
Abstract—We address in this paper the parallelization of a 
recursive  algorithm  for  triangular  matrix  inversion  (TMI) 
based on the ‘Divide and Conquer’ (D&C) paradigm. A series 
of  different  versions  of  an  original  sequential  algorithm are 
first presented. A theoretical performance study permits to es-
tablish  an  accurate  comparison  between  the  designed  algo-
rithms. Afterwards, we develop an optimal parallel communi-
cation-free  algorithm targeting  a  heterogeneous  environment 
involving processors of different speeds.  For this purpose, we 
use a non equitable and incomplete version of the D&C para-
digm consisting in recursively  decomposing the original TMI 
problem in two subproblems of non equal sizes, then decompos-
ing only one subproblem and so on. The theoretical  study is 
validated by a series of experiments achieved on two platforms, 
namely an  8-core shared memory machine and a distributed 
memory cluster of 16 nodes. The obtained results permit to il-
lustrate the interest of the contribution.

Keywords—communication  free;  divide  and  conquer;  
heterogeneous platform; parallel algorithm; recursive algorithm;  
triangular matrix inversion

I. INTRODUCTION

RIANGULAR matrix inversion (TMI) is a basic kernel 
in  large  and  intensive  scientific  applications.  TMI  is 

commonly performed when calculating the explicit inverse of 
a (dense) matrix from its LU factorization. Given its cubic 
complexity i.e. O(n3) in terms of the matrix size (n), several 
works addressed the design of efficient  parallel  algorithms 
for solving this problem. Apart the standard TMI algorithm 
consisting in solving n linear triangular systems of size n, n–
1,…,1 [1],  a  recursive  algorithm, of  same complexity,  has 
been proposed by Heller in 1973 [2][3][4]. It uses the ‘Di-
vide and Conquer’ (D&C) paradigm and consists in succes-
sive decompositions of  the original  matrix. To our knowl-
edge,  few original  works  have been  devoted  to  the  paral-
lelization of this algorithm [5][6][7][8][9]. Our first objective 
here is the design of a series of sequential algorithms based 
on Heller’s algorithm. Our second and main objective is the 
design of efficient parallel  algorithms based on the former 
ones. The efficiency we target is in fact two-fold i.e. cost-op-
timality as well as communication free. 

T

We  have  proposed  in  [10]  a  particular  study  on  the 
parallelization  of  a  divide  and  conquer  algorithm  for  p 
homogeneous processors, ending up to a cost optimal parallel 
communication  free  algorithm.  In  this  paper,  we  are 
interested  in  the  generalization  of  this  study  to  an 
heterogeneous platform.

The  remainder  of  the  paper  is  organized  as  follows.  In 

section 2, we detail a theoretical study on diverse sequential 

versions of Heller’s  algorithm. Section 3 is devoted to the 

parallelization of the former designed algorithms. Finally, we 

present in section 4 an experimental study achieved on two 

target  parallel  machines  i.e.  an  8-core  shared  memory 

machine and a distributed memory cluster of 16 nodes. 

II.SEQUENTIAL RECURSIVE TMI ALGORITHMS

We first  recall  that  the  well  known standard  algorithm 
(SA) for inverting, say a lower  triangular matrix [1], say A 
of  size  n,   consists  in  solving n triangular  systems 
AB(i) = e(i) of size n–i+1 (i=1...n) where B(i) (resp. e(j)) is 
the  i-th  column  of  the  inverse  matrix  B  (resp.  identity 
matrix). The complexity of (SA) is as follows [1][6][7]:  

                            CSA=n3/3+n2/2+n/6.                        (0)

I. Heller’s Recursive Algorithm (HRA)

Using the Divide  and  Conquer  (D&C) paradigm,  Heller 
proposed in 1973 a recursive algorithm [2][3][4] for TMI. 
The main idea he used consists in decomposing matrix A as 
well as its inverse B (both of size  n) into 3 submatrices of 
size n/2 (see Fig 1, A being assumed lower triangular). The 
procedure is recursively repeated until reaching submatrices 
of  size  1.  This  original  decomposition  will  be  called 
henceforth complete equitable decomposition (CED). Here 
‘complete’ means that the binary decomposition is applied 
to each triangular submatrix and ‘equitable’ means that, at 
each decomposition level, the submatrices are of same size.  

