
 

 

 

 

Abstract—This paper explores the opportunities of using a 

GPGPU to solve systems of polynomial equations. We propose 

numerical real root-finding based on recursive de Casteljau 

subdivision over an n-dimensional rectangular domain. Two 

variants of parallelism - multithreading and multiprocessing - 

have been investigated. The speed, memory consumption and 

resistance for different sets of input data have also been 

examined. 

I. INTRODUCTION 

YSTEMS of algebraic equations are widely used in 

many fundamental problems in computer-aided design 

and manufacturing, engineering, robotics, and computer 

graphics. They are essential in modeling, simulation, and 

optimization problems. Most approximation and 

interpolation methods employ piecewise polynomial 

functions over a given domain.  

While finding roots for polynomials is a well-explored 

area, solving systems of such equations is still a serious 

challenge. They can have many solutions relative to the 

number and degrees of equations. Furthermore, in many 

cases only a few roots, e.g. those lying in a specific region, 

are the subject of interest. In such situations, a systematic 

search through a solution space and excluding areas not 

containing any roots seems to be a successful approach.  

A method based on a multidimensional bisection 

algorithm using the multivariate Bernstein-Bezier 

representation, convex hull property and de Casteljau 

subdivision provides the approximate location of all the 

system roots in a given bounded domain [1]. The 

effectiveness of the algorithm can be significantly improved 

by early elimination of regions of roots that have already 

been isolated [2]-[4].  

The rapid increase of GPU computing power means that 

this well-conditioned numerical algorithm, based on the 

analysis of Bernstein coefficients, may be useful, despite its 

exponential computational complexity. In recent years, many 

publications have proven that such an approach works well 

for surface intersection calculation or for the visualization of 

curves and surfaces [5]-[6]. They have been confirmed 

mostly for one or two equations and the computation of 

single precision floating-point values that are sufficient 

enough for computer graphics purposes.  

Our goal is to investigate the usefulness of GPU 

processing in the case of larger polynomial systems and 

double precision floating-point arithmetic, which are 

required by CAD/CAM/CAE systems.  

The paper is organized as follows: in Section 2 we briefly 

introduce the theoretical background for a multidimensional 

bisection algorithm. In the next sections we discuss the 

details of our implementation and the numerical results 

obtained for various sets of equations. Section 5 provides 

conclusions drawn from the presented analysis.  

II. PROBLEM FORMULATION 

Consider a set of n polynomial equations in n independent 

variables  

 0xF )(  (1) 

where F = (f1, f2,…, fn): [0,1]
n
  R

n
. The problem is to 

calculate numerically, with a given accuracy ε, all the real 

roots {x0} of the system (1).  

The multidimensional bisection method discussed here is 

based on the Bernstein-Bezier tensor representation. Each 

polynomial fk is in the form 
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b   are called Bernstein coefficients [7].  

The properties of the multivariate tensor-product 

Bernstein basis – most of all the convex-hull property over a 

unit box [0,1]
n
 – are essential in the root-finding algorithm. 

A sufficient condition for excluding the existence of roots in 

a given domain [0,1]
n
 is that all Bernstein coefficients of any 
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polynomial fk are of the same sign. If all the polynomials fk 

have Bernstein coefficients of both signs, the corresponding 

domain is suspected to contain a solution of an equations 

system (1) and it has to be subdivided further.  

The solver routine consists of a queue formed by the areas 

(boxes) to be processed. If the considered area is suspected 

to have roots of a polynomial system, it is then subdivided 

along the consecutive variable xj into two boxes. This 

subdivision involves the de Casteljau algorithm to calculate 

sets of Bernstein coefficients for both resulting subdomains. 

Such a division implies that both new areas are scaled into a 

unit box. Therefore, not only Bernstein coefficients, but also 

additional information about the current area’s coordinates 

relative to an initial unit box have to be stored. A subdivision 

along only one variable simplifies de Casteljau algorithm 

implementation, and a cyclical selection of dividing 

coordinate xj guarantees the decrease in diameter of 

subsequent subdomains.  

