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Abstract—E. coli plays significant role in modern biological
engineering and industrial microbiology. In this paper the Ant
Colony Optimization algorithm is proposed for parameter iden-
tification of an E. coli fed-batch cultivation process model. A
system of nonlinear ordinary differential equations is used to

model the biomass growth and the substrate utilization. We
use real experimental data set from an E. coli MC4110 fed-
batch cultivation process for performing parameter optimization.
The objective function was formulated as a distance between
the model predicted and the experimental data. Two different
distances were used and compared – the Least Square Regression
and the Hausdorff Distance. The Hausdorff Distance was used
for the first time to solve the considered parameter optimization
problem. The results showed that better results concerning
model accuracy are obtained using the objective function with a
Hausdorff Distance between the modeled and the measured data.
Although the Hausdorff Distance is more time consuming than
the Least Square Distance, this metric is more realistic for the
considered problem.

I. INTRODUCTION

A lot of proteins are produced by the modified genetically

microorganisms. One of the most used host organisms in the

process is the Escherichia coli [33]. Furthermore, the E. coli

is still the most important host organism for the recombinant

protein production. In many cases, cultivation of recombinant

micro-organisms e.g. the E. coli, is the only economical way

to produce pharmaceutical biochemicals such as: interleukins,

insulin, interferons, enzymes and growth factors, etc. Simple

bacteria, like the E. coli, are manipulated to produce these

chemicals so that they are easily harvested in vast quantities for

use in medicine. Scientists may know more about the E. coli

than they do know about any other species on earth. Research

on the E. coli accelerated after 1997, after publication of its

entire genome.The scientists were able to survey all 4,288 of

its genes, discovering how groups of them worked together

to break down food, make new copies of the DNA and do

other tasks. However, despite decades of research, there rest

a lot more to know about the E. coli. In 2002, they formed

the International E-coli Alliance, for organization of projects

that many laboratories could work together. As knowledge of

the E. coli grows, scientists are starting to build models of the

microbe that capture some of its behavior.It is important to be

able to simulate how fast the microbe will grow on various

sources of food, and how its growth changes if individual

genes are knocked out. These questions are best answered by

application of mathematical modeling.

Modeling of biotechnological processes is a common tool

in process technology. It is obvious that the model is always a

simplification of the reality. This is especially true when trying

to model natural systems containing living organisms. How-

ever, for many industrial relevant processes, detailed models

are not available due to the insufficient understanding of the

underlying phenomena. These models can be too complicated

and/or impossible to be solved. Therefore the specialists try

to separate the most important components, and to create

simplified models, which are as close as possible to the

real processes. The mathematical models are very useful and

effective tools in describing those effects. They are of great

importance for control, optimization, or for understanding of

the process. Thus the numerical solution of the models is fun-

damental for the development of powerful, though economical,

methods in the fields of bioprocess design, plant design, scale-

up, optimization and bioprocess control [26], [21]. Some of

the recent researches and developed models of the E. coli were

presented in [6], [15], [16], [20], [22], [28].

A common approach to model cellular dynamics is by

systems of nonlinear differential equations. Obviously, pa-

rameter identification of a nonlinear dynamic model is more

difficult than the linear one, as no general analytic results

exist. The difficulties that may arise are such as: convergence

to local solutions if standard local methods are used, over-

determined models, badly scaled model function, etc. The

problem is NP-hard and it is unpractical to be solved with

exact or traditional numerical method. Therefore, existing

research results indicate that the most useful solution method is

by application of some metaheuristics. During the last decade

metaheuristic techniques have been applied in a variety of

areas. Heuristics can obtain suboptimal solution in ordinary

situations and optimal solution in particular cases. Since the

considered problem has been known to be NP-complete, using

heuristic techniques can solve this problem more efficiently.

