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Abstract—Our aim is to explore some gearbox vibration data
characterized by 15 power spectra amplitudes. The data were
gathered for two gearboxes: one being in a good state (set B)
and the the other in a bad state (set A). In turn, each of the sets
was gathered when the machine was operated under small/no
load, and under full load. This gives 4 data sets to compare. We
are concerned with two topics: 1. Is it possible to compare in a
simple way the structure of the four obtained subsets? 2. Could
the number of variables be reduced without losing essential
information content of the data? To answer both these questions,
we use a visual tool, the CCA (Curvilinear Component Analysis)
method proposed by Demartines and Herault. Using this tool, we
are able to answer positively the above two questions. We use
the CCA algorithm in special layout, applying DxDy plots, with
emphasis to estimating the overall intrinsic dimensionality of the
four groups of data and capture visually the differences in their
structure.

I. INTRODUCTION, THE AIM OF OUR RESEARCH

I
N OUR research we use vibration data gathered in the

Vibro-Acoustic Science Laboratory, Wroclaw University

of Technology. The goal is to build a mathematical model

permitting on the base of the recorded data to make a

monitoring of the state of the gearbox implanted into the

machine. To do this, we need to know the structure of the

data. There was some research how to do it, mainly when

using linear methods [1], [17], [18]. By inspecting the data

by pairwise scatterplots, we come to the conclusion that

the dependency among the considered variables shows some

tendency for nonlinearity [19]. To elucidate that observation,

we turned to non-linear methods. There are many of them:

see [16] for a short review of some of them. After considering

some other nonlinear methods, we concentrated on the method

named CCA (Curvilinear Component Analysis), developed by

Demartines and Herault (D&H) [6], [9]. The method works

on inter-point distances using specific cost function giving

favor to inter-point proximities in the output space (small

distances are dilated). When working locally (that is, with

small neighborhoods), CCA permits to unfold the non-linear

structures of the data yielding as output some flat manifolds

of lower dimension. It allows also to make projections of the

original data to the obtained manifold of lower dimension k.

* This paper was in part financially supported by Polish State Committee
for Scientific research 2010-2013 as research project no. N504 147838.

As shown by the authors, the method can be applied to data

with quite a serious deviation from linearity, like folded sub-

manifolds. The horseshoe or U-shaped distributions provide

simple illustration of linear manifolds embedded in 3D space.

In case of dimension k equal to 2 or 3 it is possible to visualize

the data in the 2D or the 3D scatter plot.
We have chosen this method for several favorable properties:

α. It is able do deal with folded data and unfold in.
β. It is able to project data points to lower-dimensional

flattened manifolds.
γ. It is generative, that is the mapping can be done only for

representatives of the data set; after that is is possible to

map the remaining data to the reduced space by a simple

location algorithm.

Let us notice also, that the CCA method, as a distance based

method, is not influenced by assumptions on the normality

(Gauss) of distribution of the data; as a matter of fact, this

method does not need assumptions on distribution of the data.
We consider data recorded by [1]. They recorded data for

condition monitoring of two gearboxes: one being in a good

and the other in a bad state. The obtained data are named

B (’good’ gearbox) and A (’bad’ gearbox) appropriately. An

earlier application of CCA [4] carried out using the data for

the good state gearbox found that the set is composed of two

different subsets of different dimensionality, thus can not be

modelled by one common Gaussian distribution [4]. Now we

continue these investigations on augmented data by taking into

account also the bad state gearbox, i.e. by considering both

data sets. Each of them was split into two subsets: NLOAD

and LOADD (see Section 2 for more details).
Our aim is to obtain answers to two questions:

1) Is it possible to compare in a simple way the structure

of the four obtained subsets?

2) Could the number of original variables (d = 15) be re-

duced to carry out further analysis with smaller number

of variables?

We will show that the answer for these two questions is

positive.
The paper is scheduled as follows: The above text consti-

tutes Section 1 being introduction presenting the problems we

want to solve. Section 2 describes shortly the data and their

dimensionality evaluation yielded by classic PCA performed
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both for groups B (’good’) and A (’bad’) and their splits

into NLOAD and LOADD subgroups. Section 3 introduces

the CCA method and shows DxDy plots (a modified version

of the originally proposed in [6], [9] dydx plots). The pos-

sibility of estimating the intrinsic dimensionality of the data

is emphasized. In Section 5 some summary of the results is

presented.