Both new boxes together with their Bernstein coefficients 

are placed as one data package in a queue of regions 

suspected to contain a root and a consecutive data package is 

removed from the queue to be processed.  

The root-location process is completed when the tolerance 

of subdivision resolution ε for all subdomains is obtained or 

all areas have been excluded as not containing any system 

solutions. This corresponds to emptying the queue. 

III. ALGORITHM PSEUDOCODE 

The whole computation procedure was divided into 3 

stages: first converting polynomial in power basis into 

Bernstein basis on CPU and sending converted polynomials 

to GPU, second making  de Casteljau division on GPU, third 

sending back results from GPU to CPU and converting it to 

power basis.  

First stage on CPU: 
1. Scale domain from interval in Rn to 

multidimensional box [0,1]n 

2. Convert polynomials in each equation 

from power basis to Bernstein basis 

3. Optimization step: pre-divide 

equation system using de Casteljau 

method so that each thread block 

have one box 

4. Send converted equations to GPU 

5. CPU starts a CUDA program on GPU 

Second stage on GPU for each thread block (each block of 

threads has its own queue): 
1. Initialize queue with the obtained 

box. 

2. For all threads in block in parallel 

a. Get box from queue 

b. Divide box using de Casteljau 

method 

c. Check existence of roots 

d. Put into queue boxes which may 

contain roots  

3. Check end conditions (emptiness of 

queue, size of boxes, number of 

boxes analyzed, etc.). If they are 

not satisfied go to 2. Else go to 4. 

4. Send boxes queue from GPU to CPU 

 

Note that due to queuing different threads at the same 

moment may handle boxes of different sizes. 

In the literature, e.g. in [11], one can find other parallel 

solvers for polynomial equation systems. However, they do 

not rely solely  on GPUs when searching through the box 

hierarchy, delegating hierarchy traversal to the CPU. So only 

one step of box processing is executed in parallel on GPUs 

and then the control returns to CPU. Our novel algorithm 

makes use of the new feature of dynamic memory allocation 

on CUDA that allows for processing of boxes in a loop 

solely on GPUs  (GPUs perform the traversal) which 

exploits thoroughly the natural parallelism of the task itself.  

In the third stage the CPU is responsible for collecting of 

the results and does not control search through the boxes. 

Third stage on CPU: 
1. Merge results from all blocks. 

2. Scale boxes to initial domain. 

3. As root solution take midpoint of 

each box. 

4. Check if this point is a solution 

with a given accuracy epsilon. 

IV. IMPLEMENTATION NOTES 

The algorithm presented in the previous section has been 

implemented mainly on a GPU with the use of the CUDA 

parallel programming model. The main concepts and an 

extensive description of this technology are given in [8] and 

[9].  

Modern graphics cards contain hundreds of cores that 

execute tasks in parallel. The threads are logically grouped 

into so-called blocks, and threads from the same block are 

always executed on the same multiprocessor. Therefore, 

threads from the same block can and threads from different 

blocks cannot cooperate effectively. A GPU also has its own 

memory hierarchy. According to its speed, it looks as 

follows: registers, cache, shared memory, constant memory 

and the slowest – global memory.  

The algorithm described for root isolation seems to be 

suitable for CUDA parallelization. Distinct boxes can be 

processed independently, and the exclusion tests together 

with the subdivision procedure are of a very simple form.  

The simplest way of parallelization is using only one 

block of threads. The threads are then executed in parallel in 

groups of 32. The memory is shared for all of them and 

synchronization while placing data packages in, and 

removing them from the queue can easily be done.  

