
Multi-GPU Implementation of the Uniformization
Method for Solving Markov Models

Marek Karwacki, Beata Bylina, and Jarosław Bylina
Institute of Mathematics

Marie Curie-Sklodowska University

Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland

marek.karwacki@gmail.com

beatas@hektor.umcs.lublin.pl

jmbylina@hektor.umcs.lublin.pl

Abstract—Markovian models can generate very large sparse
matrices, which are difficult to store and solve. A useful method
for finding transient probabilities in Markovian models is the
uniformization. The aim of this paper is to show that the
performance of the uniformization can be improved using multi-
GPU architecture. We propose partitioning scheme for HYB
sparse matrix storage format and some optimization techniques
adjusted so as to minimize communication between GPUs during
iterative sparse matrix-vector multiplication, which is the most
time consuming step. The results of experiments show that on
multi-GPU we can solve larger matrices than on single device and
accelerate computations in comparison to a multithreaded CPU.
Computational test have been carried out in double precision for
a wireless network models. Using multi-GPU we were able to
solve model which is described by a matrix of the size 3.6× 10

7.
Keywords: Markovian models, uniformization method, GPU,

multi-GPU, heterogeneous computations, parallel computing,
wireless network models.

I. INTRODUCTION

M
ODERN graphic cards (GPU—graphics processing

units) enable significant speeding up computations in

scientific and engineering applications. However, a single GPU

has not a big memory so it enables processing data of very

limited sizes. To process greater data we need more than one

GPU (multi-GPU).

Markov chains are a tool for modelling various complex

systems. One of the problems appearing while using Markov

chains to model complex systems is a very large size of

the model and thereby implied a long computation time and

memory consumption.

For a Markov model system we can compute transient

probabilities of states at any moment of the model time by

solving ordinary differential equation and then we can compute

various characteristics of the model from the probabilities.

From a set of various methods we chose the uniformization

method [9], [11] (developed also in [10], [6]), because this

method usually achieves better results than others; moreover,

it is numerically stable and allows us to control truncation

errors easily. However, it is quite difficult to use it with

This work was partially supported within the project N N516 479640 of the
Ministry of Science and Higher Education of the Polish Republic (MNiSW)
“Modele dynamiki transmisji, sterowania zatłoczeniem i jakością usług w
Internecie”

huge matrices, because it requires a lot of matrix-vector

multiplications (SpMV), where the matrix is sparse but the

vector is dense.

In the paper [3] we use one GPU to accelerate the uni-

formization method for a wireless network model, particularly

using an SpMV operation from the CUSP library. We obtain a

significant speed-up for large (of more than 2.5 millions rows)

matrices—about 8 times.

In this paper, we propose an original solution based on

multithreading—in order to implement via CUDA the uni-

formization method on multi-GPU architectures. This ap-

proach utilizes all CPU cores and all GPUs to obtain the

highest performance possible (higher than using only a CPU).

Our solution is well suited to the case where CPUs are

connected to several GPUs.

In the paper [7] authors investigate performance properties

of SpMV with matrices of various sparsity patterns on a

GPU cluster using special pJDS format (modification of the

ELLPACK-R scheme [1], [14]) to represent a sparse matrix to

reduce the memory needed. We use another storage scheme,

namely the HYB scheme.

In our previous work [2] we studied performance of the

sparse matrix-vector multiplication on GPU using a variety of

matrix storage formats. This paper develops a partition of the

matrix stored in the HYB format between GPUs.

The article outline is following. Section II presents briefly

the uniformization method and its algorithm. In Section III

we describe an architecture of the multi-GPUs within a single

node. In Section IV we propose a multi-GPU algorithm to

accelerate the uniformization method for large matrix sizes.

In Section V we describe partitioning of the matrix between

GPUs and its distribution between them, and the operation

of the matrix-vector multiplication. Section VI shows some

numerical results—we investigate the capacity of the multi-

GPU memory for large sparse matrices, the time, and the

speed-up. Section VII concludes the paper.