II. DATA USED FOR THE ANALYSIS AND THEIR INTRINSIC

DIMENSIONALITY ESTIMATED BY PCA

There may be an ambiguity when talking about dimension-

ality of data. Generally, dimensionality in a common sense

means the number of variables, that is, the number of columns

in a data matrix (we denote it using the symbol d). However, it

may happen that these variables are linearly dependent, which

means that some of them may be expressed as linear function

of the remaining ones. Thus, an essential question is: how

many original (observed) variables are necessary to reproduce

the entire set of data? In such a case we ask for true or intrinsic

dimensionality of the data.

A. Data recorded from two gearboxes

We use part of the data gathered and analyzed by Bartelmus

and Zimroz [1]. The data are given in the form of a matrix X

of size n× d, with n denoting the number of rows and d the

number of columns of the data matrix X. We have two such

data matrices: one, set B, of size n = 951 × 15 representing

the machine in good state, and the other, set A, of size n =
1232×15, representing the damaged machine. The 15 variables

denote amplitudes of power spectra obtained from the Matlab

PSD function. Each row of the matrices represents one data

vector (instance, segment), it contains numerical values d = 15
variables, named pp1, . . . , pp15 and used for further analysis;

at the same time it may be viewed as a d-dimensional data

point located in the d-dimensional Euclidean space Rd.

It was stated in [1], [3] that the analyzed data sets (B, good,

and A, bad) may be split into 2 types of data vectors: those

corresponding to time instances when the machine has worked

under small or no load, and those working under normal load

condition. These two types of points constitute two subgroups

of the data referred up from now as the NLOAD and LOADD

subgroups.

B. A preliminary dimensionality analysis by PCA

PCA (Principal Component Analysis) is one of the most

frequently used methods for reduction of multivariate data

[7], [12]. Using eigenvectors of the covariance matrix (or

correlation matrix) of a data matrix X of size n×d one projects

the data vectors (called also data points) to a lower dimensional

subspace of dimension, say k. This yields k new variables,

called principal components and denoted as PC1, ..., PCk.

The derived PCs have a number of favorable properties [7],

[12]. How to find the proper dimension k? This is usually done

by inspecting the eigenvalues computed from the correlation

matrix of the data. In [17], [18] it was concluded that taking

the correlation matrices for the performed analysis, the proper

dimension for the analyzed data is k = 2 or k = 3.

In Figure 1 we show the respective eigenvalues calculated

for the sets B and A and their subsets NLOADB , LOADDB ,

NLOADA and LOADDA appropriately.
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Fig. 1. Eigenvalues for the entire set B (top) and set A (bottom),
with their subsets subsets NLOADB , LOADDB , NLOADA and LOADDA

appropriately.

The results were obtained from correlation matrices of the

respective groups, thus the sum of the diagonal elements is

equal to 15, and this is the sum of the all 15 eigenvalues

of each correlation matrix, and also the amount of variance

(inertia) contained in the data. Looking at the eigenvalues

displayed in Figure 1 one may notice a peculiar configuration.

All the profiles are roughly similar. In every panel we observe

one big dominant eigenvalue, and next a slow decay of the

others. For example, for set A there is one big dominant

eigenvalue explaining an 0.65, 0.50, and 0.60 part of the total

variance in sets A, NLOADA and LOADDA. The contributions

of the first 10 eigenvalues are:

λ 1 2 3 4 5 6 7 8 9 10
A 9.8 1.1 1.0 0.6 0.5 0.4 0.3 0.3 0.3 0.2
NLD 7.5 1.4 1.2 1.2 1.0 0.5 0.4 0.4 0.3 0.3
LDD 9.0 1.3 1.1 0.8 0.6 0.4 0.3 0.3 0.3 0.2

According to Kaiser’s rule [10] the eigenvalues smaller than

1.0 may be considered as ’noise’. However, according to the

principles used in factor analysis, Figure 1 may be considered

as a scree graph, and to indicate the noise, we look for that

dimension k0, starting from which the decay of the eigenvalues

exhibits a linear pattern. In our case this may be the value:

k0 = 6 or k0 = 7. How good are the individual variables pp1,

..., pp15 reproduced by subsequent principal components? The

reproduction formula reads [10]:

R =
d∑

k=1

λkaka
T
k , (1)

with R denoting the analyzed correlation matrix, λk is the
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kth eigenvalue of R (ordered in descending order), and ak
the corresponding eigenvector. Details of representation of the

diagonal of R by k = 2, 3, 6and10 principal components are

shown in Table I (R denotes here correlation matrix calculated

from set A).