We hence deduce: 

Β1=
1

1A−
,   Β3=

1
3A−

, Β2= − Β3Α2Β1.
  (2)

Therefore,  inverting  matrix  A  of  size  n consists  in 
inverting 2 submatrices of size n/2 followed by two matrix 
products (triangular by dense)  of size  n/2.  In  [6][7] Nasri 
proposed a slightly modified version of the above algorithm. 

Indeed, since we have B2= – B3A2 B1= – 1
12

1
3 AAA −− , let 

Q=
2

1
3 AA− . From (2), we deduce:        

Α3Q=Α2   ;   Β2Α1= −Q. (3)
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Hence, instead of two matrix products needed to 

compute B2, we have to solve 2 matrix systems of size n/2

i.e. A3Q=A2 and (A1)
T
(B2)

T
=–Q

T
. The interest of such 

version is that neither B1 (=
1

1A  ) nor B3 (= 1
3A  ) are needed 

to compute B2. The impact of this property will be seen 

when parallelizing the algorithm (see section 3).  We 

precise that both versions are of n3/3+O(n2) complexity 

[6][7]. 

Now, for sake of simplicity, we assume that n=2
q

(q≥1). 
Let RCA_0.5*_k be the (Recursive Complete) Algorithm 

designed by  recursively applying the complete equitable 

decomposition (CED) until reaching a threshold size n/2
k

(1≤k≤q), the factor 0.5 meaning here that at each 

decomposition the matrix size is divided by 2 (i.e. 

multiplied by 0.5). The complexity of  RCA_0.5*_k is as 

follows [6][7]:  
CRCA_0.5*_k=n

3
/3+n

2
/2

k+1
+n/6. 

B. Variations of the D&C Paradigm

The standard D&C paradigm [4][11] is based on the CED 

as previously seen. As a matter of fact, we may derive other 

versions based on the notions of incomplete and non 

equitable decompositions as depicted in Fig 2. We precise 

that a decomposition is called non equitable (NE) when a 

given problem is decomposed into subproblems of different 

sizes, whereas ‘incomplete ’designates the fact that the 

decomposition is not applied on all the derived 

subproblems. 

Since the recursive TMI algorithm is binary, we’ll 

associate to the non equitable decomposition (NED) a set of 

decomposition factors (i.e. ratios between the size of a 

subproblem and the size of its father problem) λi ≠ ½, 

i=1…k. Remark that λi=½, corresponds to an equitable 

decomposition (ED) done at level i. The incomplete 

decomposition is achieved when, at each decomposition 

level, only one subproblem is decomposed. Furthermore, 

the decomposition is called static (resp. dynamic) when λi, 

i=1…k is constant (resp. varies) at each decomposition level 

i.  We summarize in Table I, the complexities of the 

standard algorithm SA, the recursive algorithm with 

complete dynamic non equitable decomposition 

RCA_λ1…k_k (denoted RCA_λ*_k when λi=λ : i=1…k) and 

the recursive algorithm with incomplete dynamic non 

equitable decomposition RIA_λ1…k_k (denoted RIA_λ*_k 
when λi=λ : i=1…k).       

Fig 1. Matrix Decomposition in Heller’s algorithm

Fig 2. Versions of the D&C paradigm

Remark that RCA (resp. RIA) may be represented by a 

complete (resp. an incomplete) binary tree as depicted in 

Fig 3.    

Fig 3. Recursive binary trees for algorithms RCA and RIA

From Table II, we may deduce the following: We always have an n
3
/3+O(n

2
) complexity.  The recursive versions are (slightly) better than the 

standard one as far as the O(n
2
) term is concerned.  The complete decomposition version is slightly better 

that the incomplete one as far as the O(n
2
) term is 

concerned.   The complexities of the recursive versions decrease 

when k increases as far as the O(n
2
) term is concerned, 

the best case occurring for k=q=logn i.e. we obtain 

n
3
/3+2n/3 for RCA_0.5*_q and n

3
/3+n

2
/6+n/6+1/3 for 

RIA_0.5*_q. 

By sorting the algorithms in decreasing performances, we 

get:

 RCA_0.5*_k (Equitable Complete Decomposition) RCA_λ1…k_k (Dynamic Non Equitable Complete 

Decomposition) RIA_0.5*_k (Equitable Incomplete Decomposition) RIA_λ1…k_k (Dynamic Non Equitable Incomplete 

Decomposition) SA 
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TABLE I. COMPLEXITIES OF THE DIFFERENT ALGORITHM VERSIONS

We detail further in section 4, an experimental study 

validating the previous study and permitting to determine 

for each matrix size the best sequential algorithm. 