II. UNIFORMIZATION

Analyzing transient probabilities we obtain a system of first

order ordinary differential equations (ODE) which is to be

solved to find the probabilities. The system can be written (as

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 533–537

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 533

a matrix-vector ODE) as follows:

dx(t)

dt
= QTx(t), (1)

where Q is a transition rate matrix of a Markov chain and

x(t) is an unknown column vector of the states’ probabilities

in the moment t.

For the equation (1) there exists an analytical solution of

the form:

x(t) = x(0)eQ
T t, (2)

where x(0) is an initial value of the probabilities vector.

The uniformization method serves solving ODE systems (1)

for continuous-time Markov chains (CTMC). The idea of the

method is the discretization of the CTMC, that is replacing

the CTMC by a DTMC (a discrete-time Markov chain) and a

Poisson process. The discretization of the CTMC is based on

replacing its transition rate matrix Q by a stochastic matrix

P of transitions’ probabilities between states in a given time

interval.

The probabilities matrix P can be obtained from Q by:

PT = I +
1

α
QT , where α = max

i
|aii|.

Thus, we can write:

eQ
T t = eαP

T t−αIt = e−tαe(tα)P
T

. (3)

Multiplying the equation (3) by x(0) and expanding it, we get

a new form of the solution (2):

x(t) =
∞
∑

k=0

x(0)
(αt)k

k!
e−αt(PT)k. (4)

A. The Truncation Error

Among merits of the uniformization method we can find

an easy truncation error control facility. For the numerical

computations we need to replace the infinite series (4) with

a finite one, what means fixing the number of the operations

and introducing a truncation error determining the accuracy of

the computations.

Let:

x∗(t) =

L
∑

k=0

x(0)
(αt)k

k!
e−αt(PT)k. (5)

The truncation error is expressed as δ(t) = x(t) − x∗(t).
Hence, we can obtain a number L defining the length of the

finite series (5) needed to achieve a given accuracy ε:

||x(t)− x∗(t)||∞ = 1−
L
∑

k=0

(αt)k

k!
e−αt ≤ ε. (6)

Moreover, in practical implementations we will subdivide

the integration domain 〈0, t〉 to prevent overflow issues. We

divide the interval 〈0, t〉 into l intervals of equal lengths t/l.

B. Algorithm of the uniformization method on a multicore

CPU

Algorithm 1 computes the states’ probabilities vector x(t) in

the moment t from the equation (5). In this algorithm inputs

are: the matrix QT , the initial probabilities vector x(0) and

the truncation criterion ε. This algorithm is a multithreaded

version using a multicore CPU with OpenMP directives and

BLAS (Basic Linear Algebra Subprograms) functions, namely

the Sparse BLAS from the MKL (Math Kernel Library) [13]—

extensively threaded mathematic routines for applications that

require the maximum performance.

Algorithm 1 The uniformization method for a multicore CPU

Require: QT , ε, t, pt = x(0)

Ensure: pt =

(

L
∑

k=0

(αt)k

k!
e−αt(PT)k

)

· x(0)

1: α← max
i
|qii|, parallelized by OpenMP

2: PT ←
1

α
QT , parallelized by MKL BLAS

3: PT ← I + PT , parallelized by OpenMP

4: Θ← 100; l← αt/Θ; t← t/l; at← αt, single thread

5: Compute L from formula (6) using ε, single thread

6: for i← 1 to l do

7: m← pt,
8: for k ← 1 to L do

9: r ← PT ∗m;, parallelized by MKL Sparse BLAS

10: m← αt
k
∗ r, parallelized by MKL BLAS

11: pt← pt+m, parallelized by MKL BLAS

12: end for

13: pt← pt ∗ e−at, parallelized by MKL BLAS

14: end for

III. MULTI-GPU ARCHITECTURE WITHIN A NODE

Graphics Processing Units (GPUs) have recently been used

for many applications beyond graphics, introducing the term

general-purpose computation on graphics processing units

(GPGPU), owing to (among others) the CUDA (Compute

Unified Device Architecture) [8] prepared by NVIDIA.

Nowadays computers with heterogeneous architecture—a

multicore CPU and multi-GPUs—become more and more

popular. The host system has multicore CPUs and is connected

to two GPUs with a dedicated PCI-Express connection. The

host and the GPUs have different memory spaces and an

explicit memory copy is required to transfer data between

them. Thus, an important problem of multi-GPU programming

is accessing to the memory space of the other GPU and peer-

to-peer (P2P) copy.

