

Abstract—The use of Java in the first courses of Computing,

Computer Sciences and similar degrees is widely accepted.

However, many programming professors realize that while is

possible for students to use an Object-Oriented language, is also

possible to program with them without applying an Object-

Oriented mentality. This paper defends the use of Smalltalk

programming language as the best option for students to learn

Object-Oriented programming and acquiring an Object-

Oriented mentality at the same time. This study is based on

three years of experience in a course on Software Design.

I. INTRODUCTION

HE Smalltalk language enjoys in the programming

world the same consideration as Latin language

receives in the speaking communicating field, that is to say,

it is considered a dead programming language.

However, this paper is going to defend the fact by which

Smalltalk is one of the best programming languages to

introduce students in the Object-Oriented (OO)

programming world.

In particular this paper will show how students are more

creative, imaginative and focused on the domain when using

Smalltalk than with other programming language.

This proposal has the only purpose of improving the way

students learn and put into practice the OO programming

concepts and techniques. Many times, professors and

practitioners realize that recent graduates do not apply the

OO paradigm as it should be.

Next section presents a review of different languages used

in introductory courses on Object-Oriented programming.

Section III describes the Smalltalk features that allow

students to acquire the OO paradigm. Section IV presents a

case of study

II. LEARNING OBJECT-ORIENTED PROGRAMMING

This section is devoted to review the different

programming languages that have been used in introductory

courses of programming.

 This work was supported by the authors

In this revision we are not taking into account the

programming environments but only the OO features offered

by the reviewed languages.

One of the most widely used OO languages is C++. The

community of programmers is huge and its use in teaching

OO was also considered a reference in the past.

Programmers suffered the problems of managing pointers

and they should manage the space allocation, cause of many

side undesired effects.

The apparition of the Java language was quickly

celebrated by the community [2]. Some of the previous

headache problems were solved with the introduction of the

garbage collection and a clean programming scheme. C# is

also a widely accepted OO programming language but does

not add any essential difference to Java.

Both Java and C# are supported by powerful frameworks,

big libraries and a massive community of programmers.

These languages offer a lot of opportunities to our students.

However, in our experience, they are not the best option to

learn the OO paradigm, mainly because students tend to

focus on technical aspects rather than in finding a good OO

solution to a given problem.

A recently presented language called Linq [1] tries to add

some powerful mechanisms to manage collections, which

help programmers to integrate SQL language in own OO

language.

III. THE TRUE OO MENTALITY

When a student solves a problem in a way the solution is

not well designed, from the OO point of view, we say that

this student does not have a true OO mentality. He or she

does not see his or her solution as a set of communicating

objects.

This section exposes some common mistakes that

undergraduate students tend to perform when they use an OO

language without a true OO mentality. All errors can be put

in relation with a quality factor as those defined in [4].

A first common mistake is to think in a solution as a set of

functions. Moreover, some programmers try to solve the

given problem by finding a root function (Main), rather than

drawing a class diagram and defining objects and

relationship among them.

T

Smalltalk: the Leading Language to Learn Object-Oriented

Programming

José A. Gallud, Ricardo Tesoriero and Pedro González
ISE Research Group. Computing Research Institute.

University of Castilla-La Mancha, Campus universitario

s/n, 02071 Albacete, Spain Email: jose.gallud@uclm.es

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 839–840

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 839

A second recurrent mistake is to mix in the same class

responsibilities and methods relative to different entities or

concepts. This error makes the extensibility impossible to

get.

Regarding the MVC pattern, using some frameworks is

practically impossible to structure the code with modularity.

Code responsible to manage GUI classes is frequently mixed

with business code or data access code, all together in the

same class.

At last but not least important is how the use of design

patterns [3], a fundamental piece of work in the design of

many software solutions, is well supported and integrated in

the language mechanisms.

IV. WHAT SMALLTALK OFFERS

This section describes those features that Smalltalk offers to

students and some other OO languages do not provide with.

I. Objects and Messages

One of the most important language features is that by

using Smalltalk, the student only can manage objects and

messages. There is no other possibility for them to program.

In this way, when students reach the minimum language

skills, they find themselves thinking in objects and only in

objects.

II. Generality

There are no data types in Smalltalk. So, there is no need

to define generics because all is generic in Smalltalk. This

aspect could introduce an interminable discussion but it

allows the programmer to focus on the problem rather than

in the technology.

III. Collections

Manage collections in Smalltalk is something beautiful,

smart and also funny. The way Smalltalk manages

collections together with the language mechanisms called

blocks allow programmers to write complex iterative

expressions using over 50% less code than it is required

when Java or C# is required.

IV. Access to Library Sources

The access to a set of complete and powerful class

libraries in Smalltalk is something it has in common with

Java and C#. The differential aspect in Smalltalk is that the

programmer can exam all the libraries by accessing the

source codes.

V. Dynamic binding

The dynamic binding is noted here in the sense the

programmer can modify the code while he or she is

debugging and so errors can be easily corrected. As all in

Smalltalk is dynamic there is not any type checking (related

to point II).

VI. Design Patterns

Consider the above mentioned MVC pattern. When a GUI

application is developed using Smalltalk, the developer has

no other option than define different classes to support the

View (V in MVC) and the Model (M in MVC). Other

programming environments do not force developers to act in

this way and the consequence is the generation of a lot of

spaghetti code. These language features force the acquisition

of the true OO mentality since students only can work with

objects and messages, they cannot use data types and the

consequence is a quick.

VII. SMALLTALK IN ACTION

This section shows the experiences and results of many

years of teaching programming courses with different

technologies.

The first experience was the course “Visual
Programming”, which was given in the 5th

 semester as an

optional course of the Computing degree. This course was

given by the authors during 5 years.

The second experience was in the context of a mandatory

course called “Software Design” that was given in the 6
th

semester of the same degree.

In the “Visual Programming” course, students enjoyed the
way they designed Web and desktop applications with low

effort using .NET platform. However the solutions were of a

low quality considering OO quality factors.

On the other hand, during the “Software Design”, students
were forced to use Smalltalk VisualWorks. The first weeks,

students suffered a kind of shock due to the big differences

in the syntax and language mechanisms in comparison with

Java or C#. However, after two weeks, students were able to

design OO solutions for the problems they were asked to

solve. Most of them had a true OO view of the problem and

were able to manage not only the correctness or robustness

but also extensibility and reutilization.

V. CONCLUSIONS

This paper proposes the use of Smalltalk as the first

language for students to learn the Object-Oriented paradigm.

The paper describes what the most meaningful features of

Smalltalk are and why they contribute to the adequate

understanding of the OO paradigm.

Some real experiences prove the validity of the proposal.

REFERENCES

[1] B. Beckman, “Why LINQ Matters: Cloud Composability

Guaranteed”. Communications of the ACM. April 2012.
Doi:10.1145/2133806.2133820

[2] T. Budd. “Object-Oriented Programming”. Addison-Wesley.

[3] E. Gamma et al., “Design patterns: elements of reusable object-

oriented software”. Addison-Wesley. 2005.

[4] B. Meyer, “Object-Oriented Software Construction” second edition.
Prentice Hall PTR, 1998.

840 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

