
Content Delivery Network Monitoring

Krzysztof Kaczmarski
Marcin Pilarski

Faculty of Mathematics and Information Science, Warsaw University of Technology

ul. Koszykowa 75, 00-662 Warszawa, Poland

Email: k.kaczmarski@mini.pw.edu.pl

Email: marcin.pilarski@mini.pw.edu.pl

Abstract—This document describes the architecture of a dis-
tributed Content Delivery Network (CDN) monitoring system and
its deployment in a research environment in one of the biggest
telecommunication company in Poland and involves about fifty
nodes distributed in the country and database system located on
dedicated storage cluster working in RD center in Warsaw.

I. INTRODUCTION

Nowadays big media companies are highly interested in

publishing in the internet which has became one of the most

influencing medium in the world. Tens millions of users may

be easily gathered by an event or well designed marketing

strategy. However, no media publisher can stand network

traffic of this volume. This is how telecommunication compa-

nies and Content Delivery Networks are involved by playing

crucial role in assuring high level of services especially high

quality streaming data. Its main idea, content migration and

distribution from the central publishing server (often called an

origin server) to as many nodes as possible, shortens the path

to clients, reduces network traffic and decreases bottlenecks in

the infrastructure. It is also much more economical to place

CDN nodes in already existing telco backbone than to build

a new backbone from scratch only for one content provider.

Telecommunication companies begun selling CDN as a service

to many content providers which further reduces running costs.

In this win-win solution each party is satisfied: media can

achieve better quality of service for end users reducing internal

financial engagement and the users may get high quality of

streaming media on demand. However, this scenario requires

tight cooperation between a content provider and a network

owner. It often includes charges for certain data volume or

achieved speed of data transfer and therefore requires detailed

analysis of data flow, activities of users and service quality.

The task of high level data delivery monitoring remains an

open problem.

This paper describes an architecture of a CDN system

monitoring service and experiences of its deployment in one

of the biggest telecommunication companies in Poland. The

rest of the paper is organized as follows. The remaining part

of this section describes the functional and non-functional

requirements for the CDN monitoring system. Section II

provides system architecture and presents experiences and

results. Section III presents results and section IV concludes.

A. Problem Description

CDN Monitoring requires detailed informations, statistical

as well as sensor measurements to be available real-time and

cover any given period of time not loosing any detail. For

example, if a malfunction of one is detected one may need to

track its behaviour up to the unlimited point in the past in order

to find possible coincidences with other events. Therefore all

relevant data concerning CDN operation must be stored in

exact shape. The general functional requirements include:

1) all data and statistics must be available real-time

2) the system must be able to answer any query for any

given period of time in the past

3) all measured data must be safe and cannot be lost in

case of hardware failures

4) the system must scale well in case of substantial CDN

growth (more nodes to be covered)

5) the system must scale well in case of substantial number

users increase (more events per second)

6) the system must be available all the time even in case

of hardware failures

7) the system must cover the following types of reports:

• content delivery (speed of content downloading,

bytes sent to clients, number of requests, etc.)

• content popularity (number of requests per content)

• users behaviour (number of unique users, number

of different files requested by one user, etc.)

• nodes behaviour (alive nodes counters, reachable

nodes, etc.)

8) all information if possible should be supplied with

geographical information to allow geo-spatial analysis

9) the system must present aggregated global reports as

well as reports concerning peering groups or single

nodes

10) the system must be able to separate reports for different

content providers, origin servers or geographical loca-

tions

Data aggregation cannot reduce information resolution in order

to be able to query all available data.

Additionally there are significant non-functional require-

ments concerning mostly number of data to be processed in

given time. The most basic analysis can be based on CDN

logs data fetching. We performed platform load experiments

covering 10Gbps per single node, which generated around

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 633–639

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 633

Fig. 1. General architecture of the CDN monitoring system

400.000 log entries every five minutes. This means that with

equal 30Gbps (maximum predicted) load of a system build of

50 nodes we may need to process only 80 entries per second

on single node.

II. CDN MONITORING DATABASE

The presented requirements lead us to the conclusions that

first the system must be distributed in order to achieve high

scalability and safety of data and second must be based on

one of a key-value storages which can quickly perform map-

reduce tasks in order to answer queries concerning any data

and time period. Data collecting should be also distributed to

minimize network traffic and perform as much of data analysis

in parallel as possible. The general architecture of the system

in presented in figure 1.

