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Abstract—We investigate methods for attribute clustering and
their possible applications to a task of computation of decision
reducts from information systems. We focus on high-dimensional
data sets, for which the problem of selecting attributes that
constitute a reduct can be extremely computationally intensive.
We apply an attribute clustering method to facilitate construction
of reducts from microarray data. Our experiments confirm
that by proper grouping of similar, in some sense replaceable
attributes it is possible to significantly decrease a computation
time, as well as increase a quality of resulting reducts (i.e.
decrease their average size).
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I. INTRODUCTION

I
N MANY applications, information about objects from a

considered universe has to be reduced. It can be required

in order to limit resources needed by algorithms analyzing

the data or to prevent crippling their performance by noisy or

irrelevant attributes [1], [2]. Computation of information and

decision reducts has been widely discussed in literature related

to data analysis and knowledge discovery, as a rough-set-

based approach to attribute reduction. In particular, its practical

significance for tasks such as attribute selection, rule induction

and data visualization is unquestionable [3], [4].

There is plenty of literature showing how to apply rough-set-

based methods to the microarray data analysis [5], [6], [7], [8].

In [9], [10], it was discussed that, given such a huge amount

of attributes in microarray data sets, it is better to combine

the standard computation mechanisms with some elements of

attribute clustering. This paper aims at experimental verifica-

tion of these ideas by combining the rough-set-based methods

of attribute reduction with the rough-set-inspired methods for

attribute clustering.

Although the paper focuses on analysis of microarray data,

the discussed approach to dimensionality reduction can be

applied to a much wider spectrum of high-dimensional data

types. For example, similar techniques can be used to find

concise conceptual representations of texts for the purpose of

multi-label topical classification [11] or meaningful labelling

of clustering results [12]. Both of those tasks require working

on texts represented by a potentially large number of interde-

pendent domain concepts. We go back to this topic in Section

VII, while sketching the areas of our future research.

The paper is organized as follows: Section II recalls some

basic notions of rough-set-based attribute reduction. Section

III outlines our intuition behind combining attribute reduction

with attribute clustering. Sections IV and V report our exper-

imental framework for utilizing gene clustering methods for

computation of reducts and the obtained results, respectively.

Section VI overviews our preliminary research on reusing gene

clustering results in analysis of different data sets. Finally, as

already mentioned, Section VII concludes the paper with some

future research directions.

II. ROUGH-SET-BASED ATTRIBUTE REDUCTION

In the rough set theory, by a reduct we usually mean a

compact yet informative subset of available attributes. In this

section, we outline some basic types of reducts.

Definition 1 (Decision reduct).

Let Sd = (U,A, d) be a decision table with a decision attribute

d indicating belongingness of objects to investigated concepts.

A subset of attributes DR ⊆ A will be called a decision reduct,

iff the following conditions are met:

1) For any pair u, u′ ∈ U of objects belonging to different

decision classes (i.e. d(u) 6= d(u′)), if u and u′ are

discerned by A (i.e. there is a ∈ A such that a(u) 6=
a(u′)), then they are also discerned by DR.

2) There is no proper subset DR′ ( DR, for which the

first condition holds.

A decision reduct can be interpreted as a set of attributes that

are sufficient to discriminate all objects from different decision

classes. At the same time this set has to be minimal, in a sense

that no further attributes can be removed from DR without

loosing the discernibility property. For example, {a3, a5} and

{a3, a6} are decision reducts of the decision table Sd from

Table I. The first condition in Definition 1 is often replaced
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TABLE I
AN EXEMPLARY DECISION TABLE Sd WITH A BINARY DECISION.

a1 a2 a3 a4 a5 a6 a7 a8 d

u1 1 2 2 0 0 1 0 1 1
u2 0 1 1 1 1 0 1 0 1
u3 1 2 0 1 0 2 1 0 1
u4 0 1 0 0 1 0 0 1 0
u5 2 0 1 0 2 1 0 0 1
u6 1 0 2 0 2 0 0 2 0
u7 0 1 1 2 0 2 1 0 1
u8 0 0 0 2 1 1 1 1 0
u9 2 1 0 0 1 1 0 0 0

by some other requirements for preserving information about

decision while reducing attributes [13], [14]. In this paper, for

simplicity, we restrict ourselves to the above discernibility-

based criterion, which is very well-documented in the rough

set literature [15], [16].

