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Abstract—QR decomposition of matrix is one of the important
problems in the field of matrix theory. Besides, there are also
so many extensive applications that using QR decomposition.
Because of that, there are many researchers have been studying
about algorithm for this decomposition. Two of those researchers
are Feng Tianxiang and Liu Hongxia. In their paper, they
proposed new algorithm to make QR decomposition with the
elementary operation that is elementary row operations. This
paper gives review of their paper, the analysis and numerical
experiment using their algorithm, comparison with other existing
algorithms and also suggestion for using other existing better
algorithm that also has same features with theirs. Beside of them,
we also compare all of these algorithms for some types of matrix.
The result can be seen at this paper also.

I. INTRODUCTION

DECOMPOSITION is one of the important subjects in

matrix analysis. Decomposition in this case means how

we divide a certain matrix into two or more matrices with

certain characteristic. There are numerous of objectives when

we decompose a matrix, i.e. for maximizing storage optimiza-

tion, carrying out parallel computation, simplifying problem,

etc. One of the famous techniques for conducting the de-

composition is QR decomposition. QR decomposition is the

decomposition of a matrix (A) into an orthogonal matrix (Q)

and an upper triangular matrix (R). Beside being used in

the field of theory, QR decomposition can also be used for

many practical issues. In signal detection, algorithm using QR

decomposition for VBLAST-OFDM systems was studied by

Zhong et.al [ZH07]. In another area like wireless applications,

digital predistortion (DPD) and etc., QR decomposition is also

being used.

However, its decomposition process is usually very com-

plex. This reason becomes a trigger for many researchers

for finding new simpler algorithm. Two of them are Feng

Tianxiang and Liu Hongxia [FL09]. In [FL09], they pre-

sented new algorithm for finding QR decomposition for

square and full column rank matrix. For finding the de-

composition, they use elementary operation that is ele-

mentary row operations. There are at least 2 excesses of

full rank matrix, i.e. it has unique QR decomposition and

also has unique solution in term of least square prob-

lem.

The rest of this paper is organized as follows. Section II

shows the basic theory of QR decomposition and the algorithm

that was presented in [FL09]. The numerical experiment is

shown in Section III while the analysis of their algorithm

will be shown in Section IV. Section V gives other suggested

algorithm that has better result and also the comparison of

those algorithms for some types of matrix. The conclusion of

this paper is given in Section VI.

II. BASIC THEORY AND ALGORITHM

A. Basic Theory

This subsection shows some basic theories that are used for

finding the algorithm in [FL09].

Theorem 1: [FL09] If A ∈ Rn×n is a full column rank

matrix, then ATA is a symmetric positive definite matrix and

has unique triangular decomposition ATA = LDLT where L
is a lower triangular matrix with all diagonal elements are 1

and D is a diagonal matrix with positive diagonal elements.

Theorem 2: [FL09] If A ∈ Rn×n is a full column rank

matrix, then A has QR decomposition A = QR where

Q=A
(
L−1

)T
D−1/2 has orthonormal columns and R =

D1/2LT is upper triangular matrix.

Because A is full column rank matrix, then the QR decom-

position for A is unique [BP92].

B. The Algorithm

The complete algorithm that proposed by Feng and Liu can

be seen in [FL09]. Overall, this algorithm just doing upper

triangularization for the composite matrices AT ×A and AT ×(
ATA | AT

)
. This process using elementary row operation. In

[FL09], Feng and Liu stated that some advantages from their

algorithm are computationally simpler, more elementary, and

clearer computational complexity.

Beside those advantages, they were also compare their

algorithm with other exist algorithm that is Householder

transformation. They stated that it has lower accuracy than

the Householder transformation method. However, they did not

give their numerical experiment to show that. They also noted

in their paper that the algorithm would be used more flexibly

to solve some practical problems that need QR decomposition

method. It has been known that in practical problems, almost
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for all problems, it needs very big matrix such as for data

storage, 3D image and etc. Unfortunately, from the numerical

experiment below, the algorithm in [FL09] have a good chance

(just in term of time) just for small matrix whose size not

bigger than 15× 15.

III. NUMERICAL EXPERIMENT

Before doing the numerical experiment, there is simpli-

fication in the algorithm without changes the concept. The

simplification just for doing the upper triangularization and

can be seen in Algorithm 3 below.

