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Abstract—Due to limited test resources, it is often necessary
to prioritize and select test cases for a given system under test.
Although test case prioritization is well studied and understood,
its combination with test data generation is difficult and not com-
pletely solved yet. For example, the Classification Tree Method is
a well established method for test data generation, however the
application of prioritization techniques to it is a current research
topic. We present an extension of the classification tree method
that allows the generation of optimized test suites, containing
test cases ordered according to their importance with respect to
test goals. The presented algorithms are incorporated into the
Classification Tree Editor and empirically evaluated on a set of
benchmarks.

Keywords-classification tree method, prioritized test case gen-
eration, test suite optimization

I. INTRODUCTION

S
OFTWARE testing is one of the activities in which limited

resources are confronted with the need for exhaustive

tests, for which infinitely many or too many tests need to

be performed. Furthermore in typical industry-driven software

development, testing time is often further reduced as the

software under test may not be completed in time and release

dates cannot be delayed. Hence, software testers have to deal

with multiple challenges: Their resources are limited, the

software comes too late, and scheduled time is not available.

Testers have to handle such situations: not only due to time

constraints, but also due to other resource constraints such as

test personnel, test infrastructure, etc., not all test cases can

be performed.
Hence, testers need to select those test cases with most

relevance - by keeping a sufficient level of test coverage and

failure-detection capability. Yet, there is no guarantee that

selected test cases are more important than any of the others:

there is no well-established way to determine the relevance

and importance of test cases in a test suite and to select the

best ones in relation to available resources.
In this article, we present an approach for test case selection

and test suite optimization using the classification tree method.

We introduce the weighting of classification tree elements

allowing us to generate test suites with prioritized test cases.

These test suites can be optimized by selecting only subsets

of test cases when taking resource limits into account. Fur-

thermore, coverage criteria are proposed for identifying the

Fig. 1. Usage model for test object ACC

importance of a specific test case under given test aspects.

Finally, an evaluation of the performance of prioritized test

case generation as compared to plain test case sorting and

two other existing approaches is given.

II. DEFINITIONS AND BACKGROUND

A. Classification Tree Method and Classification Tree Editor

The Classification Tree Method [1] aims at systematic and

traceable test case identification for functional testing over all

test levels (for example, component test or system test). It

is based on the category partition method [2], which divides

a test domain into disjunctive classes representing important

aspects of the test object.

Applying the classification tree method involves two steps—

designing the classification tree and defining test cases.

Design of the classification tree. The classification tree

is based on the functional specification of the test object.

Figure 1 shows an example tree for the adaptive cruise

control (ACC) test object. For each aspect of interest (a so

called classification), the input domain is divided into disjoint

subsets (so called classes). In our example, classifications are

preceding vehicle, speed, and daylight. Classes for speed are

low, medium, and high. The class car is further refined into

different shapes, which are limousine and cabriolet. Further

refinements allow test objects to be described on any level of

granularity.

Definition of test cases. Having composed the classification

tree, test cases can be defined by combining classes from
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different classifications. Since classifications only contain dis-

joint values—obviously speed cannot be low and high at the

same time—test cases cannot contain several values of one

classification.

The Classification Tree Editor (CTE XL) was introduced

together with the classification tree method. Current versions

of the CTE XL support automated test case generation and

user-defined dependency rules [3]. Current test case generation

offers four different coverage modes: Minimal combination

creates a test suite that uses every class from each classification

at least once in a test case. Pairwise combination creates a test

suite that uses every class pair from disjunctive classifications

at least once in a test case. Threewise combination (”triple-

wise”) creates a test suite that uses every triple of classes

from disjunctive classifications at least once in a test case.

Complete combination creates a test suite that uses every

possible combination of classes from disjunctive classification

in a test case.

B. Prioritization

Prioritization is used to assign values of importance to

classification tree elements. These values of importance are

called weights. To cover various kinds of test aspects, these

weights can differ. Higher and lower weights should reflect

higher and lower importance, respectively. Consequently, one

is able to compare the elements of the classification tree to

determine their importance under a given test aspect and to

guide test case generation by priorities. Elbaum et al. provide

good overviews of existing approaches [4], [5]. There has

been some work on test case prioritization that considered

limited resources [6], [7]. In [8] a first approach for combining

classification trees with priorities has been presented.

