
Applied Metamodelling to
Collaborative Document Authoring

Anna Kocurova and Samia Oussena
School of Computing and Technology

University of West London

London, UK

Email: Anna.Kocurova,Samia.Oussena@uwl.ac.uk

Tony Clark
School of Engineering and Information Sciences

Middlesex University

London, UK

Email: T.N.Clark@mdx.ac.uk

Abstract—This document describes a domain specific language
tailored for collaborative document authoring processes. The lan-
guage can support communication between content management
systems and user interfaces in web collaborative applications.
It allows dynamic rendering of user interfaces based on a
collaboration model specified by end users. The construction
of the language is supported by a metamodel. We demonstrate
the use of the proposed language by describing an implemented
simple document authoring system.

Index Terms—collaborative authoring; multi-structured docu-
ment; metamodelling; domain specific language.

I. INTRODUCTION

C
OLLABORATIVE applications often allow its users to

specify their own work patterns and authoring processes.

The applications need to have an ability to integrate cus-

tomised workflow process models. The way the workflow pro-

cess models are designed, integrated and used depends on the

structure of the particular collaborative application. Often in

web applications, the Model-View-Controller (MVC) software

design pattern is incorporated and a three-layer architecture,

in which the presentation, the functional processing and the

data management are separated concepts, is used. We assume

that using the workflow process models in the functional

processing layer can enrich its functionality. The workflow

process models can serve as the domain models in the MVC

pattern and also support dynamic building of user interfaces

for each collaborative case. Therefore, a platform-independent

and user-friendly approach that can help to develop such

domain models is needed.

The Model-Driven Approach, with a Domain-Specific Lan-

guage (DSL) as its key enabling technology, is a way to

abstract away from implementation-specific details. DSLs

specify what should be executed rather than how and they are

more customisable to the particular context and domain. DSLs

are languages with usually intuitive syntax and constructs,

allowing solutions to be expressed in the problem domain.

Moreover, by the employment of the DSL, all abstract con-

structs that are resistant to change can be captured.

Our aim in this paper is to propose a DSL targeted to

collaborative processes and address the complexity of the

development of web collaborative applications. Our focus

is on multi-structured document authoring, management and

workflow. A notation that facilitates the construction of models

in the language is proposed. The notation includes a number

of graphical icons which represent the domain concepts and

relationships between them. Metamodelling is the way to de-

sign and integrate semantically rich languages in a unified way

[1]. A metamodelling approach is used to define all constructs,

the relationships that exist between constructs and well-formed

rules that state how the constructs can be combined to create

models.

This paper reports on our experiences of implementing a

collaborative document authoring system and designing the

DSL by applying the metamodelling approach. It contributes to

the domain-specific functionality of collaborative applications.

The paper is structured as follows. Section 2 discusses related

works. In Section 3, we outline a case study in which a

collaborative authoring process is described. Based on the

case study, a model for the authoring process is proposed

and domain analysis is conducted in Section 4. The domain-

specific features are visualised and expressed on a metamodel

in Section 5. The architecture of collaborative applications is

described in Section 6. The implementation details of a simple

document authoring system are outlined in Section 7. Section

8 highlights our future work.

II. BACKGROUND AND RELATED WORK

A. Document Management

Focus on collaborative activities by using the model-driven

approach has been applied in [2]. The work presents generic

modelling approach only for collaborative ubiquitous software

architectures. Document composition and life-cycle have been

addressed in [3] where a theoretical framework and practical

guidelines for modelling composite document behaviour are

proposed. The model-driven approach to define document

management applications by using Eclipse Modelling Frame-

work is described in [4], however the work focuses only on

document management as a top layer on the repository and

does not consider other collaborative functionalities.

A framework for collaborative document procedures has

been proposed in [5]. The work describes a run-time document

workflow engine based on XML technologies. Although we

have used similar constructs and XML technologies in our

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1385–1390

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 1385

Fig. 1. Model for collaborative document authoring

prototype implementation, our work offers a domain-specific

tool to build solutions at a higher level of abstraction.