TABLE I
REPRODUCTION OF THE DIAGONAL OF CORRELATION MATRIX OF SET A

BY k = 2, 3, 6 AND 10 PRINCIPAL COMPONENTS

var k=2 k=3 k=6 k=10
1 0.90 0.90 0.92 0.94
2 0.64 0.90 0.96 1.00
3 0.54 0.75 0.88 0.99
4 0.77 0.82 0.86 0.93
5 0.90 0.92 0.93 0.96
6 0.41 0.54 0.98 1.00
7 0.88 0.88 0.89 0.92
8 0.83 0.83 0.85 0.94
9 0.71 0.75 0.91 0.98

10 0.79 0.82 0.85 0.93
11 0.70 0.74 0.83 1.00
12 0.78 0.85 0.85 0.92
13 0.81 0.82 0.89 0.92
14 0.62 0.77 0.82 0.99
15 0.60 0.61 0.97 1.00

Looking at the data shown in Table I one may state that

generally, for k = 3 the reproduction ratio of the amplitudes

of individual variables is equal or above 75%, except three

variables: pp6 (only 54%), pp11 (only 74%) and pp15 (only

61%].

For k = 6 the reproduction ratio is equal or over 85%,

except pp11 (only 83%) and pp14 (only 82%), which is not

bad, especially when taking into account that the reproduction

ratio for 6 other variables amounts over 90%. Possibly, some

noise is here reproduced too.

Generally, PCA is not providing a clear indication what is

the intrinsic dimension of the data.

III. CURVILINEAR COMPONENT ANALYSIS (CCA), BASIC

CONCEPTS

The curvilinear analysis (CCA) was introduced by De-

martines and Herault (D&H) [5], [6], see also [9], [14] for

further applications of the method. The basic assumption

underlying this method is that the multivariate data with d

variables are located truly in a manifold of lower dimension,

say p (p < d), moreover this subspace is somehow folded,

which makes the relations between the observed variables

– when viewed in Rp – to appear as non-linear ones. The

problem to solve is formulated as follows:

We have N data vectors x1, ...,xN , each data vector, viewed

as a data point, is located in d-dimensional data space Rd,

that is xi ∈ Rd, i = 1, . . . , N . This space is called the input

space. Each data point has d components constituting observed

values of the variables X1, . . . , Xd. The main idea is to find

a mapping of the given N points {xi}, i = 1, . . . , N , to a

lower dimension subspace Rk (k < d) called the output space

Y . The obtained projections in Rk will be denoted as yi, i =
1, . . . , N .

How to find a proper mapping? This can be done in many

ways. The authors of CCA have chosen a distance-based

method: For every pair of points (xi,xj , i 6= j) belonging to

the input space X take the inter-point distance Xij in the input

space and – basing on some criterion E expressing ’error’ or

’cost’– find the corresponding points (yi,yj , i 6= j) yielding

in the output space Y the corresponding inter-point distance

Yij . The distance between two points (i, j) may be defined in

many ways, the simplest and most popular is the Euclidean

distance. To find the proper mapping one needs to solve an

optimization problem: namely to find values of the yi-s which

minimize the assumed error function E. D&H [6], [5] have

considered the following error function:

E =
1

2

∑

i

∑

j 6=i

(Xij − Yij)
2F (Yij , λy) . (2)

The function F (Yij , λy) is chosen as a bounded and mono-

tonically decreasing function, in order to favor local topology

conservation (as happens in SOMs). In particular, F (.) may

be defined as F (Yij) = 1 for Yij < λ and F (Yij) = 0,

otherwise. This means that in every step, for given i, the

algorithm updates only those values of yj which are near to yi.

It is also possible to define F (Yij , λy) in a more soft way, e.g.

by a power function, descending with the no. of the iteration.
D&H have called initially their proposed method as VQP

neural network (Vector Quantization and Projection). The

method was intended to provide an alternative to Kohonen

SOM and not to be confined to a fixed a priori grid of

neurons (in SOMs typically rectangular or hexagonal). Thus,

the intention of D&H was to elaborate a topologically correct

mapping resembling the true shape of the data cloud at

hand ("instead of performing a vector quantization under the

constraint of a predefined neighborhood between neurons,

quantization and mapping functions are separately performed

by two layers of connection" of the network [6]).
D&H’s algorithm was designed to carry out a non lin-

ear dimension reduction and unfold high dimensional data

structure towards its mean manifold. Fλ(Yij), for fixed λ,

allows first for a global and then to a local unfolding. Two

data transformations processes are identified: unfolding and

projections. These two processes are visualized by so called

dydx plots [6], [9], [8], which visualize the changes.
D&H [5], [6] proposed to visualize the changes in the Yijs

as compared to the original input distances Xijs in the form of

a scatterplot called by them dydx plot. Let k denote the actual

dimension of output space, to which the mapping is performed.