There are described many algorithms for attribute reduction,

utilizing various greedy or randomized search approaches [7],

[17]. Most of them refer to the search of optimal (shortest,

generating minimum number of rules, etc.) decision reducts

or some larger ensembles of decision reducts that constitute

efficient classification models. However, most of algorithms

can be also adapted to search for other types of reducts, e.g.,

those aimed at the unsupervised analysis of data sets with no

predefined decisions.

Definition 2 (Information reduct).

Let S = (U,A) be an information system. A subset of attributes

IR ⊆ A will be called an information reduct, iff the following

conditions are met:

1) For any pair u, u′ ∈ U of objects, if u and u′ are

discerned by A, then they are also discerned by IR.

2) There is no proper subset IR′ ( IR, for which the first

condition holds.

Definition 3 (Association reduct).

Let S = (U,A) be an information system. A pair of subsets of

attributes AR = (L,R), where L ∩ R = ∅, will be called an

association reduct, iff the following conditions are met:

1) For any pair u, u′ ∈ U of objects, if u and u′ are

discerned by R, then they are also discerned by L.

2) There is neither proper subset L′ ( L nor proper

superset R′ ) R, for which the first condition holds.

Association reducts were studied in [10], [14] due to their

usefulness for unsupervised learning over huge amounts of

attributes, where there is a relatively low chance to obtain rea-

sonable information reducts. In the case of all the above types

of reducts, we can also consider their approximate versions,

which are especially useful for noisy data sets [13], [17]. For

instance, we can require that only some percentage of pairs of

objects satisfies the first conditions in Definitions 1, 2, 3. Also,

we may extend the discernibility notion towards the criteria of

a sufficient dissimilarity or a discernibility in a degree, which

are useful in the case of numeric data.

The above discussion shows that appropriately extended

Fig. 1. A hybrid approach combining attribute clustering and reduction.

classical rough set notions can be successfully applied as an

attribute selection and reduction framework for the analysis

of large and complex data sets, such as microarray data

(large amounts of attributes with potentially noisy, numeric

values). However, there is yet another possibility of scaling

with regard to the amounts of attributes. The basic idea is

to search for clusters of attributes that can potentially replace

each other while learning optimal reducts from data. In the

next sections, we investigate this opportunity for the case of

decision reducts (Definition 1). An analogous framework may

be also considered for other types of reducts and other criteria

of their construction.

III. REDUCT-ORIENTED ATTRIBUTE CLUSTERING

From a perspective of the analysis of microarray data,

the ideas presented in this section can be regarded as an

example of gene clustering [18], [19]. In [9], we reported

that the gene clustering outcomes may meet the domain

experts’ expectations to more extent when they are based

on information-theoretic measures, rather than on standard

numeric and rank-based correlations. In other words, interpret-

ing genes as attributes with some approximate dependencies

between them may bring better results than treating them

simply as numeric vectors. In [10], we suggested that attribute

clustering can be conducted also by means of dissimilarity

functions based on discernibility between objects, utilized as a

form of measuring degrees of functional dependencies between

attributes. We also proposed a mechanism illustrated by Fig. 1,

where reducts could be searched in a data table consisting

only of the previously computed clusters’ representatives, with

their occurrence in reducts used as a feedback for splitting and

merging the corresponding clusters. For instance, clusters with

their representatives reoccurring more often in reducts could

be considered for further split. On the other hand, clusters

with their representatives not occurring in reducts could be

eliminated or merged with the others.

In order to make sure that approaches such as the one

proposed in Fig. 1 work efficiently, we need to guarantee

that attributes falling more likely into the same clusters will
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also be more frequently replaceable within reducts. From this

perspective, it is reasonable to use analogous criteria for pre-

serving information about decision while reducing attributes

and measuring distances between them. As an example, let us

compare attributes a5 and a6 in Table I. Note that in the case

of most of pairs of objects, a5 discerns them, iff a6 does. This

may indicate that there are relatively many pairs of reducts of

the form B ∪ {a5} and B ∪ {a6}, B ⊆ A \ {a5, a6}. Reducts

{a3, a5} and {a3, a6} are an illustration of the replaceability

understood in this way.

The replaceability of attributes in the context of the dis-

cernibility can be easily noticed by studying a dendrogram

generated by a hierarchical clustering algorithm. An example

of such a tree generated for the decision table from Table I is

presented in Fig. 2. As expected, the attributes a5 and a6 are

merged into a single cluster as the second pair.

