
SQL-Based Heuristics for Selected KDD Tasks over
Large Data Sets

Marcin Kowalski∗ and Sebastian Stawicki∗

∗Institute of Mathematics, University of Warsaw

ul. Banacha 2, 02-097 Warsaw, Poland

{mkowal, stawicki}@mimuw.edu.pl

Abstract—We investigate how to use the scripts with automati-
cally generated fast-performing analytic SQL statements to speed
up the KDD-related tasks of attribute selection and decision tree
induction. We base our framework on the entity-attribute-value
data model in order to seamlessly scale the required queries
with respect to the amounts of attributes involved in the given
task’s specification. We note that the considered tasks can be
heuristically handled using the same class of aggregation queries,
where the most promising attributes and splits are searched by
analyzing diversity of aggregated results grouped by decision.
We also outline our plans with respect to creation of a large-
scale framework for evaluating the proposed heuristics against
real-world data.

Keywords-attribute selection; decision trees; SQL; EAV;

I. INTRODUCTION

T
HE PROCESS of knowledge discovery in databases

(KDD) consists of many stages, such as data integration

and cleaning, feature extraction, dimension reduction, model

construction and more [1], [2]. Given the growing sizes of

data sets, there are a number of approaches attempting to mine

the available sources by means of database query languages

rather than operating directly on data [3], [4], [5], [6]. Due to

its simplicity and commonness, using SQL for such purposes

is probably the most examined and described in the literature

[7], [8], [9].

One of the major trends in described area is to split the

main KDD task into subtasks solved by relatively basic SQL

queries (e.g. [8]), the other trend is to precalculate tables

containing some partial results frequently used in implemented

algorithms’ runs. The presented work is embedded in both

of these trends although the considered examples of KDD

algorithms follow a more iterative, ad-hoc style of formulating

and executing SQL statements. When ordinary SQL statements

that are available in most RDBMS-s became not enough -

especially in the case of growing compoundness of tasks -

researches reach beyond the contemporary language standard

and utilize extensions of SQL such as user defined functions

(including aggregators) or non-scalar types support [8]. In this

paper we concentrate on methods based on standard SQL’s

operands and aggregations provided by most RDBMS vendors.

We do not actually try to implement known algorithms from

KDD domain but rather adapt them to the proposed model and

replace compound calculations by simple procedures that can

be easily calculated with plain SQL queries.

We choose three examples of classical problems from the

domain and formulate them as SQL supported tasks [10], [11].

We focus our attention on the decision tree induction but we

also describe potential applications of the presented approach

in the attribute selection and extraction problems. We show

that a significant part of SQL statements used in all these

cases has the same general structure which may be helpful in

order to choose an appropriate RDBMS solution.

We redefine the selected tasks stages using analytic SQL

over data sets stored in an entity-attribute-value (EAV) format.

We claim that even the previously known SQL-based tech-

niques of attribute selection and decision tree induction can

be improved by means of establishing a more scalable frame-

work. In particular, we show that the EAV layout enables to

design SQL-based scripts independently from the amounts of

attributes, which is not the case for implementations utilizing

a standard tabular format.

For the sake of simplicity, all methods described in this pa-

per are designed for decision tables with numerical attributes.

However they might be adapted for all types of data.

The paper is organized as follows: Section II recalls the EAV

model of data and introduces a simple measure on attributes

that we utilize for mining EAV data sets. In Section III, our

SQL-based heuristics for the decision tree induction problem

is outlined. Section IV presents experimental validation of

method introduced in Section III compared to one of the

state-of-the-art algorithms for learning decision tree. Section

V extends the proposed methodology onto the other classical

problems from the area of KDD, with a special emphasis

on feature selection and extraction. Section VI concludes the

paper and points out directions to be studied in the future.

II. ENTITY-ATTRIBUTE-VALUE APPROACH

The entity-attribute-value (EAV) stores and their exten-

sions have recently got attention as a universal means to

process large amounts of heterogeneous data [12], [13]. The

advantages of EAV have been already studied in knowledge

discovery and data mining [6], [14]. If combined with powerful

enough database technologies, it raises an opportunity to

rewrite in a more flexible form some of the already exist-

ing SQL-based data mining approaches that were originally

designed for data tables where columns corresponded directly

to the attributes specified in a learning task. Surely, it is even

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 303–310

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 303

TABLE I
A DECISION TABLE IN A STANDARD TABULAR FORM.