Three best known (and most studied) heuristic approaches

are: the iterative improvement algorithms, the probabilistic

optimization algorithms, and the constructive heuristics. In

this context, the evolutionary algorithms like: (a) Genetic

Algorithms (GA) [13], [14], [18], (b) Evolution Strategies, (c)
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Ant Colony Optimization (ACO) [7], [8], [9], [12], (d) Particle

Swarm Optimization [32], (e) Tabu Search (TS) [35], (f)

Simulated Annealing (SA) [17], (g) estimation of distribution

algorithms, (h) scatter search, (i) path relinking, (j) greedy

randomized adaptive search procedure, (k) multi-start and

iterated local search, (l) guided local search, and (m) variable

neighborhood search are - among others - often listed as

examples of classical metaheuristics [3], [30], [31]. Obviously,

they all have individual historical backgrounds and follow

different paradigms and philosophies [4]. In this work the

ACO is chosen as the most common direct method used for

the global optimization.

The ACO is a rapidly growing research area of population-

based metaheuristics that can be used to find approximate

solutions to difficult optimization problems. It is applicable

for a broad range of optimization problems, can be used

in dynamic applications (adapts to changes such as new

distances, etc.) and in some complex biological problems

[10], [11], [27]. Recall that the ACO can compete with other

global optimization techniques like GAs and SA. Overall,

the ACO algorithms have been inspired by the real-world

ant behavior. In nature, ants usually wander randomly, and

upon finding food return to their nest while laying down

pheromone trails. If other ants find such a path, they are

likely to not continue traveling at random, but to follow the

trail instead, returning and reinforcing it (if they eventually

find food). However, as time passes, the pheromone starts to

evaporate. Therefore, the more time it takes for an ant to travel

down the path and back again, the more time the pheromone

has to evaporate and the path becomes less noticeable. A

shorter path, in comparison, will be visited by more ants and

thus the pheromone density remains high for a longer time.

The ACO is usually implemented as a team of intelligent

agents which simulate the ants behavior, walking around the

graph representing the problem to solve using mechanisms of

cooperation and adaptation.

In this paper the ACO is applied for parameter identification

of a system of the E. coli fed-batch cultivation process,

described in terms of a mathematical model. Specifically, a

system of nonlinear ordinary differential equations is proposed

to model the E. coli biomass growth and substrate (glucose)

utilization. The parameter optimization is performed using

real experimental data set from the E. coli MC4110 fed-

batch cultivation process. The cultivation was performed in the

Institute of Technical Chemistry, of the University of Hannover,

Germany during the collaboration work with the Institute

of Biophysics and Biomedical Engineering, BAS, Bulgaria,

and was funded by a grant DFG. The experimental data set

includes records for the substrate feeding rate, concentration

of biomass and substrate (glucose), and the cultivation time.

In the nonlinear mathematical model considered here, the

parameters that should be estimated are the maximum specific

growth rate (µmax), the saturation constant (kS), and the yield

coefficient (YS/X).

The parameter estimation is performed based upon the use

of a modified Hausdorff Metric [25] and the most commonly

used metric – the Least Square Regression. The Hausdorff

Metrics are used in the geometric settings for measuring the

distance between sets of points. They have been used exten-

sively in areas such as computer vision, pattern recognition and

computational chemistry [34], [29], [19], [5]. The modified

Hausdorff Distance is proposed to evaluate the mismatch

between the experimental and the model predicted data. The

results from both metrics are compared and analyzed.

The rest of the paper is organized as follows. The optimal

parameters setting problem is formulated in Section 2. The

ACO algorithm for the considered problem is defined in Sec-

tion 3. The numerical results and the discussion are presented

in Section 4. Concluding remarks are introduced in Section 5.

II. PROBLEM FORMULATION

The costs of developing mathematical models for the bio-

process improvement are often too high and the benefits

too low. The main reason for this is related to the intrinsic

complexity and non-linearity of biological systems. In general,

mathematical descriptions of growth kinetics assume extensive

simplifications. These models are often not accurate enough to

correctly describe the underlying mechanisms. Another critical

issue is related to the nature of the bioprocess models. Quite

often, the parameters involved are not identifiable. Addition-

ally, from the practical point of view, such identification would

require data from specific experiments, which are themselves

difficult to design and to realize. However, the estimation of

model parameters with high parameter accuracy is essential

for successful model development.