In the multi-GPU programming model, the CPU forms a

multiple threads belonging to the same process. Each GPU is

associated with a separate p-thread running on the CPU.

There exist a lot of libraries consisting of routines accel-

erating computations on one GPU—among others the CUSP

[12] library for benchmarking, which supports multiple sparse

matrices storage formats. In this article we are going to modify

534 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

the operation of the sparse matrix-vector multiplication from

the CUSP library for one GPU to get a good result on multi-

GPUs with the HYB storage format.

In the experiments we used 2 × Tesla M2050 based on

Fermi architecture with 448 CUDA Cores and 1.15 GHz clock

speed. This model contains 3072MB of the total amount of the

memory with the clock rate at 1546 MHz. Unlike the previous

CUDA architectures, Fermi offers a much better performance

during double precision computations.

IV. SPARSE MATRIX-VECTOR MULTIPLICATION ON 2

GPUS

The matrix-vector multiplication is computationally inten-

sive and wonderfully fits into our GPU architecture described

in Section III.

For Markovian matrices we achieved the best performance

with the HYB format [2], therefore in our further work we

consider only this format.

Parallelization of the SpMV operation requires the de-

composition and distribution of the coefficient matrix. Our

approach is based on a one-dimensional (1D) scheme for parti-

tioning a sparse matrix, with the goal of efficient parallelizing

the SpMV operation on multi-GPUs.

The n × n matrix is partitioned among 2 GPUs, with

each GPU storing complete rows of the matrix (row-wise 1D

partitioning)—but every row in only one GPU. The whole n×1
vector x is needed on each GPU. Since each GPU performs

computations with the use of a n/2× n matrix and the n× 1
vector x, therefore after the multiplication each GPU holds a

half-vector y of the size n/2× 1.

The HYB format combines the efficient memory bandwidth

of ELLPACK and the flexibility of COO. The most common

number of non-zeros per row is stored in the ELLPACK format

and the rest of the elements in the COO format. Figure 1 shows

an example of storing a primary matrix A in the HYB format,

where ell_data, ell_indices represent the ELLPACK’s part

and coo_data, coo_row, coo_col belong to COO.

However, to process larger matrices we need to divide

matrix between multiple GPUs. In our matrices the ELLPACK

part contains over 90% of all the elements, so it is important to

split it fairly evenly. We assume that COO vectors are sorted by

rows, so we can divide them also by rows. By the fact that we

split COO vectors by rows, the result vector after each matrix-

vector multiplication has the same size and the communication

needed for results exchange is balanced. Figure 2 illustrates

concept of the matrix division and Figure 3 shows an example.

To minimize the time needed for the communication be-

tween the GPU cards we used peer-to-peer transfers, which

allow to copy data from one GPU directly to another without

the CPU memory involvement (peer-to-peer multi-GPU DMA

allows to copy data in such a manner). Figure 4 presents

the matrix-vector multiplication scheme on 2 GPUs. In the

uniformization method algorithm the result vector y is addi-

tionally further processed.

V. ALGORITHMS AND IMPLEMENTATION DETAILS

The multi-GPU implementation uses the same algorithm

as described previously in Section II-B but the matrix-vector

multiplication is performed on multi-GPUs. Some communi-

cations have to be added in order to exchange data between

the GPUs. The pattern of the required communications is

dependent on the way our matrix is scattered across the GPUs

memory.

Algorithm 2 The uniformization method for 2 GPUs

Require: QT , ε, t, pt = x(0)

Ensure: pt =

(

L
∑

k=0

(αt)k

k!
e−αt(PT)k

)

· x(0)

1: α← max
i
|qii|

2: PT ←
1

α
QT

3: PT ← I + PT

4: Θ← 100; l← αt/Θ; t← t/l; at← αt
5: Determine the L needed to achieve a given accuracy ε
6: Divide PT matrix into 2 matrices P0, P1 on host