U a0 a1 a2 a3 d

1 1 101 50 36 0
2 8 176 90 300 1
3 7 150 66 342 0
4 7 187 68 304 1
5 0 100 88 110 0
6 0 105 64 142 0
7 1 95 66 38 0

TABLE II
A DECISION TABLE IN AN EAV FORMAT.

object attribute value

1 a0 1
1 a1 101
1 a2 50
1 a3 36
1 d 0
2 a0 8
2 a1 176
2 a2 90

.

.

.
.
.
.

.

.

.
6 d0 0
6 d1 105
6 d2 64
6 d3 142
6 d 0
7 d0 1
7 d1 95
7 d2 66
7 d3 38
7 d 0

TABLE III
A DECISION TABLE IN AN EAV FORMAT WITH ISOLATED DECISION.

object attribute value d

1 a0 1 0
1 a1 101 0
1 a2 50 0
1 a3 36 0
2 a0 8 1
2 a1 176 1
2 a2 90 1

.

.

.
.
.
.

.

.

.
6 a0 0 0
6 a1 105 0
6 a2 64 0
6 a3 142 0
7 a0 1 0
7 a1 95 0
7 a2 66 0
7 a3 38 0

more interesting for the KDD-related tasks, for which SQL-

based implementations were not studied yet.

Table I displays a decision table A = (U,A∪{d}), where U

contains eight objects, A contains three attributes, and decision

d takes a form of column Flu. Table II displays the same data

in an EAV form. Each object (or a row) is stored as a series

of triples - each triple consists of three things: identifier of

the object, identifier of an attribute and the actual value of the

attribute for the object. The reminder of this section outlines a

simple data mining algorithm rewritten in a form supported by

queries executed against EAV. In the next sections, analogous

techniques are used for other tasks.
Assume that our EAV table was created with the following

schema:

create table EAV (

obj BIGINT,

attr INT,

val INT);

We introduce a measure which evaluates attributes and ex-

presses their usefulness according to a simple heuristic ap-

proach. Namely, let us consider a measure computed using a

single SQL statement that evaluates usefulness of all attributes

based on analysis of diveristy of their values’ averages in

particular decision classes.
Indeed, there is an intuition that an attribute with maximally

diversed means for particular decision classes provides the

highest degree of information about the decision. Surely, this

is just a purely heuristic approach but its major advantage is

the speed of execution, especially for the RDBMS solutions

designed for such types of aggregations. From theoretical

perspective, such a measure seems to follow the princliples

of Bayesian data analysis where attributes and their values are

evaluated subject to possible decision classes [15], [16].
One simple realization of such kind of a function may be

a standard deviation of means of attribute’s values within

decision classes. If the standard deviation is high we may

Fig. 1. Intuition of introduced measure - distributions (and means) of attribute
values in particular decision classes. Examples of: easier separable classes for
”useful” attribute (top - attrx) and harder separable classes - less ”useful”
attribute (bottom - attry)

suspect that the attribute can (with a high degree) distinguish

objects with different decisions. Figure 1 displays intuition:

top chart presents situation with attribute of good ’quality’

where decision classes are relatively easy separable; bottom

chart presents a kind of opposite situation.
Here are simple SQL queries that arranges attributes w.r.t.

their usefulness understood as above. The first query is as
follows

304 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

select attr, stddev(avg_val) as quality from

(

select v.attr, l.dec, avg(v.val) ’avg_val’

from EAV v, LABELS l

where v.obj = l.obj

group by attr, dec

) attr_avg_values

group by attr

order by quality desc;

for database schema related to format similar to presented in

Table III with separate LABELS table containing assignment of

each object to decision class (the table contsists of 2 columns:

(obj INT, dec INT)). The second SQL statement to be

considered is the following

select attr, stddev(avg_val) from

(

select v.attr, d.val, avg(v.val) ’avg_val’

from EAV v, EAV d

where v.obj=d.obj and d.attr=dec

group by 1,2

) attr_avg_values

group by attr;

for table schema resembling the one presented in Table II

containing decision attribute in EAV table (dec is a literal

which identifies the decision attribute). The presented queries

are just exemplary ones and can be adapted to customized

model schema.