There are three layers of our solution. CDN data collectors

which are placed on the CDN nodes. They perform the first

step of data analysis, aggregation and annotation. Then this

preprocessed data is sent to the database system which is

also responsible for user queries processing. The last layer

is constituted by data storage which is actually hidden from

users. However its map-reduce capabilities are required for

real time query answering.

A. CDN Logs

This section briefly describes Coblitz CDN content delivery

logging mechanism. It follows a general idea of events logging

and may be perceived as an example of events storing. We

believe that any other CDN system may use similar logs or

any other reporting solution which can be used as an entry

point of our data analysis.

Each log entry is composed of the fields presented in table I.

We can treat it as a raw database table which will be an input

for data analysis performed by collectors in CDN nodes. Any

other data published on nodes may be treated similarly. Our

approach does not loose generality focusing only on Coblitz

Logs. What is more, we are also prepared for any Coblitz log

mechanism changes. We only need to update log parser or log

collector. The rest of the system may remain the same.

B. Metrics Collectors

The crucial part of the system is devoted to collecting data

from CDN nodes. In order to describe appropriate solution we

must first understand what kind of data we need to gather.

The simplest type of data is based on counters like number

of MB sent from a node, speed, or number of requests. This

can be collected independently on each node. In the global

image this kind of metrics are additive, sum of MB sent from

each node gives us total number of MB sent from all CDN.

This also holds if we slice data for given content provider, file

types or origin servers.

However there are also metrics which are not additive when

moving from local to global scale. For example number of

unique client IPs. This value collected for a single node cannot

be added to a value of another node. Sets of IPs and other not

additive metrics must be processed globally in order to get

correct results.

This leads to hierarchical set up of metrics collectors. The

first layer works on the nodes, very close to local log files.

They are responsible for initial data analysis and additive

metrics. This layer sends data in two directions. Additive

metrics are directly sent to a store via a database interface.

Preprocessed data for non-additive metrics are sent to the

second layer of collectors to perform reduction. This phase of

data processing may be multi-step to get good efficiency as it is

done in other distributed reduction solutions. The architecture

of collectors in presented in figure 2.

C. Local Data Aggregation

Log files containing entries for each event may grow up

to several hundreds thousands of records. The first level of

aggregation done locally in a node must reduce this very

detailed information by aggregating events which apply to the

same data category. For example, if we calculate number of

Fig. 2. Data flow among the collectors. Solid lines denote global values
reduction procedure. Dashed lines indicate direct database storing actions.

634 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

TABLE I
SAMPLE LOG ENTRY FIELDS.

No Field name Field type Field meaning

1 log_version Number Log entry version (currently only 1)

2 account_name Text Name of the content provider

3 request_id number Unique request number

4 start_time Epoch [ms] Start of downloading time (unix format)

5 elapsed_time seconds.msecons Downloading time

6 client_IP Decimal.decimal.decimal.decimal IP

7 HTTP_method Text GET or PUT

8 URL Text Resource url

9 HTTP_version Text Version oh http protocol

10 response_code Number http response code

11 total_object_size Number [bytes] size of a file

12 bytes_sent_to_client Number [bytes] size of transmitted data

13 cache_hit_bytes Number [bytes] size of data taken from cache

14 range_from Number [bytes] 0 in case of beginning of a file

15 range_to Number [bytes] -1 in case of end of a file

16 content_type enumeration Mime type of the content

17 redirection_location enumeration {0, 1, 2} {none, to origin server, to a peer node}

18 status enumeration {complete, progress} status of a data chunk

requests for certain URL all records referring to that URL may

participate but will produce only one value as an output.

Local data aggregation script processes log file as a raw

table database and produces a time limited MOLAP cube. The

cube may contain arbitrary number of dimensions and metrics

depending on client needs. Any value derivable from log file

and interesting as a statistical result may be a metric. Any

value which is a category for a user who wants to distinguish

values may be a dimension. Figure 3 presents a sample cube

in form of a tree. Each dimension forms a separate level. Any

possible value of a dimension generates children in the next

level. Leafs contain metrics. In the example the cube has three

dimensions (state, provider and origin server) and two metrics

(requests and Mbps).