C. Combinatorial Interaction Testing

Combinatorial Interaction Testing (CIT) [9] is an effective

testing approach for detecting failures caused by certain com-

binations of components or input values. The tester identifies

the relevant test aspects and defines corresponding classes.

These classes are called parameters, their elements are called

values. We assume the parameters to be disjoint sets. A test

case is a set of n values, one for each parameter. In the classi-

fication tree method, the parameters are called classifications,

the values are called classes.

CIT is used to determine a smallest possible subset of

tests that covers all combinations of values specified by a

coverage criterion with at least one test case. A coverage

criterion is defined by its strength t that determines the degree

of parameter interaction and assumes that all parameters are

considered.

The most common coverage criterion is 2-wise (or pairwise)

testing, that is fulfilled if all possible pairs of values are

covered by at least one test case in the result test set. A

large number of CIT approaches have been presented in the

past. A good overview and classification of approaches can

be found in [10] and [11]. A good survey that focuses on

CIT with constraints is given in [12]. Nearly all publications

investigate pairwise combination methods, but most of them

can be extended to arbitrary t-combinations.

There are only two known algorithms supporting prioritized

test case generation. The first is the deterministic density algo-

rithm (DDA) published in [13], which is an extension to [14].

The extended algorithm generates a test suite successively

constructing single test cases. During test case construction

it accounts for (1) uncovered pairs in the test suite gener-

ated so far and (2) user assigned weights. Pairs with higher

weights are covered earlier than pairs with lower weights. For

efficiency reasons, this algorithm does not consider explicit

dependencies.

The other algorithm [15] maps the test problem to a binary

decision diagram (BDD) and reads test cases in descending

order of importance from it. The BDD is used to support

explicit dependencies, too.

III. CONTRIBUTION

We analyzed several existing prioritization techniques, from

which the following three models were selected as a basis for

prioritization:

Prioritization based on a usage model [16] tries to reflect

usage distribution of all classes in terms of usage scenarios.

Classes with a high occurrence have higher weights than

classes with a low occurrence.

Prioritization based on an error model [4] aims to reflect

distribution of error probabilities of all classes. Classes with

a high probability of revealing an error have higher weights

than classes with a low probability.

Prioritization based on a risk model [17] is similar to

prioritization based on an error model but also takes error costs

into account. Classes with a high risk have higher weights than

classes with a low risk.

Example. Figure 1 shows the adaptive cruise control with

assigned occurrence values, which represent values of im-

portance. As the figure shows, medium is the most probable

speed. Low and high are subsequent in descending order of

importance. The values of all classes of one classification sum

to 1 in the occurrence model. For example, class car has an

occurrence rate of 0.7 of all preceding vehicles.

The values of refinements of classes are interpreted as con-

ditional probabilities in the occurrence model. For example, if

the preceding vehicle is a car, limousines have an occurrence

rate of 0.9 and cabriolets of 0.1. Hence, the resulting

occurrence probability for a limousine being the preceding

vehicle is 0.63 (= 0.7 * 0.9), and for a cabriolet it

is 0.07, accordingly.

The assigned values can also be taken to represent error

probabilities, i.e. the probability that an error occurs in this

class. Combined with costs associated to classes, risks can be

calculated as well: as error probability times cost value. Since

error values are independent of each other, an interpretation

as conditional probabilities fails in the error model. The same

applies for the risk values in the risk model. Therefore, the

values in these two models are taken as absolute values, which

we call weights in the following.
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1: S //result list
2: M //set of all valid test cases
3: A //set of test cases containing pair p
4: P //set of uncovered class pairs
5: D //set of (test case, index value) pairs
6: while (|P | > 0) do

7: p = select max weight pair from P
8: A = filter M by p
9: if |A| > 1 then

10: D = calculateIndex(A,P )
11: t = selectMaxIndex(D)
12: else

13: t = take single test case from M
14: end if

15: S = append(S, t)
16: P = P − {classPairs(t)}
17: M = M − {t}
18: end while

19: return S

Fig. 2. PPC algorithm

A. Coverage Criteria

We define coverage criteria to measure the degree to which

the system under test is tested with an optimized test suite.