Let dy denote any distance Yij evaluated in the actual output

space Y , of dimension k. Let dx denote any distance Xij in

the input space. Then dydx plot is the scatterplot composed

of pairs (dy,dx) with dy taken as the ’independent’ (abscissa)

and dx as the ’dependent’ (ordinate) variable. The authors have

attached some definite meaning to the outlook of a dydx plot

constructed for strongly nonlinear and folded data (see [5],

[6], [8] for further details).
The most interesting aspect of the proposed CCA algorithm

is to make a projection to the 2D (or 3D) Euclidean space,
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which permitted – for k = 2 or k = 3 – to obtain a 2D (or

3D) representation of the data with approximate vision of their

shape; a representation not confined to a fixed a priori grid of

neurons. The problem of sufficiency (quality of the obtained

representativeness) was not risen.

The concept of investigating the in intrinsic dimensionality

appears in [9], p.632 and is described in the following words

– referred in the following by us as Herault’s intrinsic

dimension paradigm:

When searching for the (unknown) intrinsic dimension of the

input data, we choose the output dimension by dichotomy: if the

distribution lies on the first diagonal, we can lower the output

dimension, and if the distribution becomes thicker, the output

dimension is too small.

IV. ANALYSIS OF THE GEARBOX DATA

A. Our methodology

• Introducing DxDy plots

Our main goal to obtain an estimate of the intrinsic dimen-

sionality of the data. D&H proposed to use for this the dydx

plots (see [6], [9], [8] or Section 3 above). However, after

several trials, we come to the conclusion, that more natural

and interesting for us is to apply reverse plots, which we will

call DxDy plots – speaking in full words: Distance-x Distance-

y plots. They are constructed by taking Dx (equal to any Xij)

as the ’x’ variate, and look how much this value was distorted

by CCA projection yielding the correspondent Dy (equal to

any Yij) in the output space Y and put on the DxDy plot

as the ’y’ coordinate. To our opinion, the introduced by us

DxDy plot is appropriate, when the data are neither strongly

curvilinear nor much folded, which is the case for our data (for

which we found that apparent non linearity was caused by the

non-homogeneity of the data, that is, of the sets B and A; after

splitting the data into homogeneous subgroups, NLOAD and

LOADD, the non linearity has disappeared).

In the following – when considering our two problems

formulated in the introduction, we will consider only the DxDy

plots, just introduced above.

• Design of our experiment

What concerns the practical aspect of applying the CCA al-

gorithm, it needs evaluation of a distance matrix of size N×N ,

and the size of this matrix may be very large. For example,

for data with size N ≈ 1000 the number of pairs is enormous

(equal 1000×1000 = 1, 000, 000) and the calculations would

be very long; moreover, such way on analysis would yield only

one answer, without any repetition. To operate on repeated

samples in a balanced design seemed to us to be a better way

yielding more informative results.

Generally, both sets B and A are large: the cardinalities of

the sets are:

|B| = 951 , |A| = 1232.

After splitting the sets into the NLOAD and LOADD

counterparts, the respective cardinalities are:

for set B: |NLOADB | = 104, |LOADDB | = 847,

for set A: |NLOADA| = 60, |LOADDA| = 1172.

One may notice that the cardinalities in the NLOAD and

LOADD subsets are very unbalanced. We decided to perform

the CCA in samples established in the following way:

For the set B the sample size for the NLOADB subset

equals 104, thus we taking the entire subgroup. However we

repeat the analysis 3 times with different number of epochs

ep = 20, 50, 200.

In the LOADDB subset we draw 3 samples, also of size 104,

and repeat for each sample the CCA mapping, with fixed

number of epochs ep = 30.

For the set A the layout is similar as for set B, except that

the sample size is now equal to 60.

The calculations of CCA were performed using the MAT-

LAB function CCA [13]. Each sample was standardized to

have means equal 0 and variances equal 1. Principal compo-

nents were used as starting point for the CCA function.

All calculations were performed twice: firstly using all 15

variables, and next using only variables 1–8.

