
Modeling of Multiversion Concurrency Control
System Using Event-B

Raghuraj Suryavanshi
Institute of Engineering and Technology

GBTU, Lucknow 226021, INDIA

Email: suryavanshi.cse@ietlucknow.edu

Divakar Yadav
Faculty of Mathematics and Computer Science

South Asian University, New Delhi 110067, India

Email: dsyadav@cs.sau.ac.in

Abstract—Concurrency control in a database system involves
the activity of controlling the relative order of conflicting op-
erations, thereby ensuring database consistency. Multiversion
concurrency control is timestamp based protocol that can be
used to schedule the operations to maintain the consistency of
the databases. In this protocol each write on a data item produces
a new copy (or version) of that data item while retaining the old
version. A systematic approach to specification is essential for
the production of any substantial system description. Formal
methods are mathematical technique that provide systematic
approach for building and verification of model. We have used
Event-B as a formal technique for construction of our model.
Event-B provides complete framework by rigorous description
of problem at abstract level and discharge of proof obligations
arising due to consistency checking. In this paper, we outline
formal construction of model of multiversion concurrency control
scheme for database transactions using Event-B.

Index Terms—Database system, Formal Method, Transaction,
Event-B, Verification, Multiversion.

I. INTRODUCTION

C
ONCURRENCY control is the activity of coordinating

concurrent access to a database while preserving the con-

sistency of the data. A good concurrency control mechanism

should permit parallel execution of transactions to achieve high

degree of concurrency. The concurrency control techniques

are divided into two broad categories: Optimistic concurrency

control and Pessimistic concurrency control [1]. Optimistic

algorithms assumes that conflict is rare therefore, it delay the

synchronization of transaction until transactions are near to

their completion, whereas Pessimistic algorithms synchronize

the concurrent execution of transactions early in their execu-

tion life cycles. Pessimistic algorithm are further categorized

into lock-based and timestamp-based algorithm [1], [2].

Multiversion concurrency control is pessimistic time-stamp

based algorithm [2], [3], [4]. In this algorithm the updates of

data items do not modify the database but each write operation

creates a new version of data item while retaining the old

version. Each version has three fields read-timestamp, write-

timestamp and its value. The data items are accessed through

transactions. A transaction may be read only transaction or

update transaction. Each transaction is assigned a unique time

stamp by the system when it is submitted to the system.

In this paper, a model of multiversion concurrency control

system is outlined. We have considered a model of centralized

system where a transaction may read or create the version of

data item. The model contains a Submit-Transaction event that

models the event of submission of a transaction. In this event a

unique time stamp is assigned to transaction. The events Read-

Operation, Write-Operation and Abort-Trancastion models the

event of reading data item value, creation of new version,

abortion of transaction respectively. The transaction that read

the value of any data item selects the version which has highest

write-timestamp value and less than transaction-timestamp.

After reading the version value, the read-timestamp of that

version is set to as largest of current read-timestamp and

transaction-timestamp. For the update transactions, the trans-

action selects the version which has highest write-timestamp

value and less than transaction-timestamp, and it must also

be ensured that selected version has not already been read

by some younger transaction i.e., read-timestamp of version

should be less than transaction-timestamp. If the operation is

permitted a new version of that data item is created whose

read-timestamp and write-timestamp is same as transaction

timestamp.

The remainder of paper is organized as follows: Section 2

briefly outline modeling approach and B notations, Section 3

describes system model and informal description about events,

Section 4 presents abstract model of multiversion concurrency

control scheme for database system. Finally, Section 5 con-

cludes the paper.

II. MODELING APPROACH

A functional specification of system describes its behavior.