Algorithm 3: Simplification of upper triangularization.

k = 0
while k < n− 1 do

i = k
while i < n do

i = i+ 1
temp= A [i, k] /A [k, k]
j = k − 1
while j < 2× n do

A [i, j] = A [i, j]−temp×A [k, j]
end while

end while

end while

The numerical experiment here is done with Matlab R2010b

and worked at computer (notebook) with Processor Intel R©

Core(TM) i5 CPU M460 @ 2.53GHz and RAM 2 GB. Be-

cause Feng and Liu compare their algorithm with Householder

transformation algorithm, we also compare their performance

in term of time and accuracy. The result from the experiment

can be seen in Fig. 1 below. The experiment described in

Fig. 1 was done for matrix with maximum size 600×600 and

repeated for 4 times. The time and error was gotten by getting

mean of these loops.

It can be seen from Fig. 1 that the algorithm proposed by

Feng and Liu is worse than Householder in term of time and

accuracy. This is just the same like what they stated in [FL09].

Fig. 2 shows that their algorithm is ”better” than Householder

just for matrix whose size not bigger than 15×15. though it

is just better in time because the accuracy is still not. The

experiment for this small size matrix was repeated 6 times

The detail of analysis can be seen in Section IV.

IV. THE ANALYSIS

A. Analysis of Flopping Time

For counting the flopping time, there are 3 steps in the

algorithm that must be checked i.e. the multiplication of A
and AT step, upper triangularization step and replacement the

j-th row of B by the B
−1/2
jj times of itself. It is obvious that

the multiplication of matrix A and AT requires 2n3−n2 flops

where n is the size of matrix A.

For upper triangularization step, notice the algorithm in Fig.

3.1. There is an assumption here that each of division or taking

square root, it needs 2 flops. The outermost loop executes

n − 1times as the counter k runs from 1 to n − 1. For each

Fig. 1. Comparison time and error for Feng-Liu and Householder algorithm.

Fig. 2. Comparison time and error for Feng-Liu and Householder algorithm
for small size matrix

of these loops, the middle loop executes n − k times. For

each middle loop, 2 flops are executed (for the division). The

innermost loop executes 2n−k+1 times as the counter j runs

from k to 2n where in each of it encounters 2 flops. Collecting

all of the multiples, the following total number of flops is

n−1∑

k=1

(n− k) {2 + 2 (2n− k + 1)} . (1)
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For solving Equation 1, remember the formulas
∑n

k=1
k =

1

2
n2 + 1

2
n and

∑n
k=1

k2 = 1

3
n3 + 1

2
n2 + 1

6
n. Us-

ing this two formulas, Equation 1 can be solved so

that flopping time for upper triangularization step is
5

3
n3 − 5

3
n. For the row’s replacement, it requires 8n2

flops.

By adding all the flops above, the flopping time needed by

the algorithm is 11

3
n3 + 7n2 − 5

3
n. However, this flopping

time is larger than flopping time needed by Householder

transformation. It has been known that for square matrix n×n,

if the matrix Q is required, Householder needs 4

3
n3 flops.

B. Accuracy of The Algorithm

The main step in this algorithm is how the matrices(
ATA | AT

)
are transformed into upper triangular form. Feng

and Liu use elementary row operation to make this LU

factorization. Theorem 4 below quantifies the roundoff errors

associated with the computed upper triangular form.

Theorem 4: [Hig96] Assume that A is m × n matrix. The

computed triangular matrices L̂ and Q̂ satisfy L̂Û = A+∆A

where
∣∣∆A

∣∣ ≤ 3ǫ (n− 1)
(∣∣A

∣∣+
∣∣L̂

∣∣∣∣Û
∣∣
)
+O (ǫ).

Proof: For proofing this theorem, we use induction on

n. This theorem obviously hold for n = 1 because
∣∣∆A

∣∣ ≤
O (ǫ). Assume it holds for all (n− 1)×(n− 1) matrices. Take

A =

[
α ωT

υ β

]
is (n− 1) × (n− 1) matrices, ẑ = fl

(
v
α

)

and Â1 = fl
(
β − ẑωT

)
. Therefore, we have ẑ = 1

αυ+f, f ≤

ǫ

∣∣υ
∣∣∣∣α
∣∣ +O (ǫ) and

Â1 =
(
β − ẑωT

)
+ F, F ≤ 2ǫ

(∣∣β
∣∣+

∣∣ẑ
∣∣∣∣ωT

∣∣)+O (ǫ) . (2)