III. DECISION TREE INDUCTION

Decision Tree Induction implemented with SQL support

is one of the most studied tasks in the presented area. The

main researchers’ efforts are aimed here at optimization of

well known and verified algorithms known from the machine

learning literature [17], [18]. Usually it is done by applying

techniques to minimize number of submitted queries [19].

Other methods base on limitation of number of redundant

calculations by precalculation of some partial results intesively

used during the main algorithm’s run [8]. Our approach, as

mentioned in Section II is based on simple rule of choosing

most promising attribute from data. Then using the method

we create a cut on its range in order to possibly maximally

separate objects from different decision classes. One of the

main assets of using EAV model is used here: it enables to

significantly limit number of queries by assigning the cuts for

all nodes at a given level with a single SQL query.

Our approach of inducing decision tree based on SQL is

iterative and consists of:

i Finding the best cut for the whole data set in the root.

ii For a given tree of depth i− 1 - finding the best cuts for

all nodes on depth i.

iii Stopping if a predefined depth k of the tree is reached.

We consider binary decision class to avoid introducing poten-

tially complicated rule of cut creation for chosen attribute. For

the sake of simplicity, for attribute which was chosen using

the measure from Section II we calculate the cut as arithmetic

average of all averages from decision classes.

In this paper we skip a pruning step of decision tree creation

process, exposing the method to produce an overlearned classi-

fier. The pruning can also be implemented in SQL manner for

instance by adopting some SQL-based methods of extracting

association and decision rules [20], [6]. We are going to face

this problem in the near future.

We use three following database tables:

• main table, consists whole decision table (information
table) in EAV format; dec stands for decision attribute
and - as a column - is redundant (table EAV may be
normalized in real life - like shown in one of the cases
in previous section). It is done purposely - to make
the method description short. In general situation val
column can be string column and modification of the
rule presented in would be necessary, but for the sake
of simplicity, we present integer column here. Schema of
EAV table is shown below:

create table EAV (

obj BIGINT,

attr INT,

val INT,

dec INT);

• table CUTS consists information about all tests and nodes

in decision tree; each row represents one node of the

tree with respective cut; after each iteration new rows

(one for each new node) are added into it. In presented

approach one searches for tests of a ”greater than” form

attr > c, where c stands for constant. For example a

row (3, 23, -2.78) in the table means that for a

node of id equals to 3 we should check if objects fulfill

a23 > −2.78 predicate. Values of the node_id column

fulfills the following conditions:

– the id of the tree root node is equal to 1

– descendants of a node identified by i have their ids

equal to 2i (for objects that do not pass the test from

the parent node) and 2i+1 (otherwise) respectively.

Table CUTS is built with the following schema:

create table CUTS (

node_id INT,

attr INT,

cut DOUBLE);

• Distribution table containing assignments of each object

(row in original decision table) to the tree node on the

lowest level (deepest) of the tree. This table is actualized

and rewritten after each iteration.

create table DISTR (

obj BIGINT,

node_id INT);

At the beginning of the tree building process all objects are

assigned to the root node.

Induction step. In each iteration there are best cuts calculated

using described criterion in subgroups labelled by ids of nodes

of the deepest level of tree built so far. Using one SQL query

we can calculate next best cuts for all nodes in tree at a given

depth.

The measure described in Section II is suitable for any

number of decision classes. As pointed out earlier we used

here a simplified version of the proposed heuristic. Since our

MARCIN KOWALSKI, SEBASTIAN STAWICKI: SQL-BASED HEURISTICS FOR SELECTED KDD TASKS 305

task here is the binary classification, instead of the standard

deviation of mean values of attributes with respect to the

decision classes, we can choose the most promising attribute

examining just the distance between the mean values. One can

easily show the equivalence of the two approaches.