Then, we compare optimized test suites of different sizes to

evaluate coverage gains from additional test resources. At first,

we define the criterion weight coverage (WC) that measures

the degree to which the weights are covered:

WC =
sum of weights of covered class pairs

sum of weights of all coverable class pairs

The metric is relative, i.e. considers the fact that classes

may not be coverable because of dependencies.

B. Prioritized Pairwise Combination

A plain pairwise combination creates a test suite that covers

each class pair in at least one test case. We extended this

combination to a prioritized pairwise combination (PPC). The

combined weight for class pairs is calculated by multiplying

either the occurrence or error probabilities. By contrast, the

combined risk is the product of the summed individual costs

and the multiplied individual errors. Test cases are selected

and generated in descending order of importance.

Figure 2 provides the algorithm in pseudocode. The most

weighted class pair from all class pairs not yet covered is

chosen for a new test case to be added: We determine all

candidate test cases containing this class pair and calculate

the index values for these candidates. The index value of a

test case is the sum of the weights of the added pairs and the

quotient of the number of newly covered pairs and the overall

number of coverable pairs in a test case.

PPC selects the test case with the highest assigned index

value. By that, it guarantees at least coverage of the n most

important class pairs by the n first test cases. The generated test

suite may be slightly larger than the result of the plain pairwise

combination since weights are taken into account. Please also

note that the generation process using PPC is deterministic:

the same test suite is generated for a given classification tree.

The result of PPC applied to our ACC example is given

in Table I. The last column contains the value of the weight

coverage. It shows that the first three test cases of the test

suite cover already 70% of all class pairs’ weights. For weight

coverage of 90%, 95%, or 99%, only six, eight, or 10 test cases

are to be executed. Depending on testers’ needs or available

resources, test efforts can be reduced in a controlled way.

TABLE I
RESULTING PPC TEST SUITE FOR USAGE MODEL

Prec. Vehicle Speed Daylight WC
#1 Limousine medium Day 0.32
#2 Limousine low Night 0.56
#3 Truck medium Night 0.70
#4 Truck low Day 0.8
#5 Limousine high Day 0.88
#6 Truck high Night 0.92
#7 Cabriolet medium Day 0.94
#8 Motorcycle medium Day 0.96
#9 Cabriolet low Night 0.98

#10 Motorcycle low Night 0.99
#11 Cabriolet high Night 0.99
#12 Motorcycle high Night 1

C. Plain Pairwise Sorting

In addition to PPC, we have analyzed Plain Pairwise Sorting

(PPS) where a sorting approach based on class pair weights

is applied to the results of a plain pairwise algorithm. The

calculation of the weights is same as above.

The sorting brings all test cases into an order such that the

weight covered by first test cases is maximized. The algorithm

sorts all test cases by their absolute weight at first. Then, it

applies as many discriminatory reorderings as there are test

cases.

Please note that this approach does not guarantee coverage

of any n most important class pairs by the n first test cases.

However, the generated test suite will have exactly the same

size as the plain pairwise combination, as the suite does

not grow by sorting. The generation process using PPS is

deterministic too; however its results differ from the PPC

results.

Figure 3 and Figure 4 provide the algorithms in pseudocode.

The insertion algorithm requires an initialization. For each

class pair, the combined weight needs to be calculated by

multiplication. A HashMap is filled with the class pair being

the keys and the combined weights being the values.

The result of PPS applied to our ACC example is given in

Table II.

IV. EMPIRICAL RESULTS

We evaluated the impact of weight considerations on weight

coverage and on the absolute size of the generated test suites.

A first impression is given in Figure 5. As can be seen, PPC

and PPS perform similar, while the unsorted test suite does not

perform as well. For a more detailed and systematic evaluation,

we use the set of benchmarks proposed in [13] and also used

in [15]: We compare (1) our PPC approach with our PPS

approach, (2) PPC with the deterministic density algorithm

(DDA) given in [13] and (3) PPC with the BBD approach
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1: insert(List of testCases, testCase t)
2: double tcWeight = 0.0
3: /* Calculate insertion weight */
4: for all class pair in t do

5: tcWeight += classPairWeights.get(class pair)
6: end for

7: /* Find position for insertion */
8: int i = 0
9: for all testCaseWeights do

10: if (testCaseWeight ¡ tcWeight) then

11: testCaseWeights.add(i, tcWeight)
12: testCases.add(i, t)
13: return

14: end if

15: i++
16: end for

17: /* All existing test cases have higher weights, append new test case at
the end. */