III. PARALLELIZATION OF THE RECURSIVE TMI ALGORITHM

A. Brief State-of-the Art

The parallelization of the standard algorithm (SA) has 

been largely studied [12][13]. As to the recursive one, its 

parallelization interested fewer researchers to our 

knowledge. We may particularly cite [6][7] where Nasri 

studied TMI in both homogeneous and heterogeneous 

environments to design cost optimal parallel algorithms i.e. 

whose efficiency is asymptotically equal to 1. This 

performance could be reached thanks to a recursive task 

segmentation fitted to the number of available processors, 

who are recursively decomposed then grouped. The aim is 

to guarantee a perfect load balancing. Experimentations 

achieved only on two homogeneous multiprocessors show 

the practical efficiency of the approach.

In [8], the parallelization of the original Heller’s 

algorithm is studied in a shared memory environment for 

p≤n processors and the designed algorithms are sub-

optimal. Recently, Keqin Li [9] presented, in a survey 

paper, a deep theoretical study and gave precise optimal 

complexity results as well as a bounding interval for the 

minimal number of processors required to reach the optimal 

parallel complexity. However, the practical performances 

lack since no experimental study is achieved. 

To conclude, the main remark one may make here is the 

fact that even if the designed algorithms known so far are 

optimal or (sub) cost-optimal, they all require inter-

processor communications which may generate important 

overheads. On top of that, no original work has been 

devoted to the experimental study on heterogeneous 

platforms. Therefore, our contribution is to intend to fill this 

gap. 

B. Machine model

We assume that the target multiprocessor system we use 

consists of a collection of ,p ,heterogeneous processors, 

denoted Pi (i = 1,…,p), each provided with a local memory, 

a cycle time ti (i = 1,…,p) and connected by an 

homogeneous interconnection network [6]. Moreover, we 

assume that the speed of each processor (vi for Pi) is known 

and does not vary during the program execution.

C. Parallel Algorithm

As previously seen, the designed algorithm in the 

(dynamic) incomplete decomposition case denoted 

RIA_λ1…k_k, requires much less decompositions steps than 

its homologous RCA_λ1…k_k in the complete case. We 

have shown that RIA has a much better degree of 

parallelism than RCA [10]. Therefore the study is limited to 

the incomplete decomposition case.

1)Description of the heterogeneous ARI algorithm for 

p=2

    We start our study by describing the case where p=2

processors are available. So, we assume that we have at 

one’s disposal two processors P1 and P2 with speeds v1 and 

v2 respectively (v1v2). We note v = v1 + v2  and ρ=v1/v2. Let 

us first consider the RTMI algorithm with only one level 

decomposition, namely algorithm RCA_λ_1. We define the 
3 following tasks: 

T1: B1= ,A 1
1
 T2: B3= ,A 1

3
 T3: {A3Q=A2, T

2
T
1 BA = –Q

T
}

It is easy to notice that the 3 tasks are independent. 

However, if we consider the original Heller’s algorithm 

consisting in two matrix inversions followed by two matrix 

products and adopt a similar task decomposition i.e. T1: 

B1= ,A 1
1
 T2: B3= ,A 1

3
 T3: B2= – B3A2B1, we’ll have the 

following precedence relations: T1→T3, T2→T3. i.e. T1 and 

T2 are independent but must be finished before T3 can 

begin. Therefore the modified version exhibits a higher 

parallelism (see Fig 4). 

Let T23 be the (supertask) consisting in grouping T2 and 

T3 i.e.  T23=T2T3. Remark that now, any task corresponds 

either to a matrix inversion or to an inversion followed by 

Algorithm
RCA_λ1…k_k RIA_λ1…k_k

Complexity
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two matrix system resolution. The size of A1 (denoted n1) 

and that of A2 (denoted n2) are not necessarily n/2 (but in 

general different) since the two processors have not the 

same speed. In fact, n1 and n2 are chosen in terms of v1 and 

v2 in order to guarantee the optimality of the algorithm (see 

further). Therefore, the matrix A3 is rectangular.

Fig 4. Precedence graph corresponding to the modified version

Here, we can assign T1 to P1 and T23 to P2. In order to 

guarantee a perfect load balancing, we have to 

have Cost(T1) = Cost(T23). This leads (after equation 

solving) to 3 1  .