The more efficient parallelization divides the threads into 

many blocks to execute many independent de Casteljau 

subdivisions on different available multiprocessors at the 

same time. 
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Our preliminary version of the solver has been written for 

NVIDIA GPUs with compute capability 2.x, using NVIDIA 

Computing SDK 3.2 for 64-bit Windows 7. To begin with, 

all necessary data for a given system of polynomial 

equations, such as coefficients and computation tolerance, 

are copied into the GPU’s global memory. Then, a CPU 

initializes one or more blocks of a required number of 

threads, and dynamic structures, such as queues of boxes and 

sets of corresponding Bernstein coefficients, are allocated. 

Afterwards, each thread executes a de Casteljau subdivision 

and exclusion test for one data package which has been 

removed from the corresponding queue. When calculations 

for a block have been completed, a CPU copies the results 

from the GPU’s global memory to RAM and then, they are 

joined together to get a final solution to a given set of 

equations. 

All the calculations are done in double precision floating-

point arithmetic. Single precision floating-point computing, 

although more efficient than the double type, does not 

guarantee sufficient accuracy for an arbitrary location of the 

roots of the system. Many times in single precision 

computation algorithm did not find root due to numerical 

errors. Due to numerical errors bisection algorithm ran 

differently for single and double precision. In single 

precision it rejected too many boxes and worse boxes with 

roots in it. Hence comparison between single precision and 

double precision is not insightful. 

Secondly, the efficiency of this approach has also been 

decreased through applying dynamic allocation of memory 

for corresponding data structures. In this algorithm, the 

number of boxes that are suspected to contain the roots is 

unknown. Therefore, dynamic allocation, although it is 

slower than allocation of global memory of a given size, 

seems to be more reasonable. When a thread makes de 

Casteljau subdivision in GPU part of algorithm, it must 

allocate memory for division result. If checking box for 

containing a root is positive, then this thread puts box into 

queue and otherwise it frees memory. Memory allocated by 

thread is only available for threads inside a block. 

The amount of memory used by a GPU is proportional to 

the size of the task (measured by the number and the 

maximum degree of equations), which influences the number 

of Bernstein coefficients. Table 1 shows the amount of 

memory for a data package with coefficients for one 

analyzed box for a different number of equations n and the 

maximum degree of equations m in each variable separately. 

It should be noted, that due to the tensor basis and a box’s 

domain, the corresponding degree of the equation may even 

be equal to n·m. 

Note that for a given equation system m, n are fixed and 

therefore box descriptor size is constant. 

V. EXPERIMENTAL RESULTS 

The numerical experiments were performed on a PC with 

an NVIDIA GeForce 460 GTX 1 GB graphics card with 336 

CUDA cores. It is suggested to leave at least 10% of the 

memory for stack operations; therefore, the size of the heap 

for all the tests was set to 768 MB.  

 

TABLE I. 

MEMORY SIZE (IN BYTES) OF A SINGULAR BERNSTEIN 

COEFFICIENTS PACKAGE FOR A DIFFERENT NUMBER OF EQUATIONS 

N WITH MAXIMUM DEGREE M IN EACH VARIABLE SEPARATELY 

n 3 4 5 6 7 8 

m=1 240 576 1,360 3,168 7,280 16,512 

m=2 696 2,656 9,800 35,088 122,584 420,032 

 

The goal of our research was to compare the time and 

memory performance of a parallel GPU solver and its 

resistance for different sets of input data and their execution 

configuration.  

The input systems of equations differed in the number n of 

variables and equations (ranging from 3 to 8), the maximum 

degree m (1 or 2) in each variable separately, and the level of 

their linearity.  

Note that even when degree m=1 it does not mean, that an 

equation system is linear. If you have, say 7 variables, then 

the equation degree can be up to 7. The linearity control 

means that we restricted in a given experiment the 

coefficients of nonlinear terms to be by some factor smaller 

than the coefficients of linear terms. Anyway linearity 

control does not mean linear equations. 

It should be stressed here that limiting the systems to only 

8 quadratic equations in each variable separately, results in 

multi-quadratic polynomials of degree equal even to 16. 