18: testCaseWeights.add(tcWeight)
19: testCases.add(t)

Fig. 3. Sort algorithm insertion

1: finalize(List of testCases)
2: if (|testCases| < 2) then

3: return

4: end if

5: testCase firstElem = testCases.getFirst
6: /* Set weight of all covered pairs to 0 */
7: for all class pair in firstElem do

8: classPairWeights.put(class pair, 0)
9: end for

10: List of testcases tail = l.subList(1, |testCases|)
11: /* Sort tail using insertion sort */
12: List of testcases newTail = new List
13: testCaseWeights.clear
14: for all testcase in tail do

15: insert(newTail,testcase)
16: end for

17: /* Finalize tail */
18: finalize(newTail) // recursion
19: testCases = firstElement + newTail

Fig. 4. Sort algorithm finalization

given in [15]. The benchmark uses four different weight

distributions applied to eight scenarios. The distributions are:

• d1 (Equal weights). All classes have the same weight,

• d2 (50/50 split). Half of the weights for each classifica-

tion are set to 0.9 the other half to 0.1,

• d3 ((1/vmax)
2 split). All weights of classes for a classifi-

cation are equal to (1/vmax)
2, where vmax is the number

TABLE II
RESULTING SORTING TEST SUITE FOR USAGE MODEL

Prec. Vehicle Speed Daylight WC
#1 Limousine medium Night 0.31
#2 Limousine high Day 0.52
#3 Truck medium Day 0.66
#4 Limousine low Night 0.77
#5 Truck high Night 0.85
#6 Motorcycle low Day 0.9
#7 Cabriolet medium Day 0.93
#8 Cabriolet low Night 0.96
#9 Truck low Night 0.98
#10 Motorcycle medium Night 0.99
#11 Cabriolet high Night 0.99
#12 Motorcycle high Night 1

Weight Covered using plain pairwise, PCC and sorting
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Fig. 5. Comparison of PPC, PPS, and of non-weighted generation

of classes associated with the classification,

• d4 (Random). Weights are randomly distributed.

The scenarios s1, ..., s8 with their resulting test suite sizes are

given in Table III. The classifications are given in a shorthand

notation, where for example s5 with 82726224 consists of 2
classifications with 8 classes, 2 classifications with 7 classes,

2 classifications with 6 classes, and 4 classifications with 2
classes.

A. Comparison of PPC vs. PPS

Size. As shown in Table IV in the 100% weight column, the

test suites generated by the PPC are larger than those generated

using the PPS approach. Table IV also contains values for

the BDD generation, which we will discuss later. The PPC

generated scenarios s3 and s7 in d1 and d3 are up to 300%
larger than their PPS counterparts. The problem here seems to

be the combination of scenario and distribution. For any other

distribution or scenario, the PPC results are much smaller,

therefore, closer to the PPS results. For the rest, the resulting

PPC test suites are up to 50% larger in some cases (s3 d4 or

s7 d2). On average, the PPC test suites are 42% larger than the

PPS test suites. Ignoring the extreme values (s3 and s7 from

d1 and d3), the PPC test suites are 12% larger on average.

Applying equal sorting (d1), the PPC algorithm results in

smaller test suites for some scenarios. For s2, it is generally

smaller. The normal test case generation serving as input

for the test case sorting, seems to have problems with this

particular scenario. The reasons behind this behavior need

further investigation. For s6 d3, the PPC test suite has the

same size as the PPS.

For the majority of scenario-distribution combinations, PPS

results in smaller test suites, which is not surprising since in

prioritization selection focuses on weights first; in contrast to

PPS, which tries to get the smallest test suite possible.