The real parameter optimization of simulation models, has

become a research field of great interest in recent years.

Nevertheless, after all completed research (for example, see

references quoted above), this task still represents a very diffi-

cult problem. This mathematical problem, the so-called inverse

problem, is a big challenge for the traditional optimization

methods. In this case only the direct optimization strategies

can be applied, because they exclusively use information about

values of the goal function. Additional information about the

goal function, like its gradients, etc., which could be used to

accelerate the optimization process, is not available. Since an

evolution of a goal for one string is provided by one simulation

run, completing of the optimization algorithm may require a

lot of computation time. Therefore, various metaheuristics are

used as an alternative to surmount the parameter estimation

difficulties.

A. Problem Model

The general state space dynamical model of the process

of interest was described by Bastin and Dochain in [2]. It is

accepted as representing the dynamics of an n components and

m reactions bioprocess:

dx

dt
= Kϕ(x, t)−Dx+ F −Q. (1)

Here, x is a vector representing the state components; K is

the yield coefficient matrix; ϕ is the growth rates vector; the
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vectors F and Q are the feed rates and the gaseous outflow

rates. The scalar D is the dilution rate, which will be the

manipulated variable, and which is defined as follows:

D =
Fin

V
(2)

where Fin is the influent flow rate and V is the bioreactor

volume.

Application of the general state space dynamical model [2]

to the E. coli cultivation fed-batch process leads to the follow-

ing nonlinear differential equation system [23]:

dX

dt
= µmax

S

kS + S
X −

Fin

V
X (3)

dS

dt
= −

1

YS/X
µmax

S

kS + S
X +

Fin

V
(Sin − S) (4)

dV

dt
= Fin (5)

where:

X – biomass concentration, [g/l];

S – substrate concentration, [g/l];

Fin – feeding rate, [l/h];

V – bioreactor volume, [l];

Sin – substrate concentration in

the feeding solution, [g/l];

µmax – maximum value of

the specific growth rate, [h−1];

kS – saturation constant, [g/l];

YS/X – yield coefficient, [-].

The mathematical formulation of the nonlinear dynamic

model (Eqs. (3) - (5)) of the E. coli fed-batch cultivation

process is described according to the mass balance and the

model is based on the following a’priori assumptions:

• the bioreactor is completely mixed;

• the main products are biomass, water and, under some

conditions, acetate;

• the substrate glucose is consumed mainly oxidatively and

its consumption can be described by the Monod kinetics;

• the variation in the growth rate and the substrate con-

sumption do not significantly change the elemental com-

position of the biomass, thus only balanced growth con-

ditions are assumed;

• parameters, e.g. temperature, pH, or pO2, are controlled

at their individual constant set points.

For the parameter estimation problem the real experimental

data of the E. coli MC4110 fed-batch cultivation process

is used. Off-line measurements of the biomass and on-line

measurements of the glucose concentration are used in the

identification procedure. The cultivation condition and the

experimental data have been published in [24]. Here only the

fermentation conditions described.

The fed-batch cultivation of the E. coli MC4110 is

performed in a 2l bioreactor (Bioengineering, Switzerland),

using a mineral medium [1], in the Institute of Technical

Chemistry, University of Hannover. Before inoculation, a

glucose concentration of 2.5 g/l is established in the medium.

Glucose in the feeding solution is 100 g/l. The initial liquid

volume is 1350 ml. The pH is controlled at 6.8 and the

temperature is kept constant at 35◦C. The aeration rate is

kept at 275 l/h air, the stirrer speed at start 900 rpm, and

after 11 hours the stirrer speed is increased in steps of 100

rpm. At end the stirrer sped reaches 1500 rpm. Oxygen is

controlled at around 35%.

Off-line analysis

For the off-line glucose measurements, as well as the biomass

and the acetate concentration determination, samples of

about 10 ml are taken approximately at every hour. Off-line

measurements are performed by using the Yellow Springs

Analyser (Yellow Springs Instruments, USA).

On-line analysis

For the on-line glucose determination a flow injection analysis

(FIA) system has been employed, using two pumps (ACCU

FM40, SciLog, USA) for the continuous sample and the

carrier flow rate. To reduce the measurement noise the

continuous-discrete extended Kalman filter was used [1].