Each iteration of the algorithm consists of 3 steps:

1) create temporary table with chosen statistics in sub-

groups defined by nodes of the tree built so far. This

table is also rewritten after each iteration:
create table TMP as

select d.node_id, e.attr,

avg(case when e.dec=1 then e.val

else NULL end) a1,

avg(case when e.dec=0 then e.val

else NULL end) a0

from EAV e, DISTR d

where e.obj = d.obj

group by 1, 2;

2) calculate best cuts w.r.t. measure from Section II for

all leaves of tree built so far. As mentioned earlier,

we reformulate criterion of maximal standard deviation

of averages in decision classes and decided for the

arithmetical average of calculated averages as the cut

selection rule. Results are automatically insert into tables

CUTS:
insert into cuts

select s.node_id, s.attr, (a1+a0)/2 cut

from (

select t.node_id, max(abs(t.a1-t.a0)) m

from TMP t

group by 1) x

join TMP s on

x.node_id = s.node_id and

x.m = abs(s.a1-s.a0)

where a0 IS NOT NULL and a1 IS NOT NULL;

3) assign each object into just calculated new nodes and
rewrite table DISTR
create table distr as

select d.obj,

2*d.node_id + (e.val > c.cut)

as node_id

from DISTR d, EAV e, CUTS c

where e.obj = d.obj and

c.attr = e.attr and

c.node_id = d.node_id

order by d.obj

Analysis. To find cuts for all nodes at any level of tree depth

we need 3 queries. Despite all of them requiring I/O operation

on disk, we find them not too demanding for reasonably sized

tree. Number of such operations depends on: product of actual

tree depth and number of attributes (for TMP table), tree depth

(for CUTS), number of objects (for DISTR). Presented queries

are quite straightforward and do not exceed syntax of standard

GROUP BY aggregations, so can be executed in most of

relational database engines.

The main bottleneck of the presented approach may be

requirement of storing large number of rows in one table (EAV

table case). According to our experiments, this approach may

be applied to data sets sized of billions rows in EAV table (e.g.

of an order of 106 objects and 104 attributes). However it may

depend on database engine. It is quite the same in EAV model

if there exists advantage of number of objects over number of

attributes or vice versa. The approach seems to be flexible in

this matter.

IV. EXPERIMENTS

In order to test the soundness of the proposed approach

we performed experiments related to building decision trees

comparing the method and some state-of-the-art algorithms

implemented in R-system [21]. We chose data from one

of the KDD contest [22] related to classification documents

into topics containing 10000 objects and 25640 conditional

attributes (all were numeric and rare). While the contest

referred to a multi-label classification problem, we decided

to choose 2 labels with the highest prior probability in the

training set. We considered separately 2 binary classification

problems for 2 separate decision attributes (decision attributes

with labels: 40 and 44 from the data set). We have split the

training data set (for which true labels were available) into two

subsets of 5000 objects each and on first of them we applied

tree building algorithm. Both data sets were transformed into

EAV format. Our EAV table consisted of 128.2 million of rows.

We have chosen an open source database engine provided

by Infobright [23] which stores data in compressed form. The

input EAV table consumed only 2.1MB space on disk.

The second subset was used to validate built tree with simple

rule of assigning decision class if probability in the node

exceeded its prior probability [15], [16].

Tests were performed on machine with Intel Core i7 870

2.93GHz processor and 8GB RAM. Unfortunately, using com-

munity edition of chosen database engine, we were limited to

only 1 core for calculations.

TABLE IV
AN EXEMPLARY TREE IN TABULAR FORMAT (CUTS TABLE) CALCULATED

FOR DECISION d40 WITH MAXIMAL DEPTH = 4

node_id attr cut
1 2083 67.26111644000000
2 21657 48.38156421633018
3 21657 55.33525309917354
4 10371 44.46231628655018
5 7988 172.96122647631450
6 21895 49.59733955365024
7 22757 239.05555555555550

In Table IV there is presented an exemplary tree built by

the SQL-based algorithm for decision d40 with limit of depth

set to 4 (3 levels of tests). Tree in tabular form consists of

triples containing node_id, id of the attribute which would

be tested in the node (attr) and the cut value (cut). Figure

2 presents the exemplary tree in a graphical form.

On mentioned machine calculating single level of nodes

during algorithm’s run (one iteration of it) lasted on average

less than 1.5 minutes. Details are in Figure 4.