Domain-specific modelling is applied to support document

engineering in [6]. Although the work describes a workflow

control language, it focuses more on formal specification and

document rendering in directory publishing rather than on

behaviour of multi-structured documents.

B. Domain Specific Languages

The more software products become robust and complex,

the more sophisticated tools are required in software develop-

ment. DSLs are tools to cope with the increasing user demands

and the gap between IT and business concepts [7]. The need

for new languages for various growing domains is strongly

increasing [8]. The benefits of using DSLs to application

development have been highlighted in [9].

Convergence of the model-driven approach and DSL by

using a metamodel is described by [10], [11] where a meta-

model is promoted as the abstract syntax for a DSL that

may be used in various situations. Metamodels capture the

essential features of the application domain and describe the

valid models permitted in the domain. Using metamodels is

required particularly in cases where a language needs to be

defined precisely. For example, the UML specification contains

one large metamodel 1.

III. CASE STUDY

The work described in this paper is derived from the

Rudiment project [http://samsa.uwl.ac.uk/rudiment]. Rudiment

has been developed as a document authoring system based on

the following case study.

1UML 2.3, http://www.omg.org/spec/UML/2.4.1/

Academic researchers want to have their own environment

for collaborative work because they collaborate on a number

of multi-structured documents such as research proposals or

research papers. Typically, sections or subsections of the

documents are independently edited by certain participants

with specific roles. Collaborators need to regularly access,

retrieve and edit the working sections of the documents using

a prescribed set of rules. Their complex processes of docu-

ment production and management need to be customised by

their internal rules for collaboration. An agreed work pattern

(workflow) can enhance productivity of a team. They expect

to have a user-friendly tool that would enable them to design

their own multi-structured document authoring processes and

specify actions for particular roles.

IV. DOMAIN MODEL

In this section, a collaborative authoring model for the case

study is illustrated. Domain analysis is used to define all

common domain-specific constructs.

A. Collaborative Authoring Model

A research proposal authoring process is used as a test

case. The structure of a research proposal funding bid and

the bidding process are illustrated in Fig 1. This model has

been simplified for the purpose of the paper.

The Project Bid as a main document contains descriptions

in the form of properties such as title, author and checked.

Each property has assigned a property type. The document is

multi-structured, thus composed from a number of sections.

In this case, MainText and Budget are shown. The Project Bid

document and the Budget section have their own lifecycles and

conform to their own work patterns of completion. The states

of elements are represented by the oval graphical symbols and

1386 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

are associated with control boxes. A control box contains a set

of possible run-time actions. The actions can be performed by

specified roles. For example, if the Budget section is in the

Prepare state, the section can be further processed only by

users with the role of Manager or Anyone. The role Anyone

represents any user from the work team. While a user with the

role of Manager can Sign off the budget, other collaborators

are allowed to only Edit it. The actions might change values

of attributes of the corresponding element and trigger certain

transitions between states either of the element itself or its

parent element. For instance, when Manager signs off the

Budget, the state of the Project Bid is changed from Prepare

to Finalise.

B. Domain Features

The graphical representation of the authoring process il-

lustrated in Fig 1 uses a mix of textual and graphical icons

to visualise the document hierarchy and the collaborative

workflow at run-time. The model can be supplied to the

collaborative applications which will drive the collaboration

at runtime according to this model. Based on the case, we

have defined the following set of features that the DSL must

support.

Element Containership: Document structure is always a

key to its management. Structure encompasses well-defined

manageable sub elements of a document and their relationships

to each other. The Container and Element widgets in the

model scheme can be used to build a multi-level hierarchy of a

document. The Container widget can contain other containers

or atomic elements.

Properties: To ensure that elements are accessible, identifiable

and discoverable, properties that provide information about the

elements need to be defined. Properties can be associated with

the Container or Element widgets. The control properties are

used to guide transitions between two states.