The methods of attribute reduction and attribute grouping

can be put together in many different ways. As an example,

in [20] it is noted that so called signatures (irreducible subsets

of genes providing enough information about probabilities of

specific types of cancer – the reader may notice an interesting

correspondence of this notion to a probabilistic version of a

decision reduct [13]) can contain genes (attributes) that are

interchangeable with the others because of data correlations

or multiple explanations of some biomedical phenomena.

Moreover, such an interchangeability can be observed not only

for single elements – there may be a larger subset of genes

/ attributes replaceable with another one, leading to another

signature / reduct.

In the next sections, we operate with relatively straight-

forward dissimilarity functions based on the comparison of

attributes’ abilities to discern important pairs of objects. It

would be possible to extend these functions in order to

measure dissimilarities between subsets of attributes. However,

let us focus on individual attributes.

The first function we considered, called a direct discernibil-

ity function, is a ratio between a number of pairs of objects

from different decision classes that are discerned by exactly

one attribute to a number of such objects discerned by at least

one of the compared attributes. It can be written down in a

way that emphasizes its analogy to some standard measures

used in data clustering [21], [22]. Namely, direct(a, b) =

= 1− |{(u,u′):d(u) 6=d(u′)∧a(u) 6=a(u′)∧b(u) 6=b(u′)}|
|{(u,u′):d(u) 6=d(u′)∧(a(u) 6=a(u′)∨b(u) 6=b(u′))}|

The second of the considered functions, called a relative

discernibility function, takes into account the fact that some

pairs of objects belonging to different decision classes can

be harder to discern than the others. The following formula

should be regarded as one of many possible mathematical

formulations of this basic intuition. Namely, relative(a, b) =

= 1−
∑

u,u′:d(u) 6=d(u′)∧a(u) 6=a(u′)∧b(u) 6=b(u′) α(u,u
′)

∑
u,u′:d(u) 6=d(u′)∧(a(u) 6=a(u′)∨b(u) 6=b(u′)) α(u,u

′)

where α(u, u′) = |{c ∈ A : c(u) = c(u′)}|/|A| plays a role of

a weighting factor. The pairs of objects, which are generally

more difficult to discern by the attributes in A, are considered
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Fig. 2. An attribute clustering tree for the decision table from Table I
obtained by applying the agglomerative nesting algorithm in combination with
the direct discernibility dissimilarity function.

to be relatively more important when computing dissimilarity

between a and b. For instance, if a is the only attribute able to

distinguish between u and u′ from different decision classes,

then its corresponding α(u, u′) occurs only in the nominator

of the above formula and causes relatively high decrease of

the value of relative(a, b). On the other hand, if some pair of

objects is discerned by all attributes, it has no impact on the

value of relative(a, b).

The direct and relative discernibility functions will be

used in experiments described in Sections IV and V. We

will verify usefulness of the above intuitions in a slightly

different scenario than the one originally proposed in [10]

and depicted by Fig. 1. However, the fundamental idea will

remain the same – by using appropriate attribute clusters, we

can avoid unnecessary attempts to co-locate replaceable or

interchangeable attributes in the same reducts.

IV. FRAMEWORK FOR EXPERIMENTAL VALIDATION

We conducted a series of experiments to verify usefulness

of the discernibility-based attribute clustering for scalable

computation of decision reducts. We wanted to find answers

to two main questions. The first one was whether the attribute

grouping can speed up searching for reducts. The second

question was related to a quality of reducts generated using

discernibility-based clustering – we wanted to check if such

reducts are more concise. The minimal number of attributes

is not the only possible optimization criterion for decision

reducts [13], [17]. However, it is indeed the most straight-

forward idea to rely on minimal reducts in order to clearly

visualize the data dependencies.

In the experiments, we use a microarray data set from the

RSCTC’2010 data mining competition [23]. Microarrays are
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usually described by many thousands of attributes whose val-

ues correspond to expression levels of genes. The considered

data set is related to the investigation of a chronic hepatitis C

virus role in the pathogenesis of HCV-associated hepatocellu-

lar carcinoma. It contains data on 124 tissue samples described

by 22, 277 numeric attributes (genes). It was obtained from

the ArrayExpress repository [24] (data set accession number:

E-GEOD-14323). The gene expression levels in this data set

were obtained using Affymetrix GeneChip Human Genome

U133A 2.0 microarrays.
We preprocessed the data by discretizing attributes using an

unsupervised method. Every expression level value of a given

gene was replaced by one of the three labels: over_expressed,

normal or under_expressed. A label for an attribute a and a

sample u is decided as follows:

a(u) =







over_expressed if a(u) > meana + sda,
under_expressed if a(u) < meana − sda,
normal otherwise.

where meana and sda denote the mean and the standard

deviation of expression level values of the gene a in the

whole data set. One might also apply more intelligent dis-

cretization techniques [15], [7] or utilize some rough-set-based

approaches that do not require discretization at all [25], [26].