Glucose measurement and control system

For on-line glucose determination, the same FIA system has

been employed for the continuous sample and the carrier flow

rate at 0.5 ml/min and 1.7 ml/min respectively. A total of

24 ml of cells containing the culture broth were injected

into the carrier stream and mixed with an enzyme solution

of 350 000 U/l of glucose oxidase (Fluka, Germany) of a

volume of 36 ml. After passing a reaction coil of 50 cm

length, the oxygen uptake was measured using an oxygen

electrode (ANASYSCON, Germany). To determine the oxygen

consumed by cells only, no enzyme solution were injected.

Calculating the difference of both dissolved oxygen peak

heights, the glucose concentration can be determined. The time

between sample taking and the measurement of the dissolved

oxygen was ∆t = 45 s.

For the automation of the FIA system, as well as

glucose concentration determination, the software CAFCA

(ANASYSCON, Germany) was applied. To reduce the mea-

surement noise the continuous-discrete extended Kalman filter

was used. This program was running on a separate PC and

got the measurement results via a serial connection. A PI

controller was applied to adjust the glucose concentration to

the desired set point of 0.1 g/l [1].

The initial process conditions were [1]:

t0 = 6.68 h, X(t0) = 1.25 g/l, S(t0) = 0.8 g/l, Sin = 100 g/l.

B. Optimization Criterion

From the practical perspective, modelling studies are per-

formed to identify simple and easy-to-use models that are suit-

able to support the engineering tasks of process optimization
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and, especially, of control. The most appropriate model must

satisfy the following conditions:

(i) the model structure should be able to represent the

measured data in a proper manner;

(ii) the model structure should be as simple as possible,

while remaining compatible with the first require-

ment.

On account of that, the cultivation process dynamic is de-

scribed using a simple Monod-type model, the most common

kinetics applied for modelling of the cultivation processes [2].

The optimization criterion is a certain factor, value of

which defines the quality of an estimated set of parameters.

To evaluate the mishmash between the experimental and the

model predicted data, a modified Hausdorff Distance and the

Least Square Regression are proposed.

In this work the Hausdorff Metric is used for the first time to

solve the parameter optimization problem involving cultivation

processes models.

1) Hausdorff Distance: When talking about distances, it

usually means the shortest: for instance, if a point X is said

to be at distanceD of a polygon P , it is generally assumed that

D is the distance from X to the nearest point of P . The same

logic applies for polygons: if two polygons A and B are at

some distance from each other, it id commonly understood that

the distance is the shortest one between any point of A and any

point of B. That definition of distance between polygons can

become quite unsatisfactory for some applications. However,

it would be natural to expect that a small distance between

two polygons means that no point of one polygon is far from

the other polygon. Unfortunately, the shortest distance concept

carries very low informative content.

In mathematics, the Hausdorff Distance, or the Hausdorff

Metric (named after Felix Hausdorff), also called Pompeiu-

Hausdorff Distance [25], measures how far two subsets of

a metric space are from each other. It turns the set of non-

empty compact subsets of a metric space into a metric space

in its own right. Informally, two sets are close in the Hausdorff

Distance if every point of either set is close to some point of

the other set. In other words, the Hausdorff Distance is the

longest distance you can be forced to travel by an adversary

who chooses a point in one of the two sets, from where you

then must travel to the other set. Thus, it is the farthest point

of a set that you can be at, to the closest point of a different

set. More formally, the Hausdorff Distance from set A to set

B is a maxmin function defined as:

h(A,B) = max
a∈A

{

min
b∈B
{d(a, b)}

}

, (6)

where a and b are points of sets A and B respectively, and

d(a, b) is any metric between these points. For simplicity, in

this work, the d(a, b) as the Euclidean distance between a and

b is taken. If sets A and B are made of lines or polygons

instead of single points, then h(A,B) applies to all defining

points of these lines or polygons, and not only to their vertices.