Workflow: Workflow defines a series of connected steps that

must be accomplished to produce a required output. Each

workflow step alters the document or its element in a certain,

predesigned way. Transitions are driven by guards. Workflow

can be designed for any parent or child element.

Fig. 2. Metamodel

ANNA KOCUROVA, SAMIA OUSSENA, TONY CLARK: APPLIED METAMODELLING TO COLLABORATIVE DOCUMENT AUTHORING 1387

Document authoring: A number of people can contribute and

share documents. Therefore, a set of roles needs to be defined.

A role is associated with a set of permissions and obligations.

Roles are occupied by actors.

V. DSL FEATURES

In this section, the domain concepts and their relationships

are progressively defined. The information is visualised on a

metamodel (Fig. 2).

A. Document Structure

A system manages a collection of documents. A document

is a sequence of sections and sub-sections. The structure of

elements is a tree where the leaves of the tree are blocks of

text, diagrams, etc. Specific types of elements (e.g. projects,

documents, sections, etc.) are specializations of Container.

There may be many different types of atomic element (only

Text is shown). All elements must be specialized to fit individ-

ual collaborative document needs. For example, the structure

of a research proposal bid may be different from the structure

of a final project report. Specialization must support both

structure and behaviour. Variability of structure is achieved by

allowing elements to be arbitrary sized trees marked up with

any number of properties. A property is just a name-value

association. In our example, the Project Bid is a document

composed of two sections: Main Text and Budget. The Project

Bid has various properties such as title, author and checked.

Each section may have some additional properties, such as the

Budget section has assigned the signedOff property.

B. Roles and Actions

Interaction with all elements is via actions. An action can

create or delete a project element. An action may modify an

element by changing the text or modifying a property value.

We have identified the following basic action types: create;

delete; modify-text; modify-property. Actions are performed

by actors, i.e. project members who have specific roles. For

example, a project member may create a new document or

delete a section of an existing document. A project must

define, a-priori, a collection of role types. For instance, only

Manager can Sign off the Budget section but Anyone is

allowed to Edit it.

C. States

At any given instance of time, an element is in a specific

state that is defined by its property values, the states of its

component elements (if any) and the text it contains. The life-

cycle of an element describes a sequence of states that it has

occupied and the actions that have occurred to cause changes

of the states. For example, the Budget section might be in its

Initial state or the Prepare state.

D. Transitions

A transition between two states of the same element cor-

responds to an action that has occurred. The result is an

important change in state. Each transition is associated with a

source and target state.

The transitions and states are operated by a state machine.

A guard for a transition can be indicated. It contains condi-

tions that must be true for the transition to be triggered. In

Rudiment, the Budget goes from the Initial state to the Final

state through the Prepare state. The condition, [signedOff], is

a guard for the latter transition.

E. Element Types

Each element in Rudiment has its own type. For instance,

a document would be an element of DocumentType. The

structure of elements is based on the structure of their types.

A type is a specialization of ContainerType. Therefore, it may

represent a collection of other types that can be sequenced

or unordered. The Star class, an arbitrary sized sequence of

elements, specifies the possible multiplicity of a particular type

within a container. Elements have properties and element types

have property types. This hierarchy of types at the metamodel

level enables the modelling of reusable document templates.

F. Element Lifecycle

Each element goes through a plan that is described in

terms of a collection of (partially ordered) tasks that must

be performed by actors in designated roles (Fig 3). Each task

corresponds to an action. Element states are associated with

actions blocks. An ActionBlock is a container of actions. Each

action can be performed by a number of roles. There will be

conditions expressed in terms of the element properties and

subcomponents that must be satisfied before the element may

change from one state to another. Explaining the conditions

for each action in detail is out of scope of this paper.

Fig. 3. Element Lifecycle

VI. ARCHITECTURE OF COLLABORATIVE APPLICATIONS

The language proposed in this paper is a tool that can

support the design of collaborative processes. The aim of this

section is to describe an overall architecture of collaborative

applications and the applicability of the DSL. The system ar-

chitecture comprises three layers: content management system

(CMS), DSL specific engine and user interface (UI).