However, we proceed with the above-proposed discretization

strategy for the sake of simplicity.
In order to assess an impact of different attribute clustering

methods on computation of reducts we clustered the genes

using several techniques. We combined the discernibility-

based functions described in the previous section with the

agglomerative nesting (agnes), which is a hierarchical group-

ing algorithm [21], [22]. We compared it with kmeans and

agnes algorithms working on dissimilarities computed using

Euclidean distance on non-discretized data. As a reference,

we took results obtained for a random clustering, which is

equivalent to no clustering at all. We also checked the worst-

case scenario, in which the attributes are grouped so that the

most dissimilar genes (according to the direct discernibility

function) are in the same clusters.
In each experiment, we generated 100 decision reducts for

all the compared clustering methods. For the reduct computa-

tion we used Algorithm 1, which is a modified version of the

permutation-based attribute reduction framework considered in

[14], [17]. The permutations for each run of the algorithm were

generated based on the clusterings corresponding to the tested

grouping methods. Algorithm 2 explains the permutation con-

struction process. In practice, there is no need to pre-generate

a permutation for the reduct computation since it might be

an integral part of the algorithm. However, we explicitly

generated the permutations for the sake of reproducibility of

the results. In the next section, we also mention some relatively

easier greedy techniques. All the algorithms were implemented

in R System [27].

V. OBTAINED EXPERIMENTAL RESULTS

Table II summarizes computation times. For each clustering

method the mean and standard deviation of 20 independent

Algorithm 1: A permutation-based attribute reduction.

Input: a decision table Sd, an ordered list of attributes

permA = [a1, ..., an]
Output: a decision reduct DR of Sd

1 DR = ∅;

2 i = 1;

3 while DR does not meet condition 1 in Definition 1 do

4 ai = permA[i];
5 DR = DR ∪ ai;
6 i = i+ 1;

7 end

8 for j = i to 1 do

9 if DR \ aj discerns all objects with different

decisions from Sd then

10 DR = DR \ aj ;

11 end

12 end

13 return DR;

Algorithm 2: A cluster-based permutation generator.

Input: a clustering of attributes CLA = (C1, ..., Ck)
Output: an ordered list permA = [a1, ..., an]

1 permA = [] (an empty list);

2 permk = [p1, ..., pk] (a permutation of numbers 1 to k);

3 i = 1;

4 while length(permA) 6= n do

5 if |Cpi
| > 0 then

6 pi = permk[i];
7 select at random an attribute a from Cpi

;

8 permA = [permA, a];
9 Cpi

= Cpi
\ a;

10 end

11 i = i+ 1;

12 if i > k then

13 i = 1;

14 end

15 end

16 return permA;

repetitions of the experiment are given. The results show the

advantage of using the direct discernibility function in com-

bination with a hierarchical clustering algorithm to speed up

generation of decision reducts. Times obtained by this method

are significantly lower than those of all other approaches. The

significance was measured using t-test [28] and the p-values

obtained at 0.95 confidence level were all lower than 10−10.

For instance, the times obtained by this method when grouping

was made into 1000 clusters are on average lower by 34% than

the corresponding times for the random method. Moreover,

robustness of results is confirmed by their stability with regard

to a number of considered clusters.

The results obtained for the relative discernibility func-
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tion may be regarded as disappointing. The tested weighting

schema seems to degrade performance of the reduct computa-

tion algorithm, especially when a low number of gene clusters

is considered. Explanation of this behavior will be definitely

in a scope of our future research. The experiments show that

distinguishing between the cases that are easier and more

difficult to discern may not be necessary. On the other hand, a

better-adjusted mathematical formula for such distinguishing

may lead to more promising outcomes.

The results from Table II obtained for the two Euclidean

distance-based clusterings also show a clear advantage of

using hierarchical methods for grouping genes in microarray

data. The times for the combination of kmeans clustering with

Euclidean metric can not be regarded as statistically different

from results of random clusterings, whereas the grouping

into 10 clusters, made using the agnes algorithm resulted in

significantly lower reduct construction times.