More specifically, it describes the interactions that the system

offer to its user. A specification contains significant infor-

mation about the system. The difficulties in specification is

managing the large volume of detailed system that is required

to formulate an accurate specification. A systematic approach

to specification is essential for the production of any sub-

stantial system description. The B Method [5], [6], [7] offers

one such approach. It represents the complete framework by

mathematical development of a System. Event-B [8], [9], [10],

[11], [12], [13], [14], [15], [16], [17], a variant of B, is a formal

technique that consists of describing rigorously the problem in

an abstract model, introducing solutions or design details in

the refinement steps to obtain more concrete specifications,

and verifying that proposed solutions are correct. An Event-B

model is composed of two constructs, machine and context

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1397–1401

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 1397

Fig. 1. Relationship between Machines and Contexts

(see Fig. 1). Machines represents the dynamic behavior of

the model, contain system variables, invariants, Theorems,

and events. The machine also maintains some local state

information through its variables. Variables are represented

using mathematical constructs such as sets, binary relations,

functions, numbers, etc. The variables are constrained by

the invariants. The invariant clause of machine provides the

information about the variables. The values of variable changes

as the machine executes, however the invariant describes the

properties of variables that must be satisfied as execution

progresses. The theorem of machine must follow from the

context and the invariants of that machine. An event is made up

of three elements; its name, guards and the actions. The guards

are the predicates that must be satisfied for the event to trigger.

An action is an assignment statement to a state variable and is

achieved by a generalized substitution. The initial position of

the model is shown by initialization event. We can add new

variables, invariants and events in the refinement step. The

purpose of refinement step is to provide implementations of

more concrete specifications. The Context clause of machine

defines the static part of model. It contains carrier sets, con-

stants, axioms. The context may be seen by machine directly

or indirectly. There may exist several relationships between

machines and contexts. A machine can be a refinement of one

and only one machine. This refined machine contains more

concrete specifications of model. A context can extend one or

more contexts. A machine can see several contexts.

The B Method requires the discharge of proof obligations

for consistency checking and refinement checking. There are

several B tools such as Rodin [16], [17], Click’n’Prove [18],

Atelier B [19], B-Toolkit [20] that provide an environment for

writing specifications and discharging proof obligations arising

due to consistency and refinement checking. In this work, we

have used Rodin platform. It is an open extensible tool for

specification and verification of Event-B. It contains modeling

element like event, variables, invariants and components like

context and machines. It is embedded by various plugins such

as proof-obligation generator, model checkers, provers, UML

transformers, etc.

Event-B notations are set theoretic notations. The syntax

and detail description of notations are outlined in [10]. Some

of the notation are explained here.

Let A and B be two sets, then the relational constructor (↔)

defines the set of relations between A and B as :

A ↔ B = P(A × B)

where × is cartesian product of A and B.

The Relational image R[U] where U⊆A is defined as:

R[U] = {b | ∃a · a 7→ b ∈ R ∧ a ∈ U}

A function is a relation with certain restrictions. The func-

tion may be a partial function (7→) or a total function(→). A

partial function from set A to B (A 7→ B) is a relation which

relates an element in A to at most one element in B.

A total function from set A to B (A → B) is a partial function

where dom(f)=A i.e. each element of set A is related to exactly

one element of set B. Given f ∈ A 7→ B and a ∈ dom(f), f(a)

represents the unique value that a is mapped to by f.

III. SYSTEM MODEL

We have considered multiversion concurrency control sys-

tem to coordinate the concurrent execution of transaction. Each

time when a transaction is submitted to the system a new time

stamp is assigned to it. The transaction may read or write the

value of data item. The write operation doesn’t modify the

value of data item. It creates a new version of data item.

For each version of the data item, system maintains three

values; the value of the version, read-timestamp of version

which is the largest timestamp value of all the transactions that

have successfully read that version and the write-timestamp

which is the time stamp value of the transaction that created

the version. Transaction timestamp is used to keep track of

timestamp values of each version. The informal description of

events are as follows:

1) Submit Transaction: When a fresh transaction is submit-

ted to the system it creates an entry of transaction and

the objects needed by it. This event also assigns a new

timestamp value to the submitted transaction.

2) Read Operation: If the transaction wants to read the

value of data item then it selects that version of data

item which has maximum write-timestamp value that is

less than transaction time stamp. After performing read

operation the the read-timestamp of that version is set

to as largest of current read-timestamp and transaction-

timestamp.

