

Abstract—This paper explores the opportunities of using a

GPGPU to solve systems of polynomial equations. We propose

numerical real root-finding based on recursive de Casteljau

subdivision over an n-dimensional rectangular domain. Two

variants of parallelism - multithreading and multiprocessing -

have been investigated. The speed, memory consumption and

resistance for different sets of input data have also been

examined.

I. INTRODUCTION

YSTEMS of algebraic equations are widely used in

many fundamental problems in computer-aided design

and manufacturing, engineering, robotics, and computer

graphics. They are essential in modeling, simulation, and

optimization problems. Most approximation and

interpolation methods employ piecewise polynomial

functions over a given domain.

While finding roots for polynomials is a well-explored

area, solving systems of such equations is still a serious

challenge. They can have many solutions relative to the

number and degrees of equations. Furthermore, in many

cases only a few roots, e.g. those lying in a specific region,

are the subject of interest. In such situations, a systematic

search through a solution space and excluding areas not

containing any roots seems to be a successful approach.

A method based on a multidimensional bisection

algorithm using the multivariate Bernstein-Bezier

representation, convex hull property and de Casteljau

subdivision provides the approximate location of all the

system roots in a given bounded domain [1]. The

effectiveness of the algorithm can be significantly improved

by early elimination of regions of roots that have already

been isolated [2]-[4].

The rapid increase of GPU computing power means that

this well-conditioned numerical algorithm, based on the

analysis of Bernstein coefficients, may be useful, despite its

exponential computational complexity. In recent years, many

publications have proven that such an approach works well

for surface intersection calculation or for the visualization of

curves and surfaces [5]-[6]. They have been confirmed

mostly for one or two equations and the computation of

single precision floating-point values that are sufficient

enough for computer graphics purposes.

Our goal is to investigate the usefulness of GPU

processing in the case of larger polynomial systems and

double precision floating-point arithmetic, which are

required by CAD/CAM/CAE systems.

The paper is organized as follows: in Section 2 we briefly

introduce the theoretical background for a multidimensional

bisection algorithm. In the next sections we discuss the

details of our implementation and the numerical results

obtained for various sets of equations. Section 5 provides

conclusions drawn from the presented analysis.

II. PROBLEM FORMULATION

Consider a set of n polynomial equations in n independent

variables

 0xF )((1)

where F = (f1, f2,…, fn): [0,1]
n
  R

n
. The problem is to

calculate numerically, with a given accuracy ε, all the real

roots {x0} of the system (1).

The multidimensional bisection method discussed here is

based on the Bernstein-Bezier tensor representation. Each

polynomial fk is in the form

   


)(
1

1

)(

)()(
1

11

0 0

1

)()()()(

k k
n

n

k
n

n

k

n

m

i

m

i

n

m

i

m

i

k

iik xBxBbf  x (2)

where all polynomials)(
)(

j

m

i xB
k

j

j
 are Bernstein

polynomials of the form

imim

i xx
i

m
xB 


)1()((3)

and
)(

1

k

ii n
b  are called Bernstein coefficients [7].

The properties of the multivariate tensor-product

Bernstein basis – most of all the convex-hull property over a

unit box [0,1]
n
 – are essential in the root-finding algorithm.

A sufficient condition for excluding the existence of roots in

a given domain [0,1]
n
 is that all Bernstein coefficients of any

S

Solving Systems of Polynomial Equations on a GPU

Robert A. Kłopotek
Institute of Computer Science

Polish Academy of Sciences,

 ul. Jana Kazimierza 5,

01-237 Warsaw, Poland

Email: robert@klopotek.com.pl

Joanna Porter-Sobieraj
Faculty of Mathematics and

Information Science, Warsaw

University of Technology,

ul. Koszykowa 75,

00-661 Warsaw, Poland

Email: j.porter@mini.pw.edu.pl

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 539–544

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 539

polynomial fk are of the same sign. If all the polynomials fk

have Bernstein coefficients of both signs, the corresponding

domain is suspected to contain a solution of an equations

system (1) and it has to be subdivided further.

The solver routine consists of a queue formed by the areas

(boxes) to be processed. If the considered area is suspected

to have roots of a polynomial system, it is then subdivided

along the consecutive variable xj into two boxes. This

subdivision involves the de Casteljau algorithm to calculate

sets of Bernstein coefficients for both resulting subdomains.