• Graphs for inspecting

As explained above, we had four subsets to analyze:

NLOADB , LOADDB , LOADDA. For each of them we have

constructed and displayed 15 (=5*3) DxDy plots. They all

were put together into a matrix with 5 rows and 3 columns

constituting one panel of display. The rows of the matrix corre-

spond to mappings to k = 3, 4, 5, 6 dimensional subspaces; the

columns contain repetitions for the same k, however operated

on new samples.

The DxDy plots for all the combinations described above

are displayed in Figures 2 – 5 exhibiting

Figure 2: subset NLOADB , d = 15 (top) d = 8 (bottom)

Figure 3: subset LOADDB , d = 15 (top) d = 8 (bottom)

Figure 4: subset NLOADA, d = 15 (top) d = 8 (bottom)

Figure 5: subset LOADDA, d = 15 (top) d = 8 (bottom)

Each figure has two panels: the upper one corresponds to

calculations with d = 15 and the bottom one - with d = 8
variables.

B. Results for sets B and A

We have noticed that the DxDy plots, depicted for our data,

have an interesting property: the points (Dx,Dy) are spread

around the diagonal y = x. With increasing k, the mass around

the diagonal becomes thinner and tinner and finally, for some

k0 all data points are located exactly on the diagonal. This

means that the input space X and the output space Y contain

the same information about the spread of the data points.

The value k0 constitutes the upper bound for the intrinsic

dimension of the elaborated data set. Considering k larger as

k0 does not change the display: when taking k > k0 we see

again and again the same diagonal with all the data points

crowded over it. Referring to the Herault’s intrinsic dimension

paradigm, the rule for the upper bound of dimensionality of a

data set might be formulated as follows: Take that k, for which

all the points (Dx,Dx) are covered by the main diagonal of the

respective DxDy plot.

Now let’s look at the plots displaying the DxDy plots

obtained from the CCA for the four investigated subsets.
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Fig. 2. Set B. DxDy plots for data subset NLOAD for d = 15 (top) and d = 8

(bottom). Each DxDy plot represents a sample of size n = 104 from subgroup
NLOAD. Three columns correspond to three different numbers of epochs: 20,
50, 200. Rows: Results assuming output dimension k = 2, 3, 4, 5, 6.

Fig. 3. Set B. DxDy plots for data subset LOADD for d = 15 (top) and
d = 8 (bottom). Three columns correspond to three samples different in each
row, containing n = 104 data vectors each. Rows: Results assuming output
dimension k = 2, 3, 4, 5, 6.
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Fig. 4. Set A. DxDy plots for data subset NLOAD for d = 15 (top) and
d = 8 (bottom). Samples of size n = 60 from subgroup NLOAD. Three
columns correspond to three numbers of epochs: 20, 50, 200. Rows: Results
assuming output dimension k = 2, 3, 4, 5, 6.

Fig. 5. Set A. DxDy plots for data subset LOADD for d=15 (top)
and d=8 (bottom). Samples of size n=60 from subgroup LOADD. Three
columns correspond to three different samples. Rows: Results assuming output
dimension k = 2, 3, 4, 5, 6.
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Looking at the plots 2 – 5, we are able to make a lot

of interesting comparisons concerned the structure appearing

in the pairs of subsets NLOADB , LOADDB , NLOADA,

LOADDA, inspected horizontally and vertically.
Generally, one may notice that, with growing k denoting the

dimension of the output space Y , the spread of the (Dx,Dy)

points about the main diagonal is becoming tinier and tinier;

for k = 6 the (Dx,Dy) points coincide practically with the

diagonal, that is with the straight line y≡x of the display.

This happens in all the eight displayed panels. Therefore we

may infer that the output space for k = 6 and the distances

there-in are practically the same as the inter-point distances in

the input space X where the observed data are located.
How to fix the dimension k0, that is, the value, which could

be accepted as intrinsic dimension of the data? This should

be the value, when the spread of the (Dx,Dy) points about the

diagonal line y≡x of the display is practically none. What does

it mean? The Herault’s paradigm is not precise in this aspect

and does not give any strict mathematical criterion, when this

can be assumed. We think, this could be formulated in terms

of residual variance. We do not do it here and our following

analysis is based on visual inspection of the graphs only.
Now let’s try to establish the intrinsic dimension of the four

analyzed subsets.
• Displays in Fig. 2 and Fig. 4 for subsets NLOADB and

NLOADA. One may state that the displays look rather similar.