3) Write Operation: The write operations are performed

by update transaction. Upon activation of this event

a version of data item is selected that has maximum

write-timestamp value and less than the transaction time

stamp, and at the same time it also ensures that selected

version has not already been read by some other trans-

action whose time stamp is greater than transaction-time

1398 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

stamp. This condition states that read-timestamp of se-

lected version must be less than transaction-timestamp.

The writing operation creates a new version having its

value, read-timestamp and write-timestamp. The read

and write-timestamp of new version is initialized with

transaction timestamp.

4) Abort Operation: This event models the abortion of

a update transaction. An update transaction is aborted

when the selected version has already been read by

some other transaction whose time stamp is greater than

transaction-time stamp. In this case read-timestamp of

selected version will be greater than transaction time

stamp.

IV. ABSTRACT MODEL OF MULTIVERSION

CONCURRENCY CONTROL SCHEME FOR DATABASE

SYSTEMS

We begin with the transactional model where a unique time

stamp is assigned to the transaction when it is submitted to the

system. In a context seen by machine, transaction, dataitem,

datavalue are defined as deferred set. The transaction may

read or write the value of dataitem. The transactionstatus is

enumerated set containing the element commit, abort, pending.

After the submission of transaction its status is set to be

pending. For each data item di in the system, the database

holds a number of versions of it. Each versions have read and

write-timestamp value. Therefore, each di may have several

read and write time-stamp values. Each time a new version

is created during writing operation. Therefore, data item di

having write-timestamp values w1, w2, w3.....wk shows the

write-timestamp values of different versions of the data item

di (The value of k depends on how many times writing is done

on data item di). The variables, invariants and initialisation

of machine are given in Fig. 2. The variable vwtimestamp

represents version’s write-timestamp. It is declared as:

vwtimestamp ∈ dataitem ↔ Natural

The operator ↔ defines the set of relations between dataitem

and Natural (write-timestamp). The ’Natural’ represents a set

of natural numbers in B. This ensures that each dataitem di

may have several distinct write-timestamp values. A mapping

of the form (di7→wi)∈vwtimestamp represents that a version

of di have the write-timestmp wi (natural number). The read-

timestamp of version is modeled as:

vrtimestamp ∈{vwtimestamp}→ Natural

Variable vrtimestamp represents version’s read-timestamp

value. It maps each write-timestamp value of version to a

set of natural number through a function. Therefore, this

ensures that each data item for which version is created, there

does exist a corresponding read-timestamp (natural number).

For any version of data item di and write-timestamp wi,

vrtimestamp({di7→wi}) gives the read time stamp value of

that version. The variable versionvalue represents value of

the version. It is modeled as versionvalue ∈ vv and in the

context vv is declared as:

Fig. 2. Variables, Invariants and Initialisation of Machine

vv = (dataitem ↔ Natural) → (datavalue)

For any version of data item di and write-timestamp wi,

versionvalue({di7→wi}) gives the value of version. We have

initialized variable versionvalue with vv0, where in the context

vv0 is declared as: vv0 ∈ vv. The description of other variables

are as follows:

(i) The variable trans represents a set of started trans-

actions.

(ii) The variable transstatus maps each started transac-

tion to transactionstatus. Thus every transaction will

have one of the following states; pending, abort or

commit

(iii) The variable transactiontimestamp is defined as a

total function which maps a transaction to natural

number. This ensures that each started transaction

have timestamp value which is any natural number.

(iv) The variable transdataitem represent a set of

dataitem required by the transaction. It maps each

fresh transaction to a set of dataitems. For any

transaction tr, transdataitem(tr) gives the dataitems

required by the transaction tr.

RAGHURAJ SINGH SURYAVANSHI, DIVAKAR YADAV: MODELING OF MULTIVERSION CONCURRENCY CONTROL SYSTEM 1399

Fig. 3. Submit-Transaction Event

Fig. 4. Read-Operation Event

A. Transaction Submission

The event (Submit-Transaction) models the submission of

transaction (see Fig. 3). The guard grd2 tr /∈ trans ensures

that tr is a fresh transaction. After the submission of trans-

action, it is added into the trans set (act1). The action act2

assigns a new timestamp value to the transaction. Each time

a timestamp value is assigned to a transaction, the counter

variable is incremented by one (act3). This ensures that each

fresh transaction is assigned a unique timestamp. The action

act4 represents the dataitems required by transaction tr. Status

of transaction tr is set to pending through the action act5.