Now, we are going to do LU decomposition for Â1. Because

Â1 is (n− 1)× (n− 1) matrices, the assumption can be used

so that the decomposition of Â1 satisfy

L̂1Û1 = Â1 +∆A1. (3)

∣∣∆A1

∣∣ ≤ 3ǫ (n− 2)
(∣∣Â1

∣∣+
∣∣L̂1

∣∣∣∣Û1

∣∣
)
+O (ǫ) . (4)

Thus, L̂Û ≈

[
1 0

ẑ L̂1

] [
α ωT

0 Û1

]
= A +

[
0 0
αf H1 + F

]
≈

A + ∆A. From Equation 2, it follows that∣∣Â1

∣∣ ≤ (1 + 2ǫ)
(∣∣β

∣∣+
∣∣ẑ
∣∣∣∣ωT

∣∣) + O (ǫ), and

by using Equation 3 and Equation 4 we have∣∣∆A1

∣∣+ F ≤ 3ǫ (n− 1)
(∣∣β

∣∣+
∣∣ẑ
∣∣∣∣ωT

∣∣+
∣∣L̂1

∣∣∣∣Û1

∣∣
)
+O (ǫ).

Because of
∣∣αf

∣∣ ≤ ǫ
∣∣υ
∣∣, then we get

∣∣∆A
∣∣ ≤

3ǫ (n− 1)

([∣∣α
∣∣ ∣∣ωT

∣∣∣∣υ
∣∣ ∣∣β

∣∣
]
+

[
1 0∣∣ẑ
∣∣ ∣∣L̂1

∣∣
] [∣∣α

∣∣ ∣∣ωT
∣∣

0
∣∣Û1

∣∣
])

+

O (ǫ).

V. OTHER BETTER ALGORITHM AND THE

COMPARISON

It can be seen from the numerical experiment in Section

III that the algorithm proposed by Feng and Liu in [FL09]

is worse than other existing algorithm that is Householder

Fig. 3. Comparison time and error Feng-Liu, Householder and the improved
algorithm

transformation. This result stimulates the writer to make some

improvement for their algorithm. Because the main step is

the upper triangularization step, then the improvement will be

done in there. This improvement just changes the way to make

upper triangular form, from with elementary row operation

into with the Algorithm 5. The idea of this improvement is

taken from [Hig96]. The improvement is like in Algorithm 5.

Algorithm 5: Improvement for Upper Triangularization

Step.

while ((k ≤ m)&& (B [k, k] 6= 0)) do

temp[k + 1 : m] = B [k + 1 : m, k] /B [k, k] ;
B [k + 1 : m, :] = B [k + 1 : m, :]−(temp [k + 1 : m])

′
×

B [k, :] ;
k = k + 1;

end while

The result from the experiment with this improvement

can be seen in Fig. 3. It can be seen from that figure, the

improvement improves the time needed for doing QR de-

composition, but not the accuracy. Nevertheless, Householder

transformation is still better than them.

Because it still weaker than Householder, we try to find

another existing algorithm that can be stronger than House-

holder in term of time and accuracy. Feng and Liu in [FL09]

stated that their algorithm has features of simpler calculation

and clearer computational complexity. Therefore, the better

algorithm must have same features to can be compared.

This existing algorithm is modified Gram-Schmidt (MGS).

Bjorck and Paige in [BP92] conclude that MGS method is

equivalent, both mathematically and numerically, to House-

holder for some cases. The MGS algorithm is given in

Algorithm 6.

Algorithm 6: MGS algorithm.

k = 0
while k < n do

k = k + 1
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Fig. 4. Comparison time and error between Feng-Liu, Householder and MGS
algorithm

R [k, k] = |A [1 : m, k]|
Q [1 : m, k] = A [1 : m, k] /R [k, k]
j = k
while j < n do

j = j + 1
R [k, j] = Q [1 : m, k]

′
×A [1 : m, j]

A [1 : m, j] = A [1 : m, j]−Q [1 : m, k]×R [k, j]
end while

end while

From that algorithm, it is clear that MGS also have features

of simpler calculation and clearer complexity. Thus, we com-

pare the algorithm in [FL09] with Householder and also MGS

method. The result of this comparison can be seen at Figure 4.

It can be seen from Fig. 4 above that time complexity

needed by MGS method is better than