For each clustering method we also measured an average

length of the generated reducts. This statistic reflects a quality

of reducts, both by means of data-based knowledge represen-

tation and ability to construct efficient classification models.

These results are displayed in Table III.

The standard deviations given in the above table are not

computed directly from the lengths of reducts, but from the

average lengths of 100 reducts in each of the 20 experiment

runs. This explains such low values of this statistic.

Our method significantly outperformed other approaches

also in terms of the reduct length. As before, the significance

was checked using t-test. On average, decision reducts gener-

ated by using the hierarchical clustering based on the direct

discernibility function are shorter than those computed from

the random clusterings by nearly 1.5 gene. They were also

shorter than the reducts computed for the agnes algorithm

and working on the Euclidean distances by over 0.5 gene. It

confirms that a proper attribute clustering increases efficiency

of the reduct computation methods.

In order to further assess usefulness of the considered at-

tribute clustering methods for computation of decision reducts,

we compared the permutation-based reducts obtained by uti-

lization of groupings of genes with a reduct computed using

a simple deterministic greedy heuristic, which starts with an

empty set and iteratively adds the most promising attributes

until the decision determination criterion is satisfied [25],

[29]. Out of many possibilities, we selected the GiniGain

measure to evaluate quality of attributes during such an

iterative construction of the solution. At the first stage of this

experiment, we did not use any form of attribute clustering. For

the investigated data, a reduct was constructed in 544 seconds

and it contained 6 attributes. The experiment was conducted

on the same machine as before. The applied heuristic was

implemented in R as well.

The construction of a greedy reduct is a couple of orders

of magnitude more time-consuming than the construction of

a single reduct by the permutation-based algorithm. This is

because at each iterative step we need to examine (almost) all

remaining attributes against the data, which is a huge overhead

TABLE II
AVERAGE COMPUTATION TIMES OF 100 DECISION REDUCTS BASED ON

PERMUTATIONS GENERATED FROM DIFFERENT CLUSTERINGS.

clustering
method

10

clusters
100

clusters
1000

clusters
agens &

direct

3.536±
0.112

3.151±
0.097

3.015±
0.117

agens &

relative

4.680±
0.156

4.164±
0.161

3.705±
0.134

agens &

Euclidean

3.965±
0.158

4.430±
0.251

4.839±
0.199

kmeans &

Euclidean

4.872±
0.239

4.434±
0.229

4.545±
0.148

random 4.597±
0.155

4.665±
0.190

4.543±
0.147

worst 5.485±
0.219

9.901±
0.753

11.929±
0.628

TABLE III
AVERAGE LENGTHS OF 100 REDUCTS COMPUTED FOR DIFFERENT

CLUSTERING METHODS.

clustering
method

10

clusters
100

clusters
1000

clusters
agens &

direct

11.209±
0.099

11.095±
0.087

11.103±
0.093

agens &

relative

12.102±
0.132

11.790±
0.134

11.638±
0.114

agens &

Euclidean

11.709±
0.123

11.860±
0.118

12.198±
0.114

kmeans &

Euclidean

12.590±
0.089

12.228±
0.069

12.283±
0.130

random 12.519±
0.127

12.470±
0.092

12.471±
0.128

worst 12.731±
0.133

14.800±
0.159

15.624±
0.180

TABLE IV
AVERAGE MINIMAL LENGTHS AMONG 100 REDUCTS COMPUTED FOR

DIFFERENT CLUSTERING METHODS.

clustering
method

10

clusters
100

clusters
1000

clusters
agens &

direct

8.900±
0.307

8.950±
0.223

9.200±
0.410

agens &

relative

9.600±
0.502

9.250±
0.444

9.550±
0.510

agens &

Euclidean

9.500±
0.512

9.250±
0.444

9.600±
0.502

kmeans &

Euclidean

10.000±
0.458

9.650±
0.489

9.600±
0.502

random 9.85±
0.489

9.900±
0.447

10.000±
0.324

worst 9.950±
0.394

10.900±
0.640

11.550±
0.604

in the case of microarray data sets. On the other hand, for

the case of the GiniGain measure and this particular data set,

the greedy approach leads to a significantly shorter solution.

In order to confirm it, we checked lengths of the shortest

reducts computed in each of the 20 repetitions of the previous

experiment. The average results for each clustering method are

presented in Table IV.