B. Reading the Version Value

The event Read-Operation models the reading of version

value (see Fig. 4). If a transaction tr reads the value of data

Fig. 5. Write-Operation event

item di then it selects that version of di which has the maxi-

mum write-timestamp value that is less than transaction times-

tamp. The guard grd4 is written as: wtav=vwtimestamp[{di}],

wtav is relational image of data item di under the relation

vwtimestamp. It contains all write-timestamp values of di. The

guard grd5 is modeled as:

∃ x.(x∈wtav ∧ x<transactiontimestamp(tr))

It ensures that there are some write-timestamp values of data

item di which are less than transaction-timestamp tr. Finally,

the guard grd6 selects the maximum write-timestamp value

of version which is less than transaction timestamp tr. It is

written as:

maxwts = max(x :| x∈ wtav ∧ x<transactiontimestamp(tr))

Therefore, the version whose write-timestamp is maxwts is se-

lected for reading operation. The variable readvalue performs

the reading of version value. It returns the version value of data

item di whose write-timestamp is given by maxwts(grd10).

After reading the value of version, read-timestamp of that

version is set to as largest of current read-timestamp and

transaction-timestamp (act1). The status of transaction tr is

set as commit through action act2.

C. Creation of New Version (Writing Operation)

The event Write-Operation models the creation of new

version (see Fig. 5.). If any transaction tr wishes to perform

1400 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

a write operation on data item di then it must be ensured

that the data item di has not already been read by some other

transaction whose time stamp value is greater than transaction

timestamp tr, i.e., read-timestamp of selected version must

be less than transaction time stamp tr. Thus, in the writing

operation following must hold:

(i) The version of data item di which has largest write-

timestamp that is less than transaction timestamp tr

is selected for operation (same as version selection

in reading operation). It is ensured by guard grd8

given below:

maxwts = max(x :| x∈ wtav ∧
x<transactiontimestamp(tr))

(ii) Read-timestamp of that selected version should be

less than transaction timestamp (ensures that version

has not already been read by some other transaction

whose time stamp value is greater than tr). The

following guard grd10 ensures this condition:

vrtimestamp({di7→maxwts})<transactiontimestamp(tr)

The above states that read-timestamp of selected version

(The version which satisfy first condition, i.e., whose write-

timestamp maxwts) is less than transaction timestamp tr. If

both the conditions are satisfied then new version is created

having new version value newvv (act1). The write and read

time stamp of new version is set as a transaction timestamp

(act2 & act3) respectively. The status of transaction tr is set

as commit through act4.

D. Abort Transaction

An update transaction tr will be aborted if the data item di

on which transaction tr wishes to perform a write operation has

already been read by some other transaction whose timestamp

value is greater than timestamp of tr. Precisely, it is violation

of guard grd10 of writing operation given below:

vrtimestamp({di 7→maxwts})> transactiontimestamp(tr)

This event set the status of transaction to be abort.

V. CONCLUSIONS

Multiversion concurrency control is timestamp based pro-

tocol that reduces restart overhead of transactions. In this

protocol an update transaction doesn’t modify the database

but it creates a new version of a data item while retaining the

old version. Therefore, each data item have multiple versions

containing its value, read-timestamp and the write timestamp.

Formal analysis of such systems are required to precisely

understand the behavior of systems and to verify that required

properties are satisfiable.
In this paper, multiversion concurrency control scheme for

database transactions is specified using Event-B. This work

is carried out on Rodin tool [16], [17]. The tool supports

generation and discharge of proof obligations arising due to

consistency checking. In this approach, the proof obligations

are generated by B tools and they provide an environment for

discharging proof obligation. Modeling guidelines outlined in

[14] were used and these guidelines helped us in modeling
and discharging proof obligations generated due to consistency

checking. Total thirty seven proof obligations were generated

by the system out of which thirty three were discharged

automatically while remaining four required interaction with

the prover. This case study strengthen our believe that Event-

B can be used to construct the model of database systems

providing a deeper insight into why a system should work. In

our future work we plan to strengthen the invariant conditions

and add more concrete design details, by using logical clock,

in the refinement steps for distributed environment.