It should be noted that the value of the ratio ρ and the size 
of the matrix A are two factors that must be taken into 

account to determine whether the use of the slower 

processor is inefficient and hence decide to exclude it. 

The calculation gives:    3/)/)1(1/(/)1(
33

nnnnn  
2)Generalization to p processors 

Let us recall that the target multiprocessor machine is 

composed of p heterogeneous processors, denoted P1, P2, …,

Pp, with speeds v1 v2 … vp respectively. Let s= vi

(i=1..p).

   We detail now how to construct the optimal algorithm 

when we dispose of p heterogeneous processors. The 

principle consists in generalizing the approach developed in 

section 3 (p=2) by recursively decomposing the p processors 

into two sub-sets (each one corresponds to a virtual 

processor) as follows: let L={P1,…,Pp}= L1L2. L1 involves 

p1 processors (and corresponds to a virtual processor Ƥ1) 

and L2 involves p–p1=p2 processors (and corresponds to a 

virtual processor Ƥ2). Thus, we end up in the case already 

seen of two processors Ƥ1 (whose speed is equal to the sum 

of the speeds of the processors of L1) and Ƥ 2 (whose speed 

is equal to the sum of speeds of the processors of L2). L1 and 

L2 will then be decomposed each into two sub-sets and so 

on. We therefore generate a recursive binary decomposition 

tree.

The problem of the construction of this « optimal » 

decomposition (in fact partition) is known as the Set 

Partition Problem « SPP » [14]. It has been proved that the 

SPP is NP-complete. In addition, this decomposition

generates communications (Fig 5). As an illustration, we 

present below (Fig 7) the decomposition for p=4, 

V={10,7,5,3}, s=vi=18, Ƥ1={P1,P4}, s1=13, Ƥ2={P2,P3}, 

s2=12, ρ=13/12=1.083. We first calculate the appropriate λ
to ensure the load balancing by solving the following 

equation: cost (T1) = ρ (cost (T23)). The next step is to share

T1 (resp. T23) between processors Ƥ1 (resp. Ƥ2). This 

division does not lead to communication between processors

P1 and P4 (constituting Ƥ1). However, it will lead to

communications between processors P2 and P3 (constituting

Ƥ2.). We add that the symmetric allocation i.e. which assigns 

T1 (resp. T23) to Ƥ2 (resp. Ƥ1) will generate communication 

between P1 and P4 but not between P2 and P3.

Fig 5. Communications generated by the equitable decomposition

The optimal solution consists in a recursive 

decomposition of the p processors into two subsets L1 and 

L2 such that L1 contains a single processor, i.e. the faster 

(P1) and L2 contains the remaining p–1 processors.

Fig 6. Recursive binary tree corresponding to a non equitable 

decomposition

T1                              T2        

T23

T3

Ƥ1

Ƥ2

P4

P1

  P2 and P3

Communication!!

Ƥ2

Ƥ1

P3

P2

P1 and P4

Communication!!
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Thus, we end up in the case already seen of two 

processors. After this first step, L2 (of cardinality p–1) will 

in turn be decomposed into two subsets and so on until 

leading to singleton subsets while L1 is a singleton for each 

decomposition (see Fig 6).

To be consistent, we will assume that the speed of Ƥ1, 

denoted v(Ƥ1) is always greater than or equal to the speed of  

Ƥ2, denoted v(Ƥ2). In other words, the virtual processor Ƥ1

which may consist of one or more processors will always be 

the fastest processor. Determining the values of λ reduces to 

solving cubic equations. It should be noted that in order to 

guarantee no communication at each level of decomposition, 

task T23 is always assigned to one processor while task T1 is 

assigned to p–1 processors at level 1, to p–2 processors at 2, 

..., and to 1 processor at level p–1. The tasks that are 

generated will be denoted 
1p

1
1

1 T...T


and
1

23

1

23...
pTT . 

As an illustration, we resume a previous example where p

= 4 and V = {10,7,5,3} (see Fig 7).

Step 1. Ƥ2 = P1 : Speed 10, Ƥ1={P2,P3,P4} : Speed 15, 

ρ=15/10=1.5 
1

1T (resp.
1

23T ) is assigned to Ƥ1 (resp. Ƥ2  i.e. P1) with 

cost (
1

1T ) = ρ cost (
1

23T )

Step 2. Ƥ2 =P2 : Speed 7 et Ƥ1={P3,P4} : Speed 8, 

ρ=8/7=1.14
2

1T (resp.
2

234T ) is assigned to  P1 (resp. Ƥ2 i.e. P2) with 

cost (
2

1T ) = ρ cost (
2

234T )

Step 3. Ƥ2 = P4 : Speed 3 et Ƥ1=P3 : Speed 5, 

ρ=5/3=1.67
3.