TABLE III
BENCHMARK SCENARIOS

s1 34 s4 1019181716151413121 s7 350250

s2 1020 s5 82726224 s8 2021023100

s3 3100 s6 1511055141
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TABLE IV
BENCHMARK DETAILED RESULT, PART 1

50% weight 75% weight 100% weight
BDD PPC PPS BDD PPC PPS BDD PPC PPS

D
is

tr
ib

u
ti

o
n

1

s1 5 5 5 7 8 7 10 10 9
s2 62 56 60 112 95 110 251 218 245
s3 6 6 6 11 9 10 33 130 34
s4 26 24 22 47 45 42 94 92 94
s5 19 18 17 37 35 34 74 71 74
s6 62 52 49 105 89 92 184 172 177
s7 4 2 2 8 7 8 28 70 29
s8 13 3 9 35 18 21 400 400 400

D
is

tr
ib

u
ti

o
n

2

s1 1 1 2 3 3 4 14 12 9
s2 21 18 36 49 36 79 278 228 245
s3 1 1 4 4 4 8 35 51 34
s4 10 8 11 22 16 23 100 100 94
s5 7 6 8 15 13 21 83 78 74
s6 28 17 24 55 31 53 207 190 177
s7 1 1 3 2 2 5 29 42 29
s8 3 3 3 16 12 13 400 403 400

D
is

tr
ib

u
ti

o
n

3

s1 5 5 5 7 8 7 10 10 9
s2 62 56 60 112 95 110 249 218 245
s3 6 6 6 11 9 10 33 130 34
s4 8 8 8 18 16 19 137 109 94
s5 5 4 4 10 9 10 101 86 74
s6 27 26 26 53 46 53 222 177 177
s7 4 3 4 7 6 7 33 84 29
s8 6 6 8 11 9 11 463 420 400

D
is

tr
ib

u
ti

o
n

4

s1 4 3 3 6 6 5 13 12 9
s2 44 31 47 94 65 95 286 229 245
s3 5 3 5 11 7 10 47 52 34
s4 17 15 18 33 29 36 108 106 94
s5 10 8 10 24 19 24 88 80 74
s6 35 27 36 70 56 73 208 187 177
s7 3 2 4 7 5 7 42 33 29
s8 8 5 8 26 15 21 406 404 400

Weight coverage. The detailed results are given in Ta-

ble IV and V. Table IV contains results of the BDD approach

and our own two contributions for the coverage levels of 50%,

75% and 100%. Table V contains additional result values for

the coverage levels of 25%, 66%, 90%, 95%, and 99% for

what no BDD results are known.

In d1, PPS starts very strong. Reaching 25% coverage is

always better than or equal to PPC. For 50% and 66%, PPC is

only better in s2, where PPS seems to have a general weakness,

and s8. For the rest of measured weights, PPC becomes better

and better, while PPS loses its advantages from the lower

values.

In d2, the prioritization performs better in all scenarios for

the 25%–75% target weights. Starting at 90%, PPS gets better

with s1 and s8. For 95%, PPS also needs fewer test cases

with s4. This case needs further investigation, maybe it is just

a good weight distribution for the test case generator creating

the PPS input. For 99%, PPS only performs best for s1. For

100%, PPS perfoms better in all but s2.

In d3, PPS comes close to the PPC. For 25% coverage, both

approaches perform equally. For 50%, the PPC is only better

for s2 and s7. For 66% weight coverage, the prioritization

is better for s2, s4, s6, and s8. For 75% coverage, PPC is

always better for large scenarios (s2, ..., s7). For 90% and

95% coverage, PPS performs equally both for s7 and s3 for

the latter. For 99% coverage, PPS surpasses PPC for half of

TABLE V
BENCHMARK DETAILED RESULT, PART 2

25% 66% 90% 95% 99%
PPC PPS PPC PPS PPC PPS PPC PPS PPC PPS

D
is

tr
ib

u
ti

o
n

1

s1 3 3 7 6 9 9 10 9 10 9
s2 27 27 79 89 132 162 152 190 180 228
s3 3 3 8 8 15 16 20 20 37 26
s4 11 10 36 34 64 63 74 74 86 88
s5 8 7 28 27 50 51 57 59 66 68
s6 23 22 74 74 123 131 139 149 159 169
s7 2 2 6 6 11 12 14 15 20 21
s8 3 3 13 15 64 46 92 62 145 120

D
is

tr
ib

u
ti

o
n

2

s1 1 1 1 3 7 5 8 7 11 8
s2 9 12 27 60 87 131 121 163 169 212
s3 1 2 1 7 9 13 12 16 19 23
s4 3 4 12 17 36 38 53 51 76 77
s5 2 3 10 15 28 37 43 46 61 62
s6 7 9 25 39 73 92 106 114 148 153
s7 1 2 1 4 6 9 9 12 14 18
s8 1 1 7 8 30 30 56 47 114 122

