION-FREE ALGORITHM 557

TABLE II. VARIATIONS OF THE RATIO, K* AND N* IN TERMS OF MATRIX SIZE

N 400 512 800 1024 1600 2048 3200 4096 5000 6000

Rati

o
1.14 1.26 1.34 1.41 1.46 1.56 1.62 1.73 2.02 2.26

k* 3 4 4 5 5 6 6 7 7 7

n* 50 32 50 32 50 32 50 32 36 49

Fig 8. Execution time in terms of the decomposition factor λ for (static)

RCA_λ*_k

Fig 9. Execution time ext in terms of matrix size n

B. Parallel Algorithms

Two series of experiments were achieved. The first was

done on a shared memory environment i.e. a Dell T5400 2.5

GHz quad core biprocessor. In order to have a flexible range

of different speeds, we used a technique of changing clock

frequencies of processors on Linux [15][16]. The second

targeted a distributed platform constituted by 16 node cluster

connected by heterogeneous network. C, OpenMp [17][18]

and MPI [19][20] under Ubuntu 9.04 OS were used.

1)First Platform: Shared Memory Parallel Machine: We

defined three scenarios with heterogeneous characteristics

(frequencies are imposed) explained in Table III below.

TABLE III. SCENARIOS OF THE SHARED MEMORY ENVIRONMENT

Scenario 1 Scenario 2 Scenario 3

Core 1 2.5 2.5 2.5

Core 2 2.5 2.5 2.5

Core 3 2.5 2.5 2.0

Core 4 2.5 2.5 2.0

Core 5 1.7 1.2 1.7

Core 6 1.7 1.2 1.7

Core 7 1.7 1.2 1.2

Core 8 1.7 1.2 1.2

Virtual Global Speed

(vgs)
16.8 14.8 14.8

The performance evaluation consists in measuring the

cost of the parallel algorithm ℂp=(
p

1i

iv)Tp . We then

deduce the corresponding efficiency, denoted Ep=W/ℂp.

Remark that for each n and p, successive runs were achieved

and the mean run time is chosen. Notice that vi corresponds

to the speed of Pi, Tp is the execution times of the parallel

algorithm and W is the execution time of the sequential

algorithm running on a processor with speed 1 (using the

same technique of changing frequency explained above).

Fig 10. Efficiencies for the different scenarios in terms of matrix size n –

Shared memory case

558 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

The analysis of the results confirming the theoretical

study (see Fig 10), leads to the following remarks. For fixed scenario, Ep increases with n reaching 97% of the

optimal value i.e.100%. For fixed n, the efficiencies of the three scenarios are very

similar. The scalability of our algorithm is good for this type of

architecture.

2)Second Platform: Distributed Memory Cluster: A

preliminary work was necessary before the implementation

of our algorithm. It is a measure of the real performance of

each processor used (see Fig 11). Table IIIV reports the

relative speeds of the heterogeneous processors in the cluster

(We measure their relative speed with the core computation

of the algorithm). Note that the relative speed does not

depend on the size of problem for the wide range of matrix

sizes used in our experiments [21].

TABLE IV. CLUSTER FEATURES

We defined six scenarios with heterogeneous

characteristics depicted in Table V below.

TABLE V. SCENARIOS OF THE DISTRIBUTED PLATFORM

C1 C2 C3

Virtual

global

speed (vgs)

Processors’

number

Scenario 1 5 5 6 35 16

Scenario 2 5 5 0 20 10

Scenario 3 5 0 6 20 11

Scenario 4 0 5 6 30 11

Scenario 5 1 1 1 6.5 3

Scenario 6 2 2 2 13 6

As previously done, the efficiency E(p,n) is depicted (see

Fig 12) for different scenarios. The analysis of the results

leads to the following remarks. For fixed scenario, Ep increases with n reaching 93% of the

optimal value i.e.100%.

Fig 11. Cluster schema

 For fixed n, the efficiencies of the six scenarios are very

similar. The scalability of our algorithm is good for this type of

architecture.

Let us precise that an important performance criterion for

a parallel algorithm is its scalability on a target architecture

i.e. its ability to achieve performance proportional to the

number of processors [19]. Our algorithm is indeed scalable

since we obtained efficiencies around 95% and increasing

with the number of processors as well as the matrix size.