7: Copy {P0,m} to GPU0 and {P1,m} to GPU1

8: for i← 1 to l do

9: for k ← 1 to L do

10: m′

0 ← PT
0 ·m0 ‖ m

′

1 ← PT
1 ·m1

11: m′

0 ←
αt
k
·m′

0 ‖ m
′

1 ←
αt
k
·m′

1

12: m0 ← merge(m′

0,m
′

1) ‖ m1 ← merge(m′

0,m
′

1)
{GPU0 ↔GPU1}

13: pt0 ← pt0 +m0 ‖ pt1 ← pt1 +m1

14: end for

15: pt0 ← pt0 · e
−αt ‖ pt1 ← pt1 · e

−αt

16: m0 ← pt0 ‖ m1 ← pt1
17: end for

Algorithm 2 performs the uniformization method on 2

GPUs. First, we divide the input matrix into two matrices

which are copied to respective GPUs. Then, we compute the

matrix-vector product on each GPU and scale the results.

Each GPU is assigned its own thread on CPU and operations

denoted by ‖ are performed in parallel. In step 7 we send the

partial result vector to the other GPU. The remaining steps

perform the same operations on the same data, but it is much

faster than additional GPU0 ↔GPU1 transfer.

VI. NUMERICAL EXPERIMENTS

A. A Wireless Network Model

To verify our multi-GPU implementation of the uniformiza-

tion method we used a model of two identical wireless devices

sharing a common channel—described in details in [5], [4].

Such models (and also this one) are impossible to solve

analytically—and that is why it is to be solved numerically.

B. Testing Environment

In this section we compare the performance of the uni-

formization method algorithm on a multicore CPU, a single

GPU and 2 GPUs. The codes were compiled using NVIDIA C

MAREK KARWACKI, BEATA BYLINA, JAROSŁAW BYLINA: MULTI-GPU IMPLEMENTATION OF THE UNIFORMIZATION METHOD 535

A =













4 0 0 0 1
0 2 0 9 0
0 0 0 5 0
1 3 0 2 1
0 0 0 0 8













ell_data =













4 1
2 9
5 ∗
1 3
8 ∗













ell_indices =













0 4
1 3
3 ∗
0 1
0 ∗













coo_data =
[

2 1
]

coo_col =
[

3 4
]

coo_row =
[

3 3
]

Fig. 1. The HYB storage scheme

Fig. 2. The HYB format division

ell_data0 =

[

4 1
2 9

]

ell_indices0 =

[

0 4
1 3

]

coo_data0 =
[]

coo_col0 =
[]

coo_row0 =
[]

ell_data1 =





5 ∗
1 3
8 ∗



 ell_ind1 =





3 ∗
0 1
0 ∗





coo_data1 =
[

2 1
]

coo_col1 =
[

3 4
]

coo_row1 =
[

3 3
]

Fig. 3. An example of the HYB format division concept

Fig. 4. SpMV for 2 GPUs on 1 host

536 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

TABLE I
THE HARDWARE AND SOFTWARE USED IN TESTS

CPU 2 × Intel Xeon X5650 2.67GHz (6 cores with HT)
Host memory 48 GB DDR3 1333 MHz
GPU 2 × Tesla M2050 (515 Gflop/s DP, 3 GB DDR5)
OS Debian GNU Linux 6.0
Libraries CUDA Toolkit 4.0, CUSP 0.3, MKL 10.3

TABLE II
THE PERFORMANCE OF THE UNIFORMIZATION METHOD

n [×10
6] nz [×10

6] TCPU [s] TGPU [s] T2GPU [s]
TCPU

TGPU

TCPU

T2GPU

11 65 370 38 210 9.74 1.76
23 133 472 59 241 8.00 1.96
27 155 511 66 267 7.74 1.91
31 178 654 – 306 – 2.14
36 202 705 – 352 – 2.00

Compiler (nvcc) with the CUSP and MKL libraries. We used

the hardware and software configuration shown in Table I.
All the computations were carried out in the double preci-

sion. We computed the transient probabilities vector for t = 10
with π(0) = (1, 0, . . . , 0)T [10] of the appropriate length.