1T (resp. 
3

23T ) is assigned to. P4 (resp.  P3)   with      

cost (
3

234T ) =ρ (cost (
3.

1T )            

Fig 7. Processor decomposition in the example

In order to validate our theoretical contribution covering 

both the sequential and the parallel cases, we present in the 

next section an experimental study involving two parts. The 

first (resp. second) deals with the sequential (resp. parallel) 

algorithms.  

IV. EXPERIMENTAL STUDIES

A. Sequential Algorithms 

We discuss in this section the variations of the execution

time in terms of the matrix size n. For this purpose, n was 

chosen in the range [64 6000], the input matrices involving 

real floating point elements randomly generated. The target 

machine is a 3 GHZ Fujitsu Siemens PC. C language under 

Linux OS was used.  Algorithms SA, RCA_λ1…k_k and 

RIA_λ1…k_k (for different values of k) were implemented. 

Remarks.

 As a first remark, we verified that for all the algorithms, 

the execution time (denoted ext) follows a cubic relation in 

terms of n (see Fig 8). On the other hand, the 

decomposition factor λ as well as the recursivity 

(decomposition) level k have important impacts on the 

execution time.  The execution time decreases when k grows until reaching 

a threshold k*(n) which varies with n.  For fixed k, the time ratio i.e. ext obtained for k divided 

by ext obtained for any k’ such that k<k’≤k*(n) increases 

with n. Hence better performances are reached for matrices 

of large sizes. 

In Table II, we give for some values of n, the values of 

both k*, n*=n/2
k*

(the corresponding size) and the time 

ratio ext(RCA_0.5_q)/ext(RCA_0.5*_k*). We deduce that 

the threshold size n*=n/2
k*

from which RCA becomes more 

efficient is around 32.   Decomposition factor λ. We remark (see Fig 9) that, for 

fixed n and k, the execution time (ext) is minimum for 

λ=0.5 thus confirming our theoretical complexity analysis 

(see section 2.2). In fact, the variations of ext in terms of λ
(for fixed n and k) are quadratic as precised in Table I. Let 

us add that the largest value of ext (in terms of λ) is at most 

equal to 1.15 (resp. 1.05) times its lowest one obtained for 

n=1024 (resp. 6000). Hence this ratio decreases when n

increases and seems to converge to 1 for very large values 

of n.   For (the dynamic) algorithms RCA_λ1…k_k where a 

different decomposition ratio λi is chosen at each 

decomposition level i (=1…k), quite similar results were 

obtained. The same results occur for RIA_λ*_k and 
RCA_λ*_k as well for RIA_λ1…k_k and RCA_λ1…k_k.
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TABLE II. VARIATIONS OF THE RATIO, K* AND N* IN TERMS OF MATRIX SIZE

N 400 512 800 1024 1600 2048 3200 4096 5000 6000

Rati

o
1.14 1.26 1.34 1.41 1.46 1.56 1.62 1.73 2.02 2.26

k* 3 4 4 5 5 6 6 7 7 7

n* 50 32 50 32 50 32 50 32 36 49

Fig 8. Execution time in terms of the decomposition factor λ for  (static) 

RCA_λ*_k

Fig 9. Execution time ext in terms of matrix size n

B. Parallel Algorithms

Two series of experiments were achieved. The first was 

done on a shared memory environment i.e. a Dell T5400 2.5 

GHz quad core biprocessor. In order to have a flexible range 

of different speeds, we used a technique of changing clock 

frequencies of processors on Linux [15][16]. The second 

targeted a distributed platform constituted by 16 node cluster 

connected by heterogeneous network. C, OpenMp [17][18] 

and MPI [19][20] under Ubuntu 9.04 OS were used. 

1)First Platform: Shared Memory Parallel Machine: We 

defined three scenarios with heterogeneous characteristics 

(frequencies are imposed) explained in Table III below. 