Such a division implies that both new areas are scaled into a

unit box. Therefore, not only Bernstein coefficients, but also

additional information about the current area’s coordinates

relative to an initial unit box have to be stored. A subdivision

along only one variable simplifies de Casteljau algorithm

implementation, and a cyclical selection of dividing

coordinate xj guarantees the decrease in diameter of

subsequent subdomains.

Both new boxes together with their Bernstein coefficients

are placed as one data package in a queue of regions

suspected to contain a root and a consecutive data package is

removed from the queue to be processed.

The root-location process is completed when the tolerance

of subdivision resolution ε for all subdomains is obtained or

all areas have been excluded as not containing any system

solutions. This corresponds to emptying the queue.

III. ALGORITHM PSEUDOCODE

The whole computation procedure was divided into 3

stages: first converting polynomial in power basis into

Bernstein basis on CPU and sending converted polynomials

to GPU, second making de Casteljau division on GPU, third

sending back results from GPU to CPU and converting it to

power basis.

First stage on CPU:
1. Scale domain from interval in Rn to

multidimensional box [0,1]n

2. Convert polynomials in each equation

from power basis to Bernstein basis

3. Optimization step: pre-divide

equation system using de Casteljau

method so that each thread block

have one box

4. Send converted equations to GPU

5. CPU starts a CUDA program on GPU

Second stage on GPU for each thread block (each block of

threads has its own queue):
1. Initialize queue with the obtained

box.

2. For all threads in block in parallel

a. Get box from queue

b. Divide box using de Casteljau

method

c. Check existence of roots

d. Put into queue boxes which may

contain roots

3. Check end conditions (emptiness of

queue, size of boxes, number of

boxes analyzed, etc.). If they are

not satisfied go to 2. Else go to 4.

4. Send boxes queue from GPU to CPU

Note that due to queuing different threads at the same

moment may handle boxes of different sizes.

In the literature, e.g. in [11], one can find other parallel

solvers for polynomial equation systems. However, they do

not rely solely on GPUs when searching through the box

hierarchy, delegating hierarchy traversal to the CPU. So only

one step of box processing is executed in parallel on GPUs

and then the control returns to CPU. Our novel algorithm

makes use of the new feature of dynamic memory allocation

on CUDA that allows for processing of boxes in a loop

solely on GPUs (GPUs perform the traversal) which

exploits thoroughly the natural parallelism of the task itself.

In the third stage the CPU is responsible for collecting of

the results and does not control search through the boxes.

Third stage on CPU:
1. Merge results from all blocks.

2. Scale boxes to initial domain.

3. As root solution take midpoint of

each box.

4. Check if this point is a solution

with a given accuracy epsilon.

IV. IMPLEMENTATION NOTES

The algorithm presented in the previous section has been

implemented mainly on a GPU with the use of the CUDA

parallel programming model. The main concepts and an

extensive description of this technology are given in [8] and

[9].

Modern graphics cards contain hundreds of cores that

execute tasks in parallel. The threads are logically grouped

into so-called blocks, and threads from the same block are

always executed on the same multiprocessor. Therefore,

threads from the same block can and threads from different

blocks cannot cooperate effectively. A GPU also has its own

memory hierarchy. According to its speed, it looks as

follows: registers, cache, shared memory, constant memory

and the slowest – global memory.

The algorithm described for root isolation seems to be

suitable for CUDA parallelization. Distinct boxes can be

processed independently, and the exclusion tests together

with the subdivision procedure are of a very simple form.

The simplest way of parallelization is using only one

block of threads. The threads are then executed in parallel in

groups of 32. The memory is shared for all of them and

synchronization while placing data packages in, and

removing them from the queue can easily be done.

The more efficient parallelization divides the threads into

many blocks to execute many independent de Casteljau

subdivisions on different available multiprocessors at the

same time.

540 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Our preliminary version of the solver has been written for

NVIDIA GPUs with compute capability 2.x, using NVIDIA

Computing SDK 3.2 for 64-bit Windows 7. To begin with,

all necessary data for a given system of polynomial

equations, such as coefficients and computation tolerance,

are copied into the GPU’s global memory. Then, a CPU

initializes one or more blocks of a required number of

threads, and dynamic structures, such as queues of boxes and

sets of corresponding Bernstein coefficients, are allocated.