The Hausdorff Distance gives an interesting measure of mutual

proximity, by indicating the maximal distance between any

point of one set to the other set. IN this way it is better than

the shortest distance, which applied only to one point of each

set, irrespective of all other points of the sets.

2) Least Squares Regression: The objective of the mod-

elling process consists of adjusting the parameters of a model

function to best fit the data set. A simple data set consists of

n points (data pairs) (xi, yi), i = 1, 2, . . . , n, where xi is an

independent variable and yi is a dependent variable value of

which is found by observation. The model function has the

form f(x, β), where the m adjustable parameters are held in

the vector β. The goal is to find the parameter values for the

model which “best” fits the data. The least squares method

finds its optimum when the sum S of squared residuals:

S =

n
∑

i=1

r2i

is at a minimum. A residual is defined as the difference

between the actual value of the dependent variable and the

value predicted by the model. A data point may consist of

more than one independent variable. For example, when fitting

a plane to a set of height measurements, the plane is a function

of two independent variables, x and z. In the most general case

there may be one or more independent variables and one or

more dependent variables at each data point.

ri = yi − f(xi, β).

III. ANT COLONY OPTIMIZATION (ACO)

The ACO is a stochastic optimization method that mimics

the social behavior of real ants colonies, which manage to

establish the shortest rout to feeding sources and back. Real

ants foraging for food lay down quantities of pheromone

(chemical cues) marking the path that they follow. An isolated

ant moves essentially at random but an ant encountering a

previously laid pheromone will detect it and decide to follow

it with high probability and thereby reinforce it with a further

quantity of pheromone. The repetition of the above mechanism

represents the auto-catalytic behavior of a real ant colony,

where the more the ants follow a trail, the more attractive

that trail becomes. The original idea comes from observing

the exploitation of food resources among ants, in which ants’

individually limited cognitive abilities have collectively been

able to find the shortest path between a food source and the

nest.

Basic of Ant Algorithm

The ACO is usually implemented as a team of intelligent

agents, which simulate the ants behavior, walking around the

graph representing the problem to solve, using mechanisms

of cooperation and adaptation. The requirements of the ACO

algorithm are as follows [3], [8]:

• The problem needs to be represented appropriately, which

would allow the ants to incrementally update the solutions

through the use of a probabilistic transition rules, based
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on the amount of pheromone in the trail and other

problem specific knowledge.

• A problem-dependent heuristic function, that measures

the quality of components that can be added to the current

partial solution.

• A rule set for pheromone updating, which specifies how

to modify the pheromone value.

• A probabilistic transition rule based on the value of the

heuristic function and the pheromone value, that is used

to iteratively construct a solution.

The structure of the ACO algorithm is shown by the

pseudocode below (Figure 1). The transition probability pi,j ,
to choose the node j when the current node is i, is based on

the heuristic information ηi,j and the pheromone trail level

τi,j of the move, where i, j = 1, . . . . , n.

pi,j =
τai,jη

b
i,j

∑

k∈Unused

τai,kη
b
i,k

, (7)

where Unused is the set of unused nodes of the graph.

The higher the value of the pheromone and the heuristic

information, the more profitable it is to select this move and

resume the search. In the beginning, the initial pheromone

level is set to a small positive constant value τ0; later, the
ants update this value after completing the construction stage.

The ACO algorithms adopt different criteria to update the

pheromone level.

Ant Colony Optimization

Initialize number of ants;

Initialize the ACO parameters;

while not end-condition do

for k = 0 to number of ants

ant k choses start node;

while solution is not constructed do

ant k selects higher probability node;

end while

end for

Update-pheromone-trails;

end while

Fig. 1. Pseudocode for ACO

The pheromone trail update rule is given by:

τi,j ← ρτi,j +∆τi,j , (8)

where ρ models evaporation in the nature and ∆τi,j is new

added pheromone which is proportional to the quality of the

solution. Thus better solutions will receive more pheromone

than others and will be more desirable in a next iteration.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, a more precise description, concerning the

application of the ACO for the parameter optimization of

the E. coli cultivation process model, is presented. Here,

the parameters µmax, kS and YS/X have to be estimated.