From visual inspection we judge that k0 in upper panels

(all variables) amounts k0=4, and in bottom panels k0=3. It

appears that when taking 8 variables only, we have smaller

spread of the (Dx,Dy) points in the bottom panel, which is

reasonable, because we have here less data (columns 8-15 of

the data were not accounted for).
• Displays in Fig. 3 and Fig. 5 for subsets LOADDB and

LOADDA. One may state that the displays have some common

patterns, however their intrinsic dimensionality looks to be

different. Generally, the spread of the (Dx,Dy) points around

the corresponding diagonal is in Fig. 3 larger as in Fig. 5.
Considering upper panels, from all pp1–pp15. From visual

inspection of the plots for set B we judge that k0 is higher

than 6 (case not shown in the upper panel of Fig. 3), and for

set A it is only it is only k0=4.
Considering bottom panels, from pp1–pp8 only. From visual

inspection of the plots for set B we judge that k0 is higher

than 6 (case not shown in the upper panel of Fig. 3), and for

set A it is only k0=4.
Such results are reasonable, because it is known [17], [18]

that the interdependence structure of the 15 variables pp1–

pp15 differs considerably in sets B and A. Let us say also that

the above statements (about the intrinsic dimensionality of the

subsets) were obtained from inspecting 3 independent runs of

the algorithm CCA carried out with independent samples. This

strengthens the credibility of the obtained results.

The above comments give answer to our first question

formulated in the Introduction. Indeed, we got a tool which

in a simple explorative manner shows differences in intrinsic

dimensionality among sets of data. In turn, differences in

intrinsic dimensionality mean difference in interdependence

structure among the variables characterizing the data.

To get answer to the second question (reduction of the

number of variables), one should inspect the panels displayed

in Figs 2–5 vertically. Without hesitation one may state that

in Figs 1, 4 and 5 the top and bottom panels are very similar,

which means that taking all 15 variables, or only 8 first

variables, one obtains the same displays.

Summarizing the results: Looking at the plots 2-5 we find

there answers to the questions formulated in the Introduction.

It may be stated that

1.The subsets NLOAD and LOADD have different structure

in set B and set A.

2. The difference in the structure may be noticed both when

considering d = 15 and d = 8 variables.

3. It makes sense to reduce the number of variables taken for

analysis. We got a clear indication that the number of variables

may be reduced; in particular d = 8 (with variables pp1–pp8)

may be as good as d = 15 with variables (pp1–pp15). Let’s

say, that the subset pp1–pp8 was our first choice, other subsets

might be even better – this needs further exploration.

V. DISCUSSION AND CLOSING REMARKS

We have investigated the algorithm CCA (Curvilinear com-

ponent analysis) [5] as used for estimation of the upper bound

of the dimensionality of a multivariate data set. This was in

context of the NLOAD and LOADD subgroups obtained for

the set B and set A of the gearbox data. After depicting so

called DxDy plots it is possible to get a clear idea whether two

groups of data are similar in their structure and have similar

intrinsic dimensionality. There is a lot of statements that can

be deduced from comparisons of scatterplots shown in Figures

2 – 5. For lack of space we have not discussed them here.

Our most important results are:

1. We were able to find an upper bound on the dimension-

ality of the analyzed data set.

2. It is reasonable to reduce - the so far considered 15

variables – to 8 variables only (meaning the first 8 out of

15 variables).

We did not try and do not have our opinion whether the CCA

mapping (that is, the lower dimensionality coordinates yielded

by this technique) is of great use in discriminant analysis.

Some people have expected this and were disappointed [11],

[15]. In our our opinion, for making discriminant analysis, one

needs methods dedicated specifically to discriminant analysis.

The CCA method is a general purpose method, and is not

oriented towards discrimination and classification of data.

The novelty in our paper is:

(i) The CCA method was for the first time applied to

an extended data set (’good’ and ’bad’ data, more

than 2000 time segments) for gearbox condition

monitoring.

(ii) We got a better (more convincing than for PCA)

estimation of the intrinsic dimension of the analyzed

data using CCA.
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(iii) We have arrived to our conclusions in a non para-

metric way without making any assumptions about

probability distributions of the data, in particular

about normality (Gauss distribution).

There are some open problems:

1) Criterion for intrinsic dimensionality. The Herault’s in-

trinsic dimension paradigm should be formalized in a

strict way.

2) Reduction of the number of variables. We have carried

out the analysis using 15 variables named pp1-pp15. We

have shown that 8 variables make sense. A search for

the best subset should be performed, taking into account

other criteria. The goal could be to build a non linear

discriminant function for recognizing items from the

’good’ and the ’bad’ state of the machine.
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