Afterwards, each thread executes a de Casteljau subdivision

and exclusion test for one data package which has been

removed from the corresponding queue. When calculations

for a block have been completed, a CPU copies the results

from the GPU’s global memory to RAM and then, they are

joined together to get a final solution to a given set of

equations.

All the calculations are done in double precision floating-

point arithmetic. Single precision floating-point computing,

although more efficient than the double type, does not

guarantee sufficient accuracy for an arbitrary location of the

roots of the system. Many times in single precision

computation algorithm did not find root due to numerical

errors. Due to numerical errors bisection algorithm ran

differently for single and double precision. In single

precision it rejected too many boxes and worse boxes with

roots in it. Hence comparison between single precision and

double precision is not insightful.

Secondly, the efficiency of this approach has also been

decreased through applying dynamic allocation of memory

for corresponding data structures. In this algorithm, the

number of boxes that are suspected to contain the roots is

unknown. Therefore, dynamic allocation, although it is

slower than allocation of global memory of a given size,

seems to be more reasonable. When a thread makes de

Casteljau subdivision in GPU part of algorithm, it must

allocate memory for division result. If checking box for

containing a root is positive, then this thread puts box into

queue and otherwise it frees memory. Memory allocated by

thread is only available for threads inside a block.

The amount of memory used by a GPU is proportional to

the size of the task (measured by the number and the

maximum degree of equations), which influences the number

of Bernstein coefficients. Table 1 shows the amount of

memory for a data package with coefficients for one

analyzed box for a different number of equations n and the

maximum degree of equations m in each variable separately.

It should be noted, that due to the tensor basis and a box’s

domain, the corresponding degree of the equation may even

be equal to n·m.

Note that for a given equation system m, n are fixed and

therefore box descriptor size is constant.

V. EXPERIMENTAL RESULTS

The numerical experiments were performed on a PC with

an NVIDIA GeForce 460 GTX 1 GB graphics card with 336

CUDA cores. It is suggested to leave at least 10% of the

memory for stack operations; therefore, the size of the heap

for all the tests was set to 768 MB.

TABLE I.

MEMORY SIZE (IN BYTES) OF A SINGULAR BERNSTEIN

COEFFICIENTS PACKAGE FOR A DIFFERENT NUMBER OF EQUATIONS

N WITH MAXIMUM DEGREE M IN EACH VARIABLE SEPARATELY

n 3 4 5 6 7 8

m=1 240 576 1,360 3,168 7,280 16,512

m=2 696 2,656 9,800 35,088 122,584 420,032

The goal of our research was to compare the time and

memory performance of a parallel GPU solver and its

resistance for different sets of input data and their execution

configuration.

The input systems of equations differed in the number n of

variables and equations (ranging from 3 to 8), the maximum

degree m (1 or 2) in each variable separately, and the level of

their linearity.

Note that even when degree m=1 it does not mean, that an

equation system is linear. If you have, say 7 variables, then

the equation degree can be up to 7. The linearity control

means that we restricted in a given experiment the

coefficients of nonlinear terms to be by some factor smaller

than the coefficients of linear terms. Anyway linearity

control does not mean linear equations.

It should be stressed here that limiting the systems to only

8 quadratic equations in each variable separately, results in

multi-quadratic polynomials of degree equal even to 16.

Moreover, such systems are of the utmost importance not

only in modeling and constraint programming, but also in

robotics associated with the inverse kinematic problem. It

has been proven that for a general revolute 6-DOF robot

manipulator the inverse kinematic problem can be reduced to

solving a system of 8 second-degree polynomial equations in

8 unknowns [10].

The speed of the calculations was ascertained by

measuring the average time of processing a box, and memory

consumption – by the number of subdomains that had been

processed. The tolerance for the subdivision resolution ε was

equal to 10
-6

.

In this paper we present only a portion of the numerical

results obtained. Fig. 1 and Fig. 2 show the time needed for

processing a box depending on the number of threads.

For multilinear sets of equations (nx1) the time increases

with the number of threads, and for quadratic equations in

each variable (nx2) – it decreases for a number of threads

less than 8 and a number of equations greater than 6. This

shows that, depending on the equation system complexity

(which influences the amount of data to be processed), it is

worth using only a limited number of threads. An excessive

number of threads generates only additional costs for

managing the threads not used for calculating.