REFERENCES

[1] M. Ozsu and P. Valduriez: Principles of Distributed Database Systems.
Pearson Education (Singapore) Pte.Ltd. India (2004).

[2] P. Bernstein and N. Goodman: Timestamp Based Algorithms for Con-
currency Control in Distributed Database Systems. In: Proc. of 6th Int.
Conf. on Very Large Databases (1980).

[3] P. Bernstein and N. Goodman: Multiversion Concurrency Control-
Theory and Algorithms. ACM Trans. Database Systems, vol. 8, no. 4,
pp. 465–483, (1983).

[4] P. Bernstein, V. Hadzilacos and N. Goodman: Concurrency Control and
Recovery in Database Systems. Addison-Wesley (1987).

[5] M. Butler: An Approach to Design of Distributed Systems with B
AMN. In: Proc. 10th Int. Conf. of Z Us-ers: The Z Formal Specification
Notation (ZUM), LNCS 1212, pp. 223-241, (1997).

[6] M. Butler and M. Walden: Distributed System Development in B. In:
Proc. of Ist Conf. in B Method, Nantes, pp. 155–168, (1996).

[7] A. Rezazadeh and M. Butler: Some Guidelines for formal development
of web based application in B Method. In: Proc. of 4th Intl. Conf. of B
and Z users, Guildford, LNCS, Springer, pp 472-491, (2005).

[8] R. Banach: Retrenchment for Event-B: UseCase-wise development and
Rodin integration. Formal Aspects of Computing, 23, pp. 113–131,
(2011).

[9] S. Hallerstede: On the purpose of Event-B proof obligations. Formal
Aspects of Computing, 23: pp. 133–150, (2011).

[10] D. Yadav and M. Butler: Rigorous Design of Fault-Tolerant Transactions
for Replicated Database Systems Using Event B. In: Butler M., Jones
C.B., Romanovsky A, Troubitsyna E. (eds.) Rigorous Development of
Complex Fault-Tolerant Systems. Lecture Notes in Computer Science,
vol. 4157, Springer, Heidelberg, pp.343-363,(2006).

[11] S. Hallerstede and M. Leuschel: Experiments in program verification
using Event-B. Formal Aspects of Computing, 24: pp. 97–125, (2012)

[12] R. Suryavanshi and D. Yadav:Formal Development of Byzantine Im-
mune Total Order Broadcast System using Event-B. In: ICDEM 2010,
F. Andres and R. Kannan (eds.) LNCS, Vol. 6411, Springer, pp.317-324,
(2010).

[13] D. Yadav and M. Butler: Application of Event B to Global Causal
Ordering for Fault Tolerant Transactions. In: Proc. of REFT 2005,
Newcastle upon Tyne, pp. 93-103, (2005).

[14] M. Butler and D. Yadav: An incremental development of the mondex
system in Event-B. Formal Aspects of Computing, 20(1):61-77, (2008).

[15] D. Yadav and M. Butler: Formal Development of a Total Order
Broadcast for Distributed Transactions Using Event-B. Lecture Notes
in Computer Science 5454, springer-Verlag Berlin Heidelberg, pp.152-
176, (2009).

[16] C. Metayer, J R. Abrial and L. Voison: Event-B language. RODIN
deliverables 3.2, http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, (2005).

[17] J. R. Abrial: A system development process with Event-B and the Rodin
platform. In: Lecture Notes In Computer Science 4789, Springer, pp. 1–
3, (2007).

[18] J. R. Abrial and D. Cansell: Click-n-Prove—Interactive Proofs within
Set Theory, (2003).

[19] Steria, Atelier-B User and Reference Manuals, (1997).
[20] B Core UK Ltd. B-Toolkit Manuals, (1999).

RAGHURAJ SINGH SURYAVANSHI, DIVAKAR YADAV: MODELING OF MULTIVERSION CONCURRENCY CONTROL SYSTEM 1401