In Figure 3 and Table V we present results from classifi-

cation of test data set for various depth of built tree (various

algorithm’s stop criterion).

306 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

V1

col 2083

<= 67.26 > 67.26

V2

col 21657

<= 48.38 > 48.38

V4

col 10371

<= 44.46> 44.46

terminal

node

terminal

node

V5

col 7988

<= 172.96> 172.96

terminal

node

terminal

node

V3

col 21657

<= 55.34 > 55.34

V6

col 21895

<= 49.6 > 49.6

terminal

node

terminal

node

V7

col 22757

<= 239.06> 239.06

terminal

node

terminal

node

Fig. 2. Graphical representation of an exemplary tree calculated for decision
d40 with maximal depth = 4

Fig. 3. Results of experiments for 2 decision attributes (d40 and d44):
relationship between accuracy (acc), balanced accuracy (bacc) of classifiers
for test data set and maximal depth tree. See Table V for details.

Fig. 4. Duration in seconds of consecutive iterations

TABLE V
RESULTS OF DECISION TREE INDUCTION USING SQL.

tree depth bacc40 acc40 bacc44 acc44
8 0.8154 0.8518 0.6769 0.7726
7 0.8112 0.8530 0.6380 0.7642
6 0.8093 0.8522 0.6350 0.7704
5 0.8021 0.8366 0.6301 0.5450
4 0.8035 0.8292 0.6138 0.4526
3 0.8034 0.8290 0.6118 0.7704
2 0.7822 0.8424 0.6118 0.7704
1 0.6709 0.8098 0.5553 0.7488

From the Figure 3 and Table V we can observe some

unstable behaviour for accuracy measure and decision attribute

d44. It is caused by existence of heavy leaf in the tree with

probability of decision attribute equals to 1 being close to the

prior probability. If the maximal depth of the tree is equal to 4

and 5 this leaf is classified to "wrong" decision class. Situation

normalized after depth 6 is reached. Then some observations

are cut off the node and mentioned probability falls below the

prior probability and in consequence assigned decision class

is changed.
We have performed experiments in R-system to assess

reference results. We have used the rpart library to create

decision tree model. Unfortunately for the standard model

settings because of insufficient system resources model cre-

ation process was unsuccessful. Recursive partitioning and

regression trees package (rpart) turn out to be sensitive to

large values of numbers of attributes. Package party showed

similar behaviour. We decided to decrease number of attributes

and build the decision trees limiting the data to the first 10000

attributes. This approach seemed as a good solution for the

arisen situation as we wanted to do only a rough results

comparison. Finally, model creation on 5000 training samples

limited to the first 10000 attributes for decisions d40 and

d44 took about 9 minutes each. The model performance were

measured on the test 5000 samples and expressed by accuracy

and balanced accuracy. The results were as follows:

TABLE VI
RESULTS OF DECISION TREE INDUCTION USING R-PROJECT.

R-system - rpart library bacc acc
10000_attrs_dec40 0.7906 0.8308
10000_attrs_dec44 0.7056 0.8080

Despite discussed unsteadiness we find presented results of

using SQL in decision tree induction satisfactory. Comparing

to partial results - full were unobtainable - from non-tuned

algorithm from R-project the results of proposed method do

not differ significantly (we can even say that they were com-

petitive). For sure, more tuning to the benchmark algorithm

would increase its quality but we believe that also results

of our method may be improved. Ways of achieving this

may be e.g. changing cut selection criterion from average-

based to the median-based or adding pruning stage to the

algorithm. We are aware of potential prolongation of algorithm

execution time when such improvements done by SQL queries

are introduced but we believe the gain of classification quality

MARCIN KOWALSKI, SEBASTIAN STAWICKI: SQL-BASED HEURISTICS FOR SELECTED KDD TASKS 307

will compensate it. The other direction we are considering

promising is utilize the size of the node in cut selection

criterion.