Nodes

C
lu

st
er

C1: 6

Nodes

RAM 1 Go

Frequency
2.5

GHz

Relative speed 2.21

C2: 5

Nodes

RAM 1 Go

Frequency 3 GHz

Relative speed 3.39

C3: 5

Nodes

RAM 512 Mo

Frequency 1 GHz

Relative speed 1

C
1

C
2

C3

G
ig

a
b

it
 E

th
e
r
n

e
t

n
e
tw

o
r
k

RYMA MAHFOUDHI, ZAHER MAHJOUB, WAHID NASRI: PARALLEL COMMUNICATION-FREE ALGORITHM 559

Fig 12. Efficiencies for the different scenarios in terms of matrix size n –

Distributed memory case

III. CONCLUSION

We addressed in this paper the parallelization of an
important kernel in scientific computing, namely triangular
matrix inversion. Choosing a modified version of the
recursive algorithm of Heller based on the ‘Divide and
Conquer’ (D&C) paradigm, we made use of original
versions of the latter in order to design optimal parallel
communication-free algorithms for heterogeneous
processors. The theoretical study was validated by a series
of experiments achieved on two platforms: a shared memory
one constituted by 8 cores and a distributed memory one
involving 16 nodes. The results we obtained were interesting
since we reached about 95% of the optimal speed-up and
efficiency values for large matrix sizes. Furthermore, since
we have shown that our algorithm is scalable, it may easily
be adapted to larger parallel environ-ments, thus delivering
high performances.
This leads us to precise some attracting perspectives we
intend to study in the future. We may particularly cite the
following points.

• Achieve an experimental study on larger platforms

involving a higher number of (heterogeneous) processors.

• Achieve an experimental study on heterogeneous

multicore CPU/GPU systems.

• Apply our non equitable and incomplete D&C

approach on other algorithms in order to design optimal
parallel algorithms where communications vanish or at least
are minimised.

REFERENCES

[1] A. Quarteroni, R. Sacco and F. Saleri, “Méthodes numériques.
Algorithmes, analyse et applications,” Springer, Milano, 2007.

[2] D. Heller, “A survey of parallel algorithms in numerical linear algebra,
” SIAM Review 20, pp. 740–777, 1978.

[3] J. J. Modi, “Parallel Algorithms and Matrix Computation,” Oxford
Univ. Press, Oxford, 1988.

[4] J. JáJá, An Introduction to Parallel Algorithms. Addison–Wesley,
Reading, 1992.

[5] A. Schikarski, D.Wagner, “Efficient parallel matrix inversion on
interconnection networks,” Journal of Parallel and Distributed
Computing 34, pp. 196–201, 1996.

[6] W. Nasri, Z. Mahjoub and D. Trystram, “Computing the inverse of a
triangular matrix on heterogeneous clusters,” in Algorithms and Tools
for Parallel Computing on Heterogeneous Clusters, F. Desprez and al.
ed., Nova Sc. Publ, pp. 67–78, 2007.

[7] W. Nasri, and Z. Mahjoub, “Design and implementation of a general
parallel Divide and Conquer algorithm for triangular matrix
inversion,” International Journal of Parallel and Distributed Systems
and Networks 5(1), pp. 35–42, 2002.

[8] L. Karlsson, “Computing explicit matrix inverses by recursion,” MS
thesis, Umea University, Department of Computing Science, Sweden,
2006.

[9] L. Keqin, “Fast and highly scalable parallel computations for
fundamental matrix problems on distributed memory systems,” The
Journal of Supercomputing, http://www.springerlink.com/content/
x03424q12666w3t4/fulltext.pdf, 2009.

[10] R. Mahfoudhi, Z. Mahjoub, and W. Nasri, “Une Nouvelle Méthode
de Parallélisation Optimale pour l'Inversion de Matrice Triangulaire,”
Renpar’20 ; Saint Malo, 2011.

[11] M. Gengler, S. Ubéda and F. Desprez, Initiation au parallélisme:
concepts, architectures et algorithmes. Masson, Paris, 1996.

[12] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker and R. C.
Whaley, “A proposal for a set of parallel basic linear algebra
subprograms,” TR CS– pp. 95–292, Computer Science Dept.
University of Tennesse, Knoxville, TN, 1995.

[13] M. Marrakchi, “Conception et analyse d’ordonnancements efficaces
pour algorithmes parallèles d’algèbre linéaire,” Doctoral thesis,
Faculty of Sciences of Tunis, 2001.

[14] N. Karmarkar, R. M. Karp, G.S. Luekerand A. M. Odlyzko,
“Probabilistic Analysis of Optimum Partitioning,” J. Appl. Prob. 23,
pp. 626–645, 1986.

[15] Ubuntu Geek, http://www.ubuntugeek.com/howto–change–cpu–
frequency–scaling–in–ubuntu.html (accessed Jan. 20, 2010).

[16] Ubuntu Guide, http://ubuntuguide.net/change–and–monitor–cpu–
frequency–scaling–in–ubuntu–11–04–with–indicator–cpufreq
(accessed Jan. 20, 2010).

[17] J. Chergui, “OpenMP : Parallélisation multitâches pour machines à
mémoire partagée,” Course, Institut du développement et des
ressources en informatique scientifique, France, 2006.

[18] OpenMP, http://www.openmp.org (accessed Feb. 25, 2010).
[19] M. Creel and W. L. Goffe, “Multi–core CPUs, Clusters, and grid

computing,” Kluwer Academic Publishers, Dordrecht, 2007.
[20] Message Passing Interface Forum, http://www.mpi–forum.org
[21] A. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction to

parallel computing: design and analysis of algorithms. Addison–
Wesley, Reading, 1994.

560 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