D
is

tr
ib

u
ti

o
n

3

s1 3 3 7 6 9 9 10 9 10 9
s2 27 27 79 89 132 162 152 190 180 228
s3 3 3 8 8 15 16 20 20 37 26
s4 4 4 12 14 30 35 42 46 72 70
s5 2 2 7 7 15 19 23 25 52 54
s6 12 12 38 41 83 92 107 120 149 158
s7 2 2 5 5 10 10 13 13 21 19
s8 3 3 8 9 15 19 19 26 28 45

D
is

tr
ib

u
ti

o
n

4

s1 2 2 5 5 8 7 10 8 11 9
s2 12 19 50 74 104 150 129 181 169 223
s3 1 3 5 8 12 15 15 19 21 26
s4 6 7 23 28 46 56 59 67 82 82
s5 3 4 14 17 33 41 44 50 60 65
s6 11 14 43 57 90 111 112 131 148 160
s7 1 2 4 6 9 11 11 14 17 21
s8 2 3 10 15 35 43 55 60 120 137

all scenarios.

In d4, the prioritization approach has the best weight cover-

age. The random distribution of weights leads to a high weight

coverage when performing test case composition with its pair

selection.

In general, the PPC gives better weight coverage. There

are, however, three exceptions: Very small scenarios, prob-

lematic distributions, and very high weight marks. For very

small scenarios, PPS has a good starting point, since any

pairwise-covering test suite has a good chance for containing

combinations of any class pair, so as a consequence, even

combinations of only high-weight pairs. In these cases, PPS

can sort the good combinations to the beginning. The influence

of problematic distributions has already been analyzed in

detail. PPC performs better on random and on (1/vmax)
2 split

while it has some problems on equal distributions (with low

target covering marks) and is on par with the PPS approach on

the 50/50 split. For higher target marks on equal distributions,

it becomes better again since PPS has a general problem here.

For very high weight marks starting at around 95% or 99%
and even higher, PPC loses its advances gradually. Since PPS

performs better for 100% coverage, there obviously must be

a point ≤ 100% where both approaches perform equally.

To conclude. Having two algorithms which both generate

test suites covering all possible pair combinations, the PPC

covers weights better than the PPS approach, because it tries
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to combine high weight pairs into early test cases. The PPS

approach is worse, because it has no influence on the actual

composition of test cases with their contained pairs. So while

both test suites contain all possible class pairs, PPC does early

weight coverage.

B. Comparison of PPC with DDA

Furthermore, we compared PPC with DDA with respect to

size and weight coverage.
Size. Comparing PPC and DDA test suite sizes, there is

no clear result. From 32 test suites generated with DDA and

PPC, 18 DDA suites are smaller than the PPC test suites.

For the remaining 14 scenario-distribution combinations, PPC

generates smaller test suites. As already stated, PPC produces

a very large test suite for the s3 and s7 in d1 and d3
combinations. The DDA produces smaller test suites for these

combinations, similar to the PPS results. The DDA, however,

has two outliers with s2 and s6: The result set is 50% larger

for s2 and 25% larger for s6 compared with PPC.
For the majority of results, both algorithms perform sim-

ilarly. For d2, the PPC has some advantages, for d1 and d3
DDA performs better. The scenario s6 seems to be a good

PPC scenario, while s3 and s7 are handled well by DDA.

There is no general tendency for one or the other to produce

considerably different test suite sizes since both algorithms

aim to cover high weight instead of generating small test

suites.

Cumulative Weight Covered For s3 Using Four Weight Distributions
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Fig. 6. Cumulative weight covered in the first 10 tests using input s3

Weight coverage. In [13], the weight results are only given

for s3, s4, s5, s7, and s8. We analyzed the given figures, the

results are given in Figures 6-10. The solid black lines give the

PPC results while the light gray lines give the DDA results.