TABLE III. SCENARIOS OF THE SHARED MEMORY ENVIRONMENT

Scenario 1 Scenario 2 Scenario 3

Core 1 2.5 2.5 2.5

Core 2 2.5 2.5 2.5

Core 3 2.5 2.5 2.0

Core 4 2.5 2.5 2.0

Core 5 1.7 1.2 1.7

Core 6 1.7 1.2 1.7

Core 7 1.7 1.2 1.2

Core 8 1.7 1.2 1.2

Virtual Global Speed 

(vgs)
16.8 14.8 14.8

The performance evaluation consists in measuring the 

cost of the parallel algorithm ℂp=(
p

1i

iv )Tp . We then 

deduce the corresponding efficiency, denoted Ep=W/ℂp. 

Remark that for each n and p, successive runs were achieved 

and the mean run time is chosen. Notice that vi corresponds 

to the speed of Pi, Tp is the execution times of the parallel 

algorithm and W is the execution time of the sequential 

algorithm running on a processor with speed 1 (using the 

same technique of changing frequency explained above).

Fig 10. Efficiencies for the different scenarios in terms of matrix size n –

Shared memory case
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The analysis of the results confirming the theoretical 

study (see Fig 10), leads to the following remarks.  For fixed scenario, Ep increases with n reaching 97% of the 

optimal value i.e.100%.  For fixed n, the efficiencies of the three scenarios are very 

similar. The scalability of our algorithm is good for this type of 

architecture.

2)Second Platform: Distributed Memory Cluster: A 

preliminary work was necessary before the implementation 

of our algorithm. It is a measure of the real performance of 

each processor used (see Fig 11). Table IIIV reports the 

relative speeds of the heterogeneous processors in the cluster 

(We measure their relative speed with the core computation 

of the algorithm). Note that the relative speed does not 

depend on the size of problem for the wide range of matrix 

sizes used in our experiments [21].

TABLE IV. CLUSTER FEATURES

We defined six scenarios with heterogeneous 

characteristics depicted in Table V below.

TABLE V. SCENARIOS OF THE DISTRIBUTED PLATFORM

C1 C2 C3

Virtual 

global 

speed (vgs)

Processors’ 

number

Scenario 1 5 5 6 35 16

Scenario 2 5 5 0 20 10

Scenario 3 5 0 6 20 11

Scenario 4 0 5 6 30 11

Scenario 5 1 1 1 6.5 3

Scenario 6 2 2 2 13 6

As previously done, the efficiency E(p,n) is depicted (see 

Fig 12) for different scenarios. The analysis of the results 

leads to the following remarks.  For fixed scenario, Ep increases with n reaching 93% of the 

optimal value i.e.100%. 

Fig 11. Cluster schema

 For fixed n, the efficiencies of the six scenarios are very 

similar. The scalability of our algorithm is good for this type of 

architecture.

Let us precise that an important performance criterion for 

a parallel algorithm is its scalability on a target architecture 

i.e. its ability to achieve performance proportional to the 

number of processors [19]. Our algorithm is indeed scalable 

since we obtained efficiencies around 95% and increasing 

with the number of processors as well as the matrix size.
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Fig 12. Efficiencies for the different scenarios in terms of matrix size n – 

Distributed memory case

III. CONCLUSION

We  addressed  in  this  paper  the  parallelization  of  an 
important kernel in scientific computing, namely triangular 
matrix  inversion.  Choosing  a  modified  version  of  the 
recursive  algorithm  of  Heller  based  on  the  ‘Divide  and 
Conquer’  (D&C)  paradigm,  we  made  use  of  original 
versions  of  the  latter  in  order  to  design  optimal  parallel 
communication-free  algorithms  for  heterogeneous 
processors. The theoretical study was validated by a series 
of experiments achieved on two platforms: a shared memory 
one constituted by 8 cores  and  a distributed  memory one 
involving 16 nodes. The results we obtained were interesting 
since we reached about  95% of the optimal speed-up and 
efficiency values for large matrix sizes. Furthermore, since 
we have shown that our algorithm is scalable, it may easily 
be adapted to larger parallel environ-ments, thus delivering 
high performances. 
This  leads  us  to  precise  some  attracting  perspectives  we 
intend to study in the future. We may particularly cite the 
following points. 

• Achieve  an  experimental  study on  larger  platforms 

involving a higher number of (heterogeneous) processors. 

• Achieve  an  experimental  study  on  heterogeneous 

multicore CPU/GPU systems.

• Apply  our  non  equitable  and  incomplete  D&C 

approach  on  other  algorithms  in  order  to  design  optimal 
parallel algorithms where communications vanish or at least 
are minimised.
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