ROBERT KŁOPOTEK, JOANNA PORTER-SOBIERAJ: SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS ON A GPU 541

Fig. 1 The average time for processing a box for different numbers of

threads in a block and systems of linear equations in each variable.

Fig. 3 The average time for processing a box for different numbers of

threads in a block and systems of linear equations in each variable with

dominant linear coefficients.

Fig. 3 presents the results for sets of almost linear systems.

The performance for one box is similar to the previous cases,

but a smaller increase in time in comparison to Fig. 1 and

Fig. 2 is noticeable. The number of subdivisions increased

for the certain sets even by a few orders of magnitude. Thus,

the roots of systems of 8 equations were also possible to

locate.

Special systems of equations were investigated in Fig. 4.

The roots have been placed on the boundaries of the

subdomains; therefore, the adjacent areas cannot be excluded

from root examination, even during later stages of

computation. The time needed to process a box is still almost

the same, but the number of examined boxes increases

rapidly.

The next few experiments lead to an analysis of the

relationship between computing performance and the number

of blocks.

The initial set of equations was divided by a CPU into the

required number of boxes, and then sent to a GPU and

divided between the corresponding blocks. The maximum

number of blocks we tested was 256.

Fig. 2 The average time for processing a box for different numbers of

threads in a block and systems of bilinear equations in each variable.

Fig. 4 The average time for processing a box for different numbers of

threads in a block and systems of equations with the roots on the

boundaries of subdomains.

In Fig. 5 we present the times for different numbers of

blocks. The number of threads per block was always 4. Such

a choice comes from the previous experiments, where the

time increased for a number of threads greater than 4. Fig. 5

shows that a successive increase in the number of blocks up

to 32, resulting in a decrease in the time of computation.

Then, the greater the number of blocks, the slower the

processing of a box. This is due to the large overhead for

memory management, when the free memory for data

structure allocation is used up. The lack of memory is also

the reason for breaking up the calculations for larger systems

and a greater number of blocks.

Additionally, when compared to the previously discussed

case of a single block, in the case of multiple blocks, the

similar relationships between the better performances of

solving the systems with a dominant linear part have been

observed.

The last three figures (Fig. 6 – Fig. 8) show the influence

of the number of threads on the speed of solving similarly

complex tasks.

542 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Fig. 5 The average time for processing a box for different numbers of

blocks and systems of linear equations in each variable.

Fig. 7 The run time for processing 1000 boxes for different numbers of

threads in a block and systems of bilinear equations in each variable.

In these experiments, the root-locating procedure was

ceased after just 1000 boxes had been processed. The figures

present the run time for one block with a maximum number

of threads equal to 256 (Fig. 6 and Fig. 7) and up to 256

blocks of only four threads (Fig. 8). Just as was expected for

such a small number of processed subdomains, the greater

the number of threads, the better the efficiency obtained. A

comparison of these results and the previous ones allows us

to suppose that the massive number of boxes that needs to be

analyzed, and the corresponding memory management,

decrease the effectiveness of the solver. In multibock case 4

threads were chosen from experimental results as the best

speedup. When more threads are taking boxes form queue

and allocating memory simultaneously the time of processing

one box increases. It is caused by forced sequentiality due to

synchronization of shared resources.

VI. CONCLUSION

In this paper the possibilities of using a GPU to isolate the

roots of systems of polynomial equations have been

analyzed. An algorithm based on the general multivariate

Bernstein-Bezier representation and the systematic search of

a given domain with the use of NVIDIA CUDA technology

has been implemented.

Fig. 6 The run time for processing 1000 boxes for different numbers of

threads in a block and systems of linear equations in each variable.

Fig. 8 The run time for processing 1000 boxes for different numbers of

blocks of 4threads and systems of linear equations in each variable.

The main objective of this research was verification of

applicability of GPU in pure bisection process in such a way

as not to miss any potential root. We did not aim at a fast

computing method. Currently hybrid CPU/GPU solvers or

pure CPU solvers based on multicore architecture turn out to

be faster. They are usually exploiting Newton’s method,
which can converge to the solution in another simplex. This

implies that some solutions may be missed and some may be

found several times. We considered such a behavior

disadvantageous Therefore we looked for methods finding

all roots in a reasonable time.