First, the problem is represented by a graph. It is needed

to find th optimal values of three parameters which are

interrelated. Therefore, the problem is represented with three-

partitive graph. The graph consists of three levels. Every level

represents a search area of one of the parameters that will

be optimized. Every area is thus discretized, to consists of

1000 points (nodes), which are uniformly distributed in the

search interval of every parameter. The first level of the graph

represents the parameter µmax. The second level represents the

parameter kS . The third level represents the parameter YS/X .

There are arcs between nodes from consecutive levels of the

graph and there are no arcs between nodes from the same level.

The pheromone is deposited on the arcs, to indicate how good

is this parameter combination. Every level of the graph of the

problem consists of 1000 points, thus the number of possible

solutions is 109, therefore is unpractical to apply the exact

methods.

A. ACO for Parameter Optimization

Here the proposed ACO approach is very close to real ant

behavior. Starting to create a solution, the ants chose a node

from the firs level in a random way. Next, for nodes from

the second and the third level, they apply the probabilistic

rule. The transition probability depends only on the pheromone

level. The heuristic information is not used. Thus the transition

probability is as follows:

pi,j =
τi,j

∑

k∈Unused

τi,k
, (9)

The ants prefer the node with maximal probability, which

is the node with maximal quantity of the pheromone on the

arc (starting from the current node). If there is more than one

candidate for next node, the ant chooses randomly between

the candidates. The process is iterative. At the end of every

iteration the pheromone on the arcs is updated. The quality

of the solutions is represented by the value of the objective

function. In this case the objective function is the mean

distance between the simulated data and the experimental

data, which are the concentration of the biomass and the

concentration of the substrate. The aim of the process is to

minimize it, therefore the new added pheromone by ant i is:

∆τ = (1 − ρ)/J(i) (10)

where J(i) is the value of the objective function according the

solution constructed by ant i. Thus the arcs corresponding to

solutions with the lesser value of the objective function will

receive more pheromone and will be more desirable in the

next iteration.

The values of the parameters of the ACO algorithms are

very important, because they manage the search process.

Therefore, it is necessary to find appropriate parameter set-

tings, where the number of ants is the main parameter. In

the ACO a small number of ants between 10 and 20 can
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be used, without need to increase the number of iterations

to achieve good solutions. The next parameter is the initial

pheromone. Normally it has a small value. The last parameter

is the evaporation rate, which shows the importance of the

last found solution, as related to the previous ones. Parameters

of the ACO were tuned based on several pre-tests according

considered here optimization problem. After tuning procedures

the main algorithm parameters are set to the optimal settings.

The parameter settings for the ACO are shown in Table I.

TABLE I
PARAMETERS OF ACO ALGORITHM

Parameter Value

number of ants 20

initial pheromone 0.5

evaporation 0.1

In this paper two different measures – the Least Square Re-

gression and the modified Hausdorff Distance are compared.

The modified Hausdorff Distance, which is conformable to the

considered problem is applied. There are two sets of points, the

simulated (model predicted) and the measured (experimental)

data, which form two lines. The Euclidean distance d(t)
between points from the two lines, corresponding to the same

time moment t, is calculated. After that, the Euclidean distance
from the point of one of the lines in time t to the points

from other line in the time interval (t − d(t), t + d(t)) is

calculated, and the minimal of these distances is taken. This is

the distance between the two lines in the time moment t. Thus,
the number of calculations, compared with the traditional

Hausdorff Distance, is decreased, due to the fact that the

distance to the points out of the interval (t−d(t), t+d(t)) will
be large. At the end all distances between the points and the

lines are combined. Thereby, eventual larger distance in some

time moment, due to the measurement noise, is eliminated.

Thus, the objective function is presented as a minimization

of the modified Hausdorff Distance measure J1 between

experimental and model predicted values of the state variables,

represented by the vector y:

J1 =

m
∑

i=1

h (yexp(i),y mod (i))
2 → min (11)

where m is the number of state variables (biomass and

glucose concentrations); yexp is the known experimental data;

while y mod model predictions with a given set of the param-

eters.