V. ATTRIBUTE SELECTION AND ATTRIBUTE EXTRACTION

In this section we consider the problem of attribute selec-

tion, which is recognized as one of fundamental tasks of KDD

[1], [11]. Let us start with the simplest possible case where

the goal is to score attributes a ∈ A with respect to a degree

of information they provide for the values of d. There are

plenty of more or less sophisticated measures developed in

the literature for this purpose. On the other hand, for large-

sized real-world data the simplest solutions are often the best

ones. Hence, we can one more time make use of the measure

proposed in Section II. But in contrast to Section III, in this

we present only ideas of the adapted algorithm.

In [6], [20], it was shown how to redesign the well-known

Apriori algorithm for searching for association and decision

rules using script of iteratively generated SQL statements

involving massive self-joins and aggregations. The ideas for

searching for if-then rules satisfying the constraints specified

for their support and accuracy may be adapted also for

the task of attribute selection. The mentioned support and

accuracy should be of course replaced with average support

and accuracy for some classifiers, e.g., decision rules created

from evaluated attribute subsets.

The recalled algorithm and its ideas may be actually used

to design also the attribute selection framework that would

be analogous to the decision rule generation. Namely, the

measure from Section II can be used to fill in the table of single

candidate attributes analogous to filling in the initial table with

the attributes that provide high enough level of heuristically

computed information about the decision. It may be also not so

difficult to imagine an analogy in generation candidates in both

cases. For instance, one may consider the standard deviation

of the values of a particular attribute as a kind of estimate

of its ability to produce well-supported decision rules when

constructing a classifier in the next stage of the KDD process.

Further steps of generating attribute subset candidates (like in

Apriori algorithm) may also utilize some modifications of the

heuristic (e.g. Monte Carlo measures) in assessing quality of

the attribute subsets.

The outline of the algorithm (similar to the Apriori algorithm)

is as follows:

i The initial step in which we select single columns as

initial candidates for the feature selection task.

ii Iterative two-step process of obtaining the best attribute

subsets. Each step focuses on attribute subsets of the

fixed size. Starting from single columns candidates and

combining them to larger attribute subsets (enlarging the

size of candidates by 1 on each step).

– Candidates generation. Attribute subsets that were

tested and recognized as promising in the previous

step are transformed into larger candidates.

– Candidates evaluation. Using the evaluation proce-

dure to assess the candidates. We have tree possibil-

ities for the candidate:

1) It is good enough and can be regarded as a part

of the overall result.

2) It is poor and can be omitted from further con-

sideration.

3) It is promising and will be transfered to the next

step.

All the above steps can be expressed by means of SQL

statements.

Before proceeding with further analogies between the re-

called framework for searching for decision rules satisfying

the constraints specified with their support and accuracy and

the task of attribute selection, let us note that one may extend

this study onto some new, potentially better attributes that

are derived from the original ones. In [2], one may find a

number of practical hints how to extract a useful decision table,

by means of both objects and attributes, from available data

sources stored in a fully relational or partially unstructured

form. Extraction of attributes is especially important in the

case of high-dimensional data sets, such as biomedical or

text data [13], [24]. In such cases, it would be optimal to

evaluate the candidate features with no need of their explicit

materialization or, at least, with no need of materializing too

many of them. In [25], a genetic algorithm searching for new

attributes defined as linear combinations of original attributes

has been suggested. There was also considered how to build

more sophisticated attributes from a multi-table relational

data model. Let us focus on the simplest case of linear

combinations of numeric attributes. In this case, one needs

an appropriate fitness function evaluating particular chromo-

somes that encode new attributes. The above-discussed way

of evaluating attributes by basing on the results of aggregate

queries may be applied to this framework as well. There is

no difficulty in designing a single SQL statement that would

compute the average-value-based statistics for all formulas

describing new attributes occurring in a given population of

the genetic algorithm. It is enough to create an additional table

that encodes such formulas in its rows and to properly join it

while computing the aggregates.