1388 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

The UI layer should provide a means of input and output,

allowing users to interact with the system. Roles and collabora-

tive groups should be managed in this layer. The DSL-specific

engine is a layer placed on top of a content management

system and should drive behaviour of collaborative applica-

tions dynamically at runtime. This engine, based on the MVC

design pattern, should process concrete DSL models, supports

document structuring, workflow and authoring. The content

management layer has the data and content management

functionalities and supports version controlling.

A. Overview

Events are actions created in the UI layer and originate

from user actions. The events form inputs for the system.

Created events are first processed by an event handler. Internal

processing of events that lead to outputs is handled by a

controller as shown in Listing 1. The outputs are responses

returned to the UI layer. The responses contain information

about the element structure, its workflow state and a set of

actions performable in the next step.

r e s p o n s e := i n i t i a l a c t i o n s B l o c k ;

w h i l e t r u e {
command (a , e , ws , r , p) := r e d u c e (prog) ;

(eCont , ws ’)

:= pe r fo rm (command , s t a t e) ;

(a c t i o n s B l o c k) := o b t a i n A c t B l o c k (e , ws ’) ;

r e s p o n s e

:= p o p u l a t e (eCont , a c t i o n s B l o c k) ;

e v e n t := w a i t f o r e v e n t () ;

p rog := h a n d l e (e v e n t) ;

}

First, the program prog is evaluated and reduced to produce

a command with respect to the invoked action (a), cur-

rent element (e), its workflow state (ws), user role

(r) and other parameters (p). Performing the command

with respect to a particular application state and current

context results in an updated workflow state (ws’),

and an updated element containership (eCont). The

eCont represents the containership of elements to which

the current element belongs. Based on the element and its

workflow state, a new actionsBlock is obtained. The

actionsBlock represents a set of actions available in

next step. The actionsBlock and eCont form a new

response.

The first response is an initial actionsBlock which

contains a set of actions. This is returned when a user logs

in the system. The application then is in an awaiting state

for a next event. A handler for the event is defined in the

actionsBlock which returns a new program according to

the given element, its workflow state and role of user.

Based on the cycle, the additional features are defined:

Command: Commands deal with accessing and updating of

an element or its property in a content management system.

Actions Block: An actions block consists of actions associated

with a workflow state of a particular element.

Response: A response can be seen as an intermediary that

communicates all updates back to the UI layer. The response

includes information about the corresponding updated element

structure and a list of all actions performable in the next step

by the current user. Actions returned in an action block are

used to dynamically render the UI. In the UI, a button is

created for each action. However the details of how the UI

is created are outside the scope of the paper.

Events: An event occurs within a particular actions block, e.g.,

when a user presses a button. An event handler is responsible

for handling the event.

VII. IMPLEMENTATION DETAILS

A prototype of a collaborative document authoring system

has been implemented. This section describes the implemen-

tation details of the system. There are a number of open

source systems supporting document management with rich

functionalities and different deliveries that can be customised,

extended and integrated. In the Rudiment project, Alfresco

has acted as a data management layer and Drupal has been

used as a user interface layer. The technology mix represents

a powerful tool to create the required environment.

A. Document Management

The DSL is defined for multi-structured documents. The

content model used in the data management layer should

support the document structure. The content model of Rudi-

ment has been designed as an extension of the content model

of Alfresco. By modelling content types, content aspects

and content metadata (properties), we gained the ability to

control the lifecycle and manage element types as needed.

In Alfresco, if the content model is customised, actions must

be additionally specified. A set of actions for each element

type, including creating, editing, modifying or removing the

element, has been predefined. In addition, actions to modify

values of metadata were enabled.

The engine has been implemented as an intermediary be-

tween Alfresco and Drupal for the bidding process model.

The engine is created by using Alfresco’s REST-based web

script framework. A set of web scripts have been defined.

Each web script has been associated with a basic action such

as Create Document, Add Element, Add Metadata, Update

Metadata, etc. This flexible and lightweight framework uses

URL addressability of objects in the Alfresco repository and

the objects are accessed from a frontend application, in our

case Drupal, by using XMLHttpRequests.

B. System Execution Example

An illustrative example of the execution process, when the

Create Bid button is clicked, is shown in Fig 4. A user with

a role of manager decides to create a bid from the template.

The Create Bid button is clicked in Drupal and it invokes

a web script associated with the action. The bid is created

and persisted in Alfresco. It is in the Prepare state. The

populated XML template is returned to the UI layer. It contains

information about the bid structure and a list of all available

ANNA KOCUROVA, SAMIA OUSSENA, TONY CLARK: APPLIED METAMODELLING TO COLLABORATIVE DOCUMENT AUTHORING 1389

Fig. 4. System Overview

actions associated with the Prepare state in the model: Edit, Set

Author and Set Title. In the following step, the XML document

is used to render the UI. The following buttons are created in

the UI: Edit, Set Author and Set Title.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented the DSL features for the collab-

orative document authoring domain. Although the proposed

metamodel captures the most common domain constructs of

the domain, it is still only a first step towards developing

a more generic and automated approach. The pivot for the

work has been a research bid but the tool can be extended to

serve any collaborative task. The future work will include the

implementation of a more generic DSL-engine.
The concept of document management can be extended to

content management, when the graphical icon for element

containership might be used to represent content such as

image, file or any other media.

REFERENCES

[1] T. Clark, P. Sammut, and J. Williams, “Applied metamodelling: A
foundation for language driven development | lambda the ultimate.”
http://lambda-the-ultimate.org/node/2711, 2008.

[2] I. B. Rodriguez, G. Sancho, T. Villemur, S. Tazi, and K. Drira, “A
model-driven adaptive approach for collaborative ubiquitous systems,” in
Proceedings of the 3rd workshop on Agent-oriented software engineering

challenges for ubiquitous and pervasive computing, (London, United
Kingdom), pp. 15–20, ACM, 2009.

[3] S. Battle and H. Balinsky, “Modelling composite document behaviour
with concurrent hierarchical state machines,” in Proceedings of the

9th ACM symposium on Document engineering, (Munich, Germany),
pp. 25–28, ACM, 2009.

[4] N. Boyette, V. Krishna, and S. Srinivasan, “Eclipse modeling framework
for document management,” in Proceedings of the 2005 ACM symposium

on Document engineering, (Bristol, United Kingdom), pp. 220–222,
ACM, 2005.

[5] A. Marchetti, M. Tesconi, and S. Minutoli, “XFlow: an XML-Based
Document-Centric workflow,” in Web Information Systems Engineering

– WISE 2005, pp. 290–303, 2005.
[6] V. Djukic, I. Lukovic, and A. Popovic, “Domain-specific modeling in

document engineering,” in Computer Science and Information Systems

(FedCSIS), 2011 Federated Conference on, pp. 817–824, 2011.
[7] A. Kleppe, Software Language Engineering. Addison-Wesley, Dec.

2008.
[8] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and

S. Vlkel, “Design guidelines for domain specific languages,” in The

9th OOPSLA workshop on domain-specific modeling, 2009.
[9] J. Gray and G. Karsai, “An examination of dsls for concisely represent-

ing model traversals and transformations,” in System Sciences, 2003.

Proceedings of the 36th Annual Hawaii International Conference on,
IEEE, 2003.

[10] T. Cleenewerck and I. Kurtev, “Separation of concerns in translational
semantics for DSLs in model engineering,” in Proceedings of the 2007

ACM symposium on Applied computing, (Seoul, Korea), pp. 985–992,
ACM, 2007.

[11] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez, “Model-based DSL
frameworks,” in Companion to the 21st ACM SIGPLAN symposium

on Object-oriented programming systems, languages, and applications,
(Portland, Oregon, USA), pp. 602–616, ACM, 2006.

1390 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