Both, black and gray lines without any markers stand for d1;

d2 lines carry small solid squares; the solid triangles represent

d3; and d4 has circles.
For s3, PPC works better than DDA for all distributions

(Figure 6). For d2, the advantage is remarkably high at the

beginning, although at later test cases, DDA approaches the

PPC values. For s4, the DDA has a clear advantage for d3
and a small advantage for d1 (Figure 7). For d2 and d4, PPC

performs slightly better. For s5, the PPC generally performs

better than the DDA (Figure 8). In this scenario, PPC gives

Cumulative Weight Covered For s4 Using Four Weight Distributions
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its best results for the d3. For s7 (Figure 9), the results are

very similar to s3. The PPC generally performs better than

the DDA. The PPC has a very strong start for d2, while the

DDA start is quite similar to the other distribution starts. For

s8, the DDA starts better than PPC for d4 (Figure 10). For the

remaining distributions, the PPC starts better, d2 again very

much better. In later test cases, the DDA surpasses PPC for

d1 and d2. PPC surpasses DDA for d4 and stays ahead for d3
all the time.

Comparing all 240 generated test cases (4 scenarios with

4 distributions with 10 test cases each and 1 scenario with
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Cumulative Weight Covered For s8 Using Four Weight Distributions
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4 distributions with 20 test cases each) for both DDA and

PPC, the PPC performs better for 192 test cases. The DDA

performs better for 47 test cases. So while the values for DDA

in [13] are not 100% accurate, a tendency can be seen: PPC

performs better than DDA in 4 of 5 cases with respect to

weight coverage. Unfortunately, no results for DDA with s1,

s2, and s6 are given. Comparing PPC’s good performance in

s6 with DDA results would be quite interesting.

To conclude. PPC performs better than DDA in terms of

early weight coverage; the resulting test suites are slightly

larger. However, further analysis is needed for missing sce-

narios.

C. Comparison of PPC with BDD

Finally, we compared PPC with BDD with respect to size

and weight coverage.

Size. From 32 test suites generated with BDD and PPC, 20

PPC suites are smaller than the BDD test suites. In eight cases

BDD generated suites are smaller, while for the remaining 4

scenario-distribution combinations, the result set have equal

sizes. As already stated, PPC produces a very large test suite

for the s3 and s7 in d1 and d3 combinations. The BDD

produces smaller test suites for these combinations, similar

to the PPS and DDA results. These special cases need further

investigation.

Weight coverage. The BDD weight results are only given

for 50%, 75% and 100% [15]. Their and our results can be

found in Table IV. Unfortunately, they have not evaluated

results for other coverage levels as we did in Table V.

For 50% coverage, the PPC performs better than the BDD in

22 cases when comparing all 32 generated results (8 scenarios

with 4 distributions each) for both BDD and PPC. For the

remaining 10 cases BDD is on a par with PPC. The BDD

does not perform better for scenario-distribution combination

at a coverage level of 50%.

For 75% coverage, PPC increases its advantage over the

BDD. The BDD performs better for only 2 cases while PPC

performs better in 26 cases and is on par with BDD in 4 cases.

Comparing all 96 generated results (8 scenarios with 4

distributions with 3 different weights each) for both BDD and

PPC, the PPC performs better in 68 cases. The BDD performs

better for only 10 cases. For the remaining 18 cases BDD is

on a par with PPC. PPC performs better than BDD in more

than 2 of 3 cases with respect to weight coverage.

To conclude. PPC performs clearly better than BDD in

terms of early weight coverage and resulting test suite size.

V. CONCLUSIONS

This paper presents the PPC approach and PPS approach

for comparison. Both approaches have been successfully im-

plemented in the classification tree editor. A set of benchmarks

using eight scenarios with four different weight distributions

has successfully been applied to both algorithms and the

results have been compared with two other approaches, DDA

and BDD, which demonstrated the usability of our work.

Based on the comparison between our two approaches, the

following guideline on when to use which technique can be

given: If a full pairwise coverage is already established, PPS

can help to select subsets of test suites. If the weight distribu-

tion is equal or scenarios are small, there is no reason to use

prioritized test case generation. If however, scenarios are large

and distributions tend to be non-uniform, the application of

prioritized test generation becomes valuable in all cases, where

subsets of test suites are needed. Then, a subset selection based

on weights is more successful using prioritized test generation.

Comparing our results with others: PPC performs clearly

better than BDD in terms of early weight coverage and

resulting test suite size. PPC performs better than DDA in

terms of early weight coverage; the resulting test suites are,

however, slightly larger.

Future work will analyze efforts for test generation when

using the approaches presented in this paper.
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