Now, let us note that, regardless of whether we operate only

with original attributes or we extend the search space onto

their combinations, the key point is to search for the subsets

of attributes that complement each other while describing the

decision over the available data set. This problem – sometimes

called the attribute subset selection in order to distinguish it

from a far simpler task of searching for single attributes – is

very thoroughly studied within the theory of rough sets, by

means of so called decision reducts and approximate decision

reducts [26], [27]. An (approximate) decision reduct is an

irreducible subset of attributes that provide (almost) the same

level of information about decision as the whole initial set

of attributes. The level of information may be described by a

measure that estimates an ability to train an accurate classifier

308 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

by basing on the attributes in a given subset. In [28], it was

shown that the degrees of information provided by a subset

of attributes can be computed as the expected confidence of

decision rules based on those attributes. Also, it was shown

that subsets of attributes can be evaluated by means of the

expected support of such decision rules. This means that the

whole framework mentioned above could be adapted to the

search of attribute subsets that approximately determine the

decision classes and that correspond to classifiers that are

general enough in order to expect them working well over

the previously unseen cases. The only remaining task is to

express such expected confidence and support measures using

a simple, fast-performing SQL.

It is worth to mention also about future possibilities of

using different measures for assessing attribute subsets. An

interesting method that is focused on numerical attributes is

presented in [29]. It searches through the possible binary cuts

on attributes contained in the evaluated attribute subset and

estimates the quality of classifier of chosen types constructed

on top of the discretized attributes.

VI. CONCLUSIONS AND FUTURE WORK

We outlined some analogies in building SQL-based heuris-

tics aimed at searching for new attribute subsets and decision

trees in large data sets stored in a triple-store-like format. We

noted that it is possible to construct fast-performing scripts

based on automatically generated analytic queries, given a

proper choice of an underlying RDBMS technology. We tested

method of decision tree induction using proposed criterion on

one of the KDD contest’s data sets and achieve satisfactory

classification results comparing to the state-of-the-art decision

tree induction methods. Some potential directions of its im-

plementation improvement were also discussed.

In the future, we are going to implement and perform exper-

iments for the attribute selection ideas outlined in Section V.

We intend to extend our SQL-based framework onto learning

ensembles of decision models, such as decision forests or

ensembles of attribute subsets [10], [27]. The problem of

adapting solution to the categorical attributes needs to be

investigated as well. We also intend to take an advantage of

some modern extensions of standard RDBMS functionality,

such as the approximate OLAP and SQL methods in order

to further speed up our algorithms. Last but not least, we are

going to take a closer look at the experimental verification of

our framework, which may be understood at the two following

levels: verification whether SQL-based heuristics lead toward

the same or similar output models as in the case of standard

methods (e.g.: whether attribute subsets obtained using the

proposed SQL scripts are significantly different than those

obtained using algorithms working directly against data), and

– in the case of differences at the first level – whether the

quality of the obtained models is significantly worse.

We plan also to compare the presented methods with rough

set methods implemented in, e.g. RSES [30], Rseslib [31],

WEKA [32].

ACKNOWLEDGMENTS

This work was partially supported by the Polish National

Science Centre grant 2011/01/B/ST6/03867.

REFERENCES

[1] W. Klösgen and J. M. Żytkow, Eds., Handbook of Data Mining and

Knowledge Discovery. Oxford University Press, 2002.
[2] H. Liu and H. Motoda, Eds., Feature Extraction, Construction and

Selection: A Data Mining Perspective. Kluwer Academic Publishers,
1998.

[3] M. Mehta, R. Agrawal, and J. Rissanen, “SLIQ: A fast scalable classifier
for data mining,” in EDBT, 1996, pp. 18–32.

[4] S. Chaudhuri, “Data mining and database systems: Where is the inter-
section?” IEEE Data Eng. Bull., vol. 21, no. 1, pp. 4–8, 1998.

[5] C. Ordonez and P. Cereghini, “SQLEM: Fast clustering in SQL using
the EM algorithm,” in SIGMOD Conference, 2000, pp. 559–570.

[6] S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating Association Rule
Mining with Relational Database Systems: Alternatives and Implica-
tions,” Data Min. Knowl. Discov., vol. 4, no. 2/3, pp. 89–125, 2000.

[7] S. Chaudhuri, U. M. Fayyad, and J. Bernhardt, “Scalable classification
over SQL databases,” in ICDE, 1999, pp. 470–479.

[8] K.-U. Sattler and O. Dunemann, “SQL database primitives for decision
tree classifiers,” in CIKM, 2001, pp. 379–386.

[9] H. S. Nguyen, “On efficient construction of decision trees from large
databases,” in Rough Sets and Current Trends in Computing, 2000, pp.
354–361.