Moreover, such systems are of the utmost importance not 

only in modeling and constraint programming, but also in 

robotics associated with the inverse kinematic problem. It 

has been proven that for a general revolute 6-DOF robot 

manipulator the inverse kinematic problem can be reduced to 

solving a system of 8 second-degree polynomial equations in 

8 unknowns [10].  

The speed of the calculations was ascertained by 

measuring the average time of processing a box, and memory 

consumption – by the number of subdomains that had been 

processed. The tolerance for the subdivision resolution ε was 

equal to 10
-6

. 

In this paper we present only a portion of the numerical 

results obtained. Fig. 1 and Fig. 2 show the time needed for 

processing a box depending on the number of threads. 

For multilinear sets of equations (nx1) the time increases 

with the number of threads, and for quadratic equations in 

each variable (nx2) – it decreases for a number of threads 

less than 8 and a number of equations greater than 6. This 

shows that, depending on the equation system complexity 

(which influences the amount of data to be processed), it is 

worth using only a limited number of threads. An excessive 

number of threads generates only additional costs for 

managing the threads not used for calculating. 
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Fig. 1  The average time for processing a box for different numbers of 

threads in a block and systems of linear equations in each variable. 

 

Fig. 3  The average time for processing a box for different numbers of 

threads in a block and systems of linear equations in each variable with 

dominant linear coefficients. 

 

Fig. 3 presents the results for sets of almost linear systems. 

The performance for one box is similar to the previous cases, 

but a smaller increase in time in comparison to Fig. 1 and 

Fig. 2 is noticeable. The number of subdivisions increased 

for the certain sets even by a few orders of magnitude. Thus, 

the roots of systems of 8 equations were also possible to 

locate.  

Special systems of equations were investigated in Fig. 4. 

The roots have been placed on the boundaries of the 

subdomains; therefore, the adjacent areas cannot be excluded 

from root examination, even during later stages of 

computation. The time needed to process a box is still almost 

the same, but the number of examined boxes increases 

rapidly. 

The next few experiments lead to an analysis of the 

relationship between computing performance and the number 

of blocks.  

The initial set of equations was divided by a CPU into the 

required number of boxes, and then sent to a GPU and 

divided between the corresponding blocks. The maximum 

number of blocks we tested was 256.  

 

 

 

 

 

Fig. 2  The average time for processing a box for different numbers of 

threads in a block and systems of bilinear equations in each variable. 

 

Fig. 4  The average time for processing a box for different numbers of 

threads in a block and systems of equations with the roots on the 

boundaries of subdomains. 

 

In Fig. 5 we present the times for different numbers of 

blocks. The number of threads per block was always 4. Such 

a choice comes from the previous experiments, where the 

time increased for a number of threads greater than 4. Fig. 5 

shows that a successive increase in the number of blocks up 

to 32, resulting in a decrease in the time of computation. 

Then, the greater the number of blocks, the slower the 

processing of a box. This is due to the large overhead for 

memory management, when the free memory for data 

structure allocation is used up. The lack of memory is also 

the reason for breaking up the calculations for larger systems 

and a greater number of blocks.  

Additionally, when compared to the previously discussed 

case of a single block, in the case of multiple blocks, the 

similar relationships between the better performances of 

solving the systems with a dominant linear part have been 

observed.  

The last three figures (Fig. 6 – Fig. 8) show the influence 

of the number of threads on the speed of solving similarly 

complex tasks.  
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Fig. 5  The average time for processing a box for different numbers of 

blocks and systems of linear equations in each variable. 

 

Fig. 7  The run time for processing 1000 boxes for different numbers of 

threads in a block and systems of bilinear equations in each variable. 