The above observation motivated us to measure an impact

of attribute grouping on a computation time of greedy reducts.

We introduced constraints to the greedy algorithm which allow

to select only a single attribute from each cluster (the selection
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itself was still done in the greedy fashion). This modification

resulted in a significant decrease of time needed for compu-

tation of a single greedy reduct – it took 392 seconds when

the grouping was done into 10 clusters. The size of a reduct

obtained in this way was 6, which is equal to the classical

case. However, those two greedy reducts differed on 4 out of

6 attributes. In particular, this shows that searching for a single

decision reduct provides highly incomplete knowledge about

dependencies in the data, especially for such huge amounts of

attributes. Hence, the approaches aimed at extraction of larger

families of reducts should be preferred [17], [30].

In the future we would like to investigate a possibility

of combining the greedy and permutation-based heuristics

to facilitate fast computation of representative ensembles of

short decision reducts. Certainly, the choice of parameters

responsible for generation of permutations, the greedy heuris-

tic measures, or the attribute reduction criteria may have a

significant influence on the results. However, in any of such

scenarios it is expected that attribute clustering can improve

computations and interpretation of the results. In particular, in

the case of microarray data sets it may be far more intuitive to

work with reducts understood as subsets of genes representing

some larger clusters.

VI. REUSE OF GENE CLUSTERING RESULTS FOR OTHER

MICROARRAY DATA SETS

In our research on applications of gene clustering for

scalable analysis of microarray data we were also interested

in a possibility of reusing knowledge obtained from one data

set for analysis of different data. This problem is especially

important in the context of the microarray research, since due

to expensiveness of a single microarray experiment the number

of cases available in a typical microarray data set is small. This

characteristic data feature often makes it difficult to perform

meaningful analysis on the microarray data.

On the other hand, researchers attempt to come up with

standards that aim at unification of acquisition, preprocessing

and description of microarray data. The ultimate goal of

this effort is to aid the reuse of knowledge and to facilitate

creation of larger microarray data sets by hybridization of

multiple smaller set that correspond to experiments conducted

in different research centres. One example of such an initiative

is the MIAME (Minimum Information About a Microarray

Experiment) standard [31].

Many microarray experiments for different medical prob-

lems are conducted using the same types of microarray chips

and with the same sets of reagents. As a consequence, data

samples corresponding to unrelated medical issues can be

represented by attributes with exactly the same semantics. A

question arises whether it is possible to facilitate computation

of decision reducts of one microarray data set using a cluster-

ing of genes obtained from a different data. Unfortunately, the

reuse of knowledge for data related to different problems is

usually not that simple because of differences in the applied

acquisition procedures and data preprocessing methods.

TABLE V
AVERAGE COMPUTATION TIMES OF 100 DECISION REDUCTS FOR ACUTE

LYMPHOBLASTIC LEUKEMIA DATA USING DIFFERENT CLUSTERINGS

OBTAINED FOR THE HEPATITIS C DATA.

clustering
method

10

clusters
100

clusters
1000

clusters
agens &

direct

3.751±
0.086

3.726±
0.118

3.786±
0.094

agens &

relative

3.642±
0.114

3.746±
0.086

3.766±
0.074

agens &

Euclidean

3.745±
0.108

3.730±
0.091

3.699±
0.099

kmeans &

Euclidean

3.775±
0.096

3.699±
0.077

3.658±
0.072

random 3.661±
0.104

3.700±
0.088

3.7155±
0.070

worst 3.845±
0.106

3.668±
0.098

3.671±
0.081

TABLE VI
AVERAGE LENGTHS OF 100 REDUCTS COMPUTED FOR ACUTE

LYMPHOBLASTIC LEUKEMIA DATA USING DIFFERENT CLUSTERINGS

OBTAINED FOR THE HEPATITIS C DATA SET.