The number of variables and equations influences the

amount of memory required to store all the necessary data

for a given system of equations. The memory usage increases

rapidly especially according to the greater degree of a

system. Due to the high memory demand and limited

memory of GPUs, not all the tests were completed.

A new feature of GPU cards – dynamic memory allocation

– proved to be a bottleneck. Therefore, we put a strong

emphasis on minimizing such memory allocations. It allowed

for a 50% increase in the speed of the solver, when

compared to its initial version. The current NVIDIA

Computing SDK 4.0 contains some improvements in

memory management; therefore this part of the solver might

turn out to be even more effective.

ROBERT KŁOPOTEK, JOANNA PORTER-SOBIERAJ: SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS ON A GPU 543

Increasing the number of threads in a block results in a

decrease in the speed of a single box’s processing. This is

related to the time needed to wait for synchronization while

reading the next box from, and placing two new ones in, the

queue. It should be stressed that even in the case of many

blocks, they use the common heap and therefore their

allocation queries have to be serialized. Hence, to speed up

the solver, we also reduced the need for thread

synchronization.

Another problem is data transfers between global memory

and the device. These can be minimized by the use of on-

chip memory that speeds up the calculations. The size of the

cache is equal to 128 bytes. This is not sufficient to hold

even one of the smallest boxes per thread, even in the case

of three trilinear equations, and to take advantage of the

cache, it should store data for the whole warp of threads.

The next problem related to memory performance is the

storage of results. For larger systems, the queue of boxes

that have to be analyzed gets longer. Its length reaches as

high as several thousand boxes. The effectiveness of the

algorithm may be significantly improved by additional, more

expensive tests for eliminating regions without any roots and

the huge number of processed data [3].

The studies performed show that although GPU

processing is a promising alternative for solving systems of

algebraic equations, current software and hardware

limitations strongly reduce the fields of their usage. The

main problems were connected with slow double precision

arithmetic, conflicts in dynamic access to the common

memory and the lack of efficient synchronization of

different blocks of threads.

Regardless of the technological advances of graphics

cards, the use of more effective criteria for box exclusion

should be considered as a future direction of research. This

should reduce memory consumption and allow the solving

of even more complex systems.

REFERENCES

[1] E. C. Sherbrooke and N. M. Patrikalakis, “Computation of the
solutions of nonlinear polynomial systems,” Computer Aided
Geometric Design, vol. 10, no. 5, pp. 379–405, Oct. 1993.

[2] T. W. Sederberg and R. J. Meyers, “Loop detection in surface patch
intersections,” Computer Aided Geometric Design, vol. 5, no. 2,
pp. 161–171, July 1988.

[3] K. Marciniak, E. Pawelec, and J. Porter-Sobieraj, “Method for finding
all solutions of systems of polynomial equations,” in Proc. 7th IEEE
Int. Conf. Methods and Models in Automation and Robotics, vol. 1,
pp. 155–158.

[4] G. Elber and M.-S. Kim, “Geometric constraint solver using
multivariate rational spline functions,” in Proc. 6th AC M Symposium
on Solid modeling and applications, New York, 2001, pp. 1–10.

[5] C. Loop and J. Blinn, “Real-time GPU rendering of piecewise
algebraic surfaces,” in ACM SIGGRAPH 2006 Papers, New York,
2006, pp. 664–670.

[6] J. Seland and T. Dokken, “Real-time algebraic surface visualization,”
Geometrical Modeling, Numerical Simulation, and Optimization,
Springer, Heidelberg, pp. 163–183, 2007.

[7] G. Farin, Curves and Surfaces for Computer Aided Geometric Design.
San Diego, CA: Academic Press, 1990, pp. 267–281.

[8] CUDA C Programming Guide, NVIDIA Corporation, 2012.
[9] CUDA C Best Practices Guide, NVIDIA Corporation, 2012.
[10] L. W. Tsai and A. P. Morgan, “Solving the kinematics of the most

general six- and five-degree-of-freedom manipulators by continuation
methods,” ASME J. Mechanisms, Transmissions and Automation in
Design, vol. 107, no. 2, 1985, pp. 189–200.

[11] H. Park, G. Elber et al., “A Hybrid Parallel Solver for Systems of
Multivariate Polynomials using CPUs and GPUs”, SIAM Conference
on Geometric and Physical Modeling'11, 2011

544 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