[10] T. G. Dietterich, “An Experimental Comparison of Three Methods for
Constructing Ensembles of Decision Trees: Bagging, Boosting, and
Randomization,” Machine Learning, vol. 40, no. 2, pp. 139–157, 2000.

[11] I. Guyon et al., Feature Extraction: Foundations and Applications, ser.
Studies in Fuzziness and Soft Computing. Springer, August 2006.

[12] D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach, “SW-Store:
A Vertically Partitioned DBMS for Semantic Web Data Management,”
VLDB J., vol. 18, no. 2, pp. 385–406, 2009.

[13] D. Ślęzak, A. Janusz, W. Świeboda, H. S. Nguyen, J. G. Bazan, and
A. Skowron, “Semantic Analytics of PubMed Content,” in USAB, ser.
LNCS, vol. 7058, 2011, pp. 63–74.

[14] W. Świeboda and H. S. Nguyen, “Rough Set Methods for Large and
Spare Data in EAV Format,” in RIVF. IEEE, 2012, pp. 1–6.

[15] G. Box and G. Tiao, Bayesian Inference in Statistical Analysis. Wiley,
1992.

[16] D. Ślęzak, “Rough Sets and Bayes Factor,” vol. 3400, pp. 202–229,
2005.

[17] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[18] T. M. Mitchell, Machine learning, ser. McGraw Hill series in computer
science. McGraw-Hill, 1997.

[19] H. S. Nguyen and S. H. Nguyen, “Fast Split Selection Method and Its
Application in Decision Tree Construction from Large Databases,” Int.

J. Hybrid Intell. Syst., vol. 2, no. 2, pp. 149–160, 2005.
[20] D. Ślęzak and H. Sakai, “Automatic Extraction of Decision Rules from

Non-deterministic Data Systems: Theoretical Foundations and SQL-
Based Implementation,” in DTA, ser. CCIS, vol. 64. Springer, 2009,
pp. 151–162.

[21] http://www.r-project.org/, The R Project for Statistical Computing.
[22] http://sist.swjtu.edu.cn/JRS2012/ArticleCmd.aspx?AID=97, JRS 2012

Data Mining Contest.
[23] http://www.infobright.org/, Infobright Community Edition - relational

database engine.
[24] M. Wojnarski, A. Janusz, H. S. Nguyen, J. G. Bazan, C. Luo, Z. Chen,

F. Hu, G. Wang, L. Guan, and H. Luo, “RSCTC’2010 Discovery
Challenge: Mining DNA Microarray Data for Medical Diagnosis and
Treatment,” in RSCTC, ser. LNAI, vol. 6086. Springer, 2010, pp. 4–
19.

[25] J. Wróblewski, “Analyzing Relational Databases Using Rough Set Based
Methods,” in IPMU, part 1, 2000, pp. 256–262.

[26] M. J. Moshkov, M. Piliszczuk, and B. Zielosko, “On Construction
of Partial Reducts and Irreducible Partial Decision Rules,” Fundam.

Inform., vol. 75, no. 1-4, pp. 357–374, 2007.
[27] J. Wróblewski, “Ensembles of Classifiers Based on Approximate

Reducts,” Fundam. Inform., vol. 47, no. 3-4, pp. 351–360, 2001.
[28] D. Ślęzak, “Rough Sets and Functional Dependencies in Data: Foun-

dations of Association Reducts,” LNCS Transactions on Computational

Science V, pp. 182–205, 2009.

MARCIN KOWALSKI, SEBASTIAN STAWICKI: SQL-BASED HEURISTICS FOR SELECTED KDD TASKS 309

[29] D. Ślęzak and P. Betliński, “A Role of (Not) Crisp Discernibility
in Rough Set Approach to Numeric Feature Selection,” in AMLTA.
Springer, 2012.

[30] http://logic.mimuw.edu.pl/~rses/, Rough Set Exploration System.

[31] http://rsproject.mimuw.edu.pl/, Rseslib is a library of machine learning
data structures and algorithms implemented in Java.

[32] http://www.cs.waikato.ac.nz/ml/weka/, Weka 3: Data Mining Software
in Java.

310 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