clustering
method

10

clusters
100

clusters
1000

clusters
agens &

direct

12.534±
0.096

12.479±
0.100

12.501±
0.093

agens &

relative

12.420±
0.097

12.467±
0.087

12.513±
0.081

agens &

Euclidean

12.389±
0.093

12.410±
0.118

12.368±
0.084

kmeans &

Euclidean

12.477±
0.108

12.377±
0.074

12.314±
0.064

random 12.402±
0.083

12.428±
0.108

12.391±
0.104

worst 12.744±
0.084

12.281±
0.088

12.203±
0.093

We designed the following experiment along the lines of

the above discussion. First, we searched the ArrayExpress

repository looking for a microarray data set in which gene

expressions were measured using the same microarray chips

as in the hepatitis C data set discussed in Section IV. We

selected a data set related to recognition of acute lymphoblas-

tic leukemia (ALL) genetic subtypes (experiment accession

number E-GEOD-13425). This data set has been used in the

already-mentioned RSCTC’2010 data mining competition as

well. It contains data on 190 blood samples annotated with

expression levels of the same 22, 277 genes as before. We

discretized the data and computed decision reducts using the

same methodology as described in Section IV. However, to

generate the permutations we utilized the clusterings previ-

ously computed for the hepatitis C data set. The results in

terms of a reduct average length and computation speed is

shown in Tables V and VI.

Computation times and reduct lengths obtained by applica-

tion of clusterings from the hepatitis C data set are not statisti-

cally different from random outcomes. Apart from highlighting

the need for unified preparation methods for microarray data,

this result confirms the importance of considering a specific

decision problem as a context when forming groups of genes.

It explains why the attribute dissimilarity functions not refer-
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ring to a given decision task may perform worse than those

taking decision attributes into account.

In the future, we will investigate whether such a reuse of

knowledge can bring benefit for computation of association

reducts, where the decision attribute is not fixed. We would

also like to verify if the gene clustering can be improved by

utilization of a decision table hybridized from several different

microarray data sets. However, one needs to remember that

even though different microarray data sets may be created

using the same microarray chips, the already mentioned dif-

ferences in a processes of acquiring their data rows may cause

significant differences in statistical characteristics of the corre-

sponding attributes. For example, in two series of microarray

experiments, samples may be collected from different kinds

of tissues and as a result, the same genes may have different

neutral expression levels.

Reusing knowledge discovered by attribute clustering seems

appealing also in a context of text mining and information

retrieval [32]. Intuitively, when analyzing large document

corpora related to the same domain (e.g. articles from two dif-

ferent biomedical journals), it is expected that the same terms

would have the same or similar sets of possible meanings,

and that occurrence frequencies of particular meanings would

be similar as well. Knowing this, one may think of reusing

term clustering results obtained for a single corpus, in order

to facilitate analysis of other corpora from that domain. In the

next section, we refer to one of our research projects aiming

at development of a text analysis system, where such a reuse

of the grouping results would be applicable [33], [34].

VII. CONCLUDING REMARKS

We proposed a new approach to attribute clustering and

its application to a task of computation of optimal decision

reducts from data sets with a large number of attributes. We

showed that by utilization of clustering results it is possible

to significantly speed up the search for decision reducts and

that the resulting reducts tend to be shorter than those obtained

without the clustering. We also proposed a discernibility-based

attribute similarity measure, which is useful for identifying

groups of attributes that are likely to be interchangeable in

many decision reducts.

In the future, we intend to combine our methods with

other knowledge discovery approaches that involve attribute

grouping and selection [9], [20]. One may also consider an

idea of full integration of the algorithms for attribute clustering

and selection, so they can provide feedback to each other

within the same learning process. Such a new process may

be performed separately for particular microarray data sets or,

as suggested in Section VI, over their larger unions.

Also, as already noted, the integration of the attribute clus-

tering and selection procedures may not only bring significant

performance improvements but also provide a new meaning

with regard to the attribute selection outcomes. Namely, in-

stead of operating with subsets of individual attributes chosen

from thousands of genes, it may be truly better to deal with

subsets of representatives selected from much more robust

clusters of pair-wise replaceable attributes.
Although our experiments referred primarily to microarray

data sets, we plan to use our methods also for the analysis of

a broader class of biomedical data sources, such as medical

texts and clinical data [6], [35], where there is a common need

for a scalability of the attribute selection techniques.
In particular, we intend to utilize the developed methods

in the system already mentioned in the end of Section VI,

in which they can be applied to different data types, such as

corpora of textual documents. In this context, both attribute

clustering and reduction, can play a significant role for a

search engine, whose aim is to facilitate retrieval, synthe-

sis and visualization of semantically meaningful information

from scientific document repositories. The observations on a

possibility of reusing knowledge related to textual data was

actually among the factors, which motivated us in designing

architecture of such an engine.
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ANDRZEJ JANUSZ, DOMINIK ŚLĘZAK: UTILIZATION OF ATTRIBUTE CLUSTERING METHODS 301
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