In the case of the Least Square Regression the objective

function is:

J2 =

m
∑

i=1

(yexp(i)− y mod (i))
2
→ min (12)

B. Numerical Results

All experiments have been conduced on a PC with Intel

Core 2 2.8 GHz, 3.5 GB Memory, Linux operating system and

using the Matlab 7.5 environment. Because of the stochastic

TABLE II
ACO WITH LEAST SQUARE REGRESSION AND HAUSDORFF DISTANCE

Method Average Worst Best

ACO Least Square – 4.8866 6.7700 3.3280
Hausdorff 2.3875 4.1290 1.7218

ACO Hausdorff – 1.8744 2.5322 1.6425
Least Square 3.9706 4.4283 3.4276

TABLE III
BEST PARAMETER VALUES OF THE MODEL

Parameter Value

µmax 0.5283

kS 0.0174

YS/X 2.0300

characteristics of the applied ACO algorithm, a series of 30

runs for each algorithm was performed.

To study the algorithm performance, the worst the best

and the average results of the 30 runs, for the objective

function values of the two variants are studied. For a realistic

comparison, the number of iterations is fixed to be 100. The

average, worst and best values of the objective functions are

shown on Table II. In the first line of the second row, the

average, worst and best value of the objective function are

shown when Least Square Regression is used. The second line

in the second row depicts the calculated Hausdorff Distance

between the same solutions achieved when the objective

function is the Least Square Regression. The first line of the

third row shows the average, best and worst values of the

objective function when it is the Hausdorff Distance. The

second line of the third row represents the Least Square

Distance of the same solutions achieved when the objective

function is the Hausdorff Distance. Comparing the two rows

it can be observed that the average and the worst achieved

results are much better using the Hausdorff Distance than

the Least Square Regression. The best achieved solutions are

similar. In the best achieved solutions it can be seen that

the Hausdorff Distance between achieved solutions is smaller

when the objective function is Hausdorff, but the Least Square

Distance is smaller when the objective function is the Least

Squares Regression. During a number of runs of the algorithm

the same phenomenon was observed – a small Hausdorff

Distance between modeled and measured data and at the same

time a big Least Square Distance between the data. When the

Least Squares Regression is applied as the metric, the distance

between the two lines can be very big, and in the same time

it is seen that they are geometrically close to each other. It

can happen especially in the steep parts of the lines. Applying

the Hausdorff Metrics it can not happen, because it measures

the geometrical similarity. Overall, the Hausdorff Distance is

more time consuming than Least Square Distance, but much

more realistic for the type of problems considered here. It can

be concluded that algorithm proposed in this paper performs

better when the objective function is the Hausdorff Distance.

In Table III the best parameter values (µmax, kS and YS/X ),

obtained using the ACO with the objective function based on
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the Hausdorff Distance, are presented.

The obtained model dynamics compared to the real exper-

imental data is presented in Fig. 2 and Fig. 3.

In Figure 2, the modelled substrate is represented by the

dash line, while by solid line the measured substrate is

depicted. In Figure 3, line represents values of the modelled

biomass, while stars represent values of the measured biomass.

The presented figures show a very good correlation between

the experimental and model predicted data and confirm the

obtained results.

V. CONCLUDING REMARKS

In this work the ACO algorithm for a parameter setting of

the E. coli fed-batch cultivation process model was proposed.

The ACO is chosen as the most common direct method used

for global optimization. The process model is presented as a

system of nonlinear ordinary differential equation describing

the biomass and the substrate dynamics. In the identification

procedures, the real experimental data was used. The objective

function was formulated as the difference between the mod-

eled and the measured data. When solving the optimization

problem, two different measures were used – the commonly

used Least Square Regression and, for the first time applied

to this type of problem, the Hausdorff Distance. To adapt the

Hausdorff Distance to the considered problem a modification

of this metric was proposed. Comparison of the results shows

that the Hausdorff Distance is more time consuming than the

Least Square Distance. However, at the same time, the highest

parameter accuracy is achieved when the objective function

is measured as the Hausdorff Distance between the model

predicted and the real experimental data.
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