Our data cube is inherently connected to time passing. Since

log files change dynamically, our cube is valid only for certain

period of time. One cube intersection changes every given

period of time. In a longer time period one intersection forms

a time series. Different dimensional values define different

intersections in a cube which means also different time series.

In our solution cube creation is done by a simple Python

script using nested dict built-in type. Is is a classical key-

value structure. At each tree level children are defined by dic-

tionary entries with keys for each available dimension value.

A dictionary value contains a nested dictionary for a sub-tree.

The cube is created by a recursive procedure which takes

a single log entry, extracts all dimensional values and then

searches for appropriate child in the tree. Although Python

is not the fastest possible solution one local collector script

calculating around dozen metrics may process about 1000 log

entries per second. Being executed every 300 seconds (time of

local log rotation) it could handle correctly logs containing up

to 300.000 entries. If a better efficiency is necessary Python

interpreter may be easily exchanged with something faster.

D. Example Metrics

This section lists sample metrics which may be calculated

by local collectors only upon simple CDN log files and other

local system data. All values, as it was explained earlier,

change every five minutes and are stored in database as time

series. Therefore to calculate number of request per hour we

need to sum 12 subsequent values in a selected series.
Each metric is calculated for one CDN node. However, most

of them may be easily aggregated among nodes to get global

metric value. For example adding number of request from

all nodes will give correct number of requests for all CDN.

For each metric we describe which aggregation function (sum,

min, max, avg) produces sensible results in a global scope.
Content Metrics:

cdn.vod.requests

Number of Video-on-Demand requests.

Globally – min, max, avg, sum.

cdn.Mbits_per_second

Number of megabits per second sent to end users.

Globally – min, max, avg, sum.

cdn.Mbytes

Number of megabytes sent to end users.

Globally – min, max, avg, sum.

cdn.BHit

Percentage of cache hits.

Globally – min, max, avg.

CDN Life Metrics:

cdn.node.hits

Number of processed log entries.

Globally – min, max, avg, sum.

KRZYSZTOF KACZMARSKI, MARCIN PILARSKI: CONTENT DELIVERY NETWORK MONITORING 635

cdn.node.unique_ips

Number of connections from unique IP numbers.

This metric calculated for given node can be only

understood locally. It is not additive among different

nodes since sets of unique IPs for many nodes may

contain non empty intersection. At a local level it can

be only a measure of a local system. Utilization at a

global level requires global IP sets to be calculated

globally.

Globally – max – also gives information which node

has the biggest number of unique clients.

cdn.node.max_same_ip_connections

Maximum number of requests from the same IP. This

metric again calculated for single node is correct only

for this node. For global metric this values should be

calculated upon data from all available nodes.

Globally – max – also gives information which node

has the biggest number of connections from the same

IP. This may help to detect potential attackers.

The last two metrics are not globally additive and require

reduction procedure (done by reduction workers) described in

the next section.

Collectors Self State Metrics:

cdn.collector.processing_time

Time in seconds of single log processing on a node.

Globally – max, min.

cdn.collector.heartbeat

This is a very interesting metric containing informa-

tion about local data collector state. It is a simple

counter initialized when a collector is started. Each

log processing activity increases a counter by one. If

a collector runs correctly this value should increase

by one every 5 minutes. Globally sum of this metric

for all nodes should increase by number of running

collectors every 5 minutes. If slope of this metric

changes it means a collector malfunction.

Globally – sum – increases by number of running

collectors – min, max – shows which collector is

Fig. 3. A sample cube for two metrics (requests, Mbps) and three dimensions
(status, provider, origin_server). Only one branch visualized for clarity.

running the longest/shortest time – avg – shows an

average time of collector run. The time is understood

as a 5 minute periods counter.

cdn.collector.errors

Number of errors encountered in local node process-

ing. This is a simple information metric which may

point administrator to a certain collector log file in

order to analyse local problems.

Globally – min, max, sum, avg.

Hardware State Metrics: The following metrics are not

collected from CDN log files but taken directly from Linux

proc system. We find them informative about the current state

of the hardware. Ability of joining these statistics with other

CDN data also lets us to infer many interesting informations

about correlations of CDN content delivery and hardware

utilization.

proc.net.bytes

Bytes in/out (rate)

Globally – min, max, sum, avg.

proc.net.packets

Packets in/out (rate)

Globally – min, max, sum, avg.

proc.net.errs

Packet errors in/out (rate)

Globally – min, max, sum, avg.

proc.net.dropped

Dropped packets in/out (rate)

Globally – min, max, sum, avg.

df.1kblocks.used

1K blocks used

Globally – min, max, avg.

df.1kblocks.free

1K blocks available

Globally – min, max, avg.

proc.loadavg.15min

last 15 minutes processor load average

Globally – min, max, avg.

proc.meminfo.memfree

Current system free memory

Globally – min, max, avg.

E. Reduction Workers

Reduction workers are designed to perform efficient global

metrics calculation. They are organized in a tree with data flow

from bottom to the top (see fig. 1). Each worker is specialized

for one simple reduction task. Each task is defined by number

of inputs and algorithm to be done. For example unique IP

connections require input IP sets union and sending it to the

next reduction level, which again performs union on inputs

and sends results to the next level. The last reduction worker

gets global data and may finally calculate global metric value.

The result is sent to a database system.

F. Time Series Database Component

Our prototype utilizes OpenTSDB [1], a popular time series

database system. It is widely used in data centres to monitor

636 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

nodes state. It is able to store values in time with bandwidth

of more than 10.000 points per second. Each value may be

tagged with arbitrary number of tags, string labels. Tags may

be used in queries to combine or split different time series. For

example if we consider processor load it may be tagged with

name of a node. The system is able to perform aggregation

of given nodes processors load and draw sum, min, max or

average or show load for single nodes. Proper time series

tagging lets to group time series and get proper queries results.

For example figure 4 presents three plots of number of CDN

log entries. Each value stored in a database is tagged with

labels containing provider, node and geographical location.

Time series can be therefore grouped for providers, locations

and nodes or drilled down to see metrics for single nodes or

single resources.

OpenTSDB runs several distributed demons (Time Series

Demons – TSD). They are independent and equal without any

state sharing. All of them communicate with common data

store which is build on HBase [2]. Since HBase is distributed

itself and provides data replication there is no single point of

failure in the system. HBase follow BigTable distributed data

model (sorted distributed hash-map) and is able to scale very

well and answer queries very quickly.

A big advantage of OpenTSDB is that users do not need

to communicate with the data store directly. A user may just

send a query to an arbitrarily selected TSD which produces an

answer in form of a data plot or a list of data points which may

be further analysed in other statistical systems. The system is

very simple, stable and reliable, yet very powerful.

III. RESULTS

A. Other Clusters Monitoring Systems

While distributed cloud services became more and more

popular many services providers discovered problems with

hardware layer state monitoring. There appeared many differ-

ent solutions which are able to track events and parameters of

distributed nodes and present them in a feasible administration

console. These systems must process millions or billions of

records and must be extremely efficient. In many cases ad-

vanced data mining algorithms are necessary to get appropriate

information from this kind of huge data sets. Often companies

collect all possible data for future analysis even not being

sure what kind of data extraction is possible and what kind of

analysis is necessary.

Ntop is a network traffic measurement system that shows

the network interface usage [3]. It can show many different

views of network utilization and display statistics limited to

the last 24 hours. It is quite low level tool and cannot collect

CDN content flow information. Our solution may both perform

ntop like tasks and also provide high level data analysis.

Our solution is a bit similar to RMON monitoring stan-

dard [4] in the aspect of monitoring agents. In RMON agents

are located in many places and track internet packets going

through that place. In our solution agents are located in all

CDN nodes.

a)

b)

c)

d)

Fig. 4. Analysis of number of CDN log entries for one week. a) summary
for all nodes. b) summary for different content providers. c) summary for one
provider and different geographical locations. d) separated entries for nodes
for one location for one provider.

Different approach is presented by Chukwa which is devoted

to arbitrary logs collection and analysis [5]. Data is stored

in not aggregated form and may require huge space. Reports

are calculated by custom functions which must process all

data. In the contrary our system stores only numerical data in

appropriate resolution.

Another system which is designed to scale to large number

of nodes is Scribe [6]. Again it only keeps messages in a

form for key-value informations as categories and strings sent

to subscribers of particular types of messages. It is rather a

notification systems than a database which can be queried

KRZYSZTOF KACZMARSKI, MARCIN PILARSKI: CONTENT DELIVERY NETWORK MONITORING 637

a)

b)
0 10 20 30 40

Log Processing Time [s]

0×100

1×104

2×104

3×104

4×104

Lo
g

En
tr

ie
s

Fig. 5. Analysis of log processing time in single CDN node. a) plot of
processing time (red line scale to the left) and number of log entries (green
line scale to the right) during the heavy load experiment. There is a strong
linear correlation between the two variables presented in the bottom figure
(b).

afterwards.

In the contrary our solution not focuses on data volume

reduction and stores only tagged numerical values which

are subject to arbitrary queries. It may also legitimate with

high scalability and great robustness. We managed to store

thousands of data points per second and retrieve data in queries

not lasting more than a few seconds even when drilling though

data collected from one month of cluster operation.

B. The CDN Monitoring System Capabilities

This section describes our CDN monitoring system capabil-

ities.

The system built on OpenTSDB and HBase has no single

point of failure. It scales well for hundreds of nodes and

may process queries very quickly using the map-reduce pro-

cedure on Hadoop store. We achieved all functional and non-

functional features described in user expectations in section

I-A.

Knowing the efficiency of the OpenTSDB and HBase we

need to focus on our local collectors performance which may

be the only potential bottleneck. We encountered that the

overall efficiency of a single node data collector meets the

requirements. Figure 5 shows that we are able to process

approximately 1000 log lines per second. This means that with

given 5 minutes time window to process all the log we can

properly handle 300.000 log lines. This is more than sufficient

result. What is more, as it was stated earlier, we can speed it up

by exchanging Python language scripts with a faster solution.

The system perfectly diagnoses content streaming. For

example we may track changes in content distribution load

among geographical locations. Figure 6 shows this kind of

a)

b)

Fig. 6. Analysis of CDN log entries for one week. a) summary for all nodes.
b) summary for different content providers.

analysis. Upper plot presents overall users of CDN cluster

located in Katowice. We can observe that at certain point

in time traffic dramatically decreases and then completely

disappears. Combining this plot with a graphical represen-

tation of node pinging errors we can observe that there is

coincidence of this two events. A node encountered network

communication problems which resulted in traffic absence.

Diagnosing of radical change in cluster load requires further

investigation. Bottom plot of fig. 6 presents traffic of all CDN

peering groups. We can see that in the same time when

Katowice load decreased Warsaw and Wroclaw utilization

increased. This means that the traffic was automatically moved

to other clusters. In fact this was cased by an accidental error

introduced by the system administrator. This proves usability

of the solution in the field of content distribution monitoring.

IV. CONCLUSIONS

In this paper we presented architecture of a distributed CDN

monitoring system. It is well scalable, robust and assures data

consistency for any period of time regardless to the time

window one would like to analyse. It can answer complicated

queries and present any information required both for content

providers and system administrators.

638 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

REFERENCES

[1] B. Sigoure, “OpenTSDB scalable time series database (TSDB).” http:
//opentsdb.net, 2012. Stumble Upon.

[2] The Apache Software Foundation, “Apache HBase.” http://hbase.apache.
org, 2012.

[3] L. Deri, R. Carbone, and S. Suin, “Monitoring networks using ntop.,” in
Integrated Network Management (G. Pavlou, N. Anerousis, and A. Liotta,
eds.), pp. 199–212, IEEE, 2001.

[4] S. Waldbusser, R. Cole, C. Kalbfleisch, and D. Romascanu, “Introduction
to the remote monitoring (RMON) family of MIB modules,” tech. rep.,
The Internet Society, Network Working Group, 2003.

[5] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M. Yang,
“Chukwa, a large-scale monitoring system,” in Proceedings of CCA,
vol. 8, 2008.

[6] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel,
“Scribe: The design of a large-scale event notification infrastructure.,” in
Networked Group Communication (J. Crowcroft and M. Hofmann, eds.),
vol. 2233 of Lecture Notes in Computer Science, pp. 30–43, Springer,
2001.

KRZYSZTOF KACZMARSKI, MARCIN PILARSKI: CONTENT DELIVERY NETWORK MONITORING 639