We run the experiments with the accuracy tolerance parameter

value ε = 10−5. However, as shown in [3] t and ε parameters

extends processing time linearly, so it is easy to estimate

performance on different parameters.
In Table II we present the processing times in seconds of

our implementations TCPU (multicore CPU), TGPU (single

GPU), T2GPU (2 GPUs).
Each matrix from our models contains about 6n non-zero

elements in a row, so TGPU algorithm stores 8n (the base

matrix, the vectors x and y) elements per GPU and T2GPU

only 5n per GPU, which allows processing of larger matrices.

Unfortunately, the communication between GPUs takes 90%

of time, therefore the performance on 2 GPUs is much lower

than on single GPU, but still higher than on CPU.

VII. CONCLUSION

In this paper we have proposed a multi-GPU parallel imple-

mentation of the uniformization method for solving Markov

chains with CUDA in the double precision.
Our approach also permits to solve problems of size 3.7×

107. We have presented a new approach using multi-GPUs

substantially reducing the cost of the uniformization method

in comparison to the multicore CPU. We obtain speedup about

2 times.
Unfortunately, when we use GPUs, quite a lot of time is

consumed by sending data from the CPU to the GPU and back

and between GPUs. However, in the uniformization method

we need only one transfer from the CPU to the GPU (the

matrix) before computations, then we make L×l matrix-vector

multiplications on GPU, and eventually have to send our result

(the vector) from the GPU to the CPU.
But in the uniformization method the performance gap

between a GPU and its PCI-Express is a bottleneck. The

method is communication-intensive and multiple communica-

tions between GPU cards cause the lack of the nice scalability.

The main advantage of our approach is still some speed-up

in comparison to a multicore CPU and a substantial benefit

in the memory space in comparison to a single GPU, and

hence, the bigger problems are possible to solve—what is very

important in Markovian models.

REFERENCES

[1] N. Bell, M. Garland: Efficient Sparse Matrix-Vector Multiplication on

CUDA, NVIDIA Tech. Report No. NVR-2008-004, 2008.
[2] B. Bylina, J. Bylina, M. Karwacki: Computational Aspects of GPU-

accelerated Sparse Matrix-Vector Multiplication for Solving Markov

Models, Theoretical and Applied Informatics, 23 (2011), no. 2, ISSN
1896-5334, pp. 127–145.

[3] B. Bylina, M. Karwacki, J. Bylina: A CPU-GPU Hybrid Approach to the

Uniformization Method for Solving Markovian Models—A Case Study of

a Wireless Network, CCIS 291, Computer Networks 2012, pp. 401–410.
[4] J. Bylina, B. Bylina: A Markovian Queuing Model of a WLAN Node,

CCIS 160, Computer Networks 2011, pp. 80–86.
[5] J. Bylina, B. Bylina, M. Karwacki: A Markovian Model of a Network of

Two Wireless Devices, CCIS 291, Computer Networks 2012, pp. 411–
420.

[6] N. J. Dingle, P. G. Harrison, W. J. Knottenbelt: Uniformization and

hypergraph partitioning for the distributed computation of response time

densities in very large Markov models, Journal of parallel and distributed
computing, 64 (2004), 908-920.

[7] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann,
A. R. Bishop: Sparse matrix-vector multiplication on GPGPU clus-

ters: A new storage format and a scalable implementation CoRR
abs/1112.5588: (2011).

[8] NVIDIA Corporation. CUDA Programming Guide. NVIDIA Corpora-
tion, 2009.
http://www.nvidia.com/

[9] R. B. Sidje: Expokit: A software package for computing matrix expo-

nentials, ACM Trans. Math. Software, 24 (1998), pp. 130–156.
[10] R. B. Sidje, K. Burrage, S. MacNamara: Inexact Uniformization Method

for Computing Transient Distributions of Markov Chains. SIAM J.
Scientific Computing 29(6): 2562–2580 (2007).

[11] W. J. Stewart: Introduction to the numerical solution of Markov chains,
Princeton University Press, Princeton, NJ, 1994.

[12] http://code.google.com/p/cusp-library/

[13] http://software.intel.com/en-us/articles

/intel-mkl/

[14] http://www.cs.purdue.edu/ellpack/

MAREK KARWACKI, BEATA BYLINA, JAROSŁAW BYLINA: MULTI-GPU IMPLEMENTATION OF THE UNIFORMIZATION METHOD 537