 

In these experiments, the root-locating procedure was 

ceased after just 1000 boxes had been processed. The figures 

present the run time for one block with a maximum number 

of threads equal to 256 (Fig. 6 and Fig. 7) and up to 256 

blocks of only four threads (Fig. 8). Just as was expected for 

such a small number of processed subdomains, the greater 

the number of threads, the better the efficiency obtained. A 

comparison of these results and the previous ones allows us 

to suppose that the massive number of boxes that needs to be 

analyzed, and the corresponding memory management, 

decrease the effectiveness of the solver. In multibock case 4 

threads were chosen from experimental results as the best 

speedup. When more threads are taking boxes form queue 

and allocating memory simultaneously the time of processing 

one box increases. It is caused by forced sequentiality due to 

synchronization of shared resources. 

VI. CONCLUSION 

In this paper the possibilities of using a GPU to isolate the 

roots of systems of polynomial equations have been 

analyzed. An algorithm based on the general multivariate 

Bernstein-Bezier representation and the systematic search of 

a given domain with the use of NVIDIA CUDA technology 

has been implemented.  

 

 

 

 

Fig. 6  The run time for processing 1000 boxes for different numbers of 

threads in a block and systems of linear equations in each variable. 

 

Fig. 8  The run time for processing 1000 boxes for different numbers of 

blocks of 4threads and systems of linear equations in each variable. 

 

The main objective of this research was verification of 

applicability of GPU in pure bisection process in such a way 

as not to miss any potential root. We did not aim at a  fast 

computing method. Currently hybrid CPU/GPU solvers or 

pure CPU solvers based on multicore architecture turn out to 

be faster. They are usually exploiting Newton’s method, 
which can converge to the solution in another simplex. This 

implies that some solutions may be missed and some may be 

found several times. We considered such a behavior 

disadvantageous  Therefore we looked for methods finding 

all roots in a reasonable time. 

The number of variables and equations influences the 

amount of memory required to store all the necessary data 

for a given system of equations. The memory usage increases 

rapidly especially according to the greater degree of a 

system. Due to the high memory demand and limited 

memory of GPUs, not all the tests were completed.  

A new feature of GPU cards – dynamic memory allocation 

– proved to be a bottleneck. Therefore, we put a strong 

emphasis on minimizing such memory allocations. It allowed 

for a 50% increase in the speed of the solver, when 

compared to its initial version. The current NVIDIA 

Computing SDK 4.0 contains some improvements in 

memory management; therefore this part of the solver might 

turn out to be even more effective.  
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Increasing the number of threads in a block results in a 

decrease in the speed of a single box’s processing. This is 

related to the time needed to wait for synchronization while 

reading the next box from, and placing two new ones in, the 

queue. It should be stressed that even in the case of many 

blocks,  they  use  the  common  heap  and  therefore  their 

allocation queries have to be serialized. Hence, to speed up 

the  solver,  we  also  reduced  the  need  for  thread 

synchronization. 

Another problem is data transfers between global memory 

and the device. These can be minimized by the use of on-

chip memory that speeds up the calculations. The size of the 

cache is equal to 128 bytes.  This is not sufficient to hold 

even one of the smallest boxes per thread, even in the case 

of  three  trilinear  equations,  and  to  take  advantage  of  the 

cache, it should store data for the whole warp of threads. 

The next problem related to memory performance is the 

storage  of  results.  For larger  systems, the queue of  boxes 

that have to be analyzed gets longer. Its  length  reaches as 

high  as several  thousand  boxes.  The  effectiveness  of  the 

algorithm may be significantly improved by additional, more 

expensive tests for eliminating regions without any roots and 

the huge number of processed data [3].

The  studies  performed  show  that  although  GPU 

processing is a promising alternative for solving systems of 

algebraic  equations,  current  software  and  hardware 

limitations  strongly  reduce  the  fields  of  their  usage.  The 

main problems were connected with slow double precision 

arithmetic,  conflicts  in  dynamic  access  to  the  common 

memory  and  the  lack  of  efficient  synchronization  of 

different blocks of threads. 

Regardless  of  the technological  advances of  graphics 

cards, the use of more effective criteria for  box  exclusion 

should be considered as a future direction of research. This 

should reduce memory consumption and allow the solving 

of even more complex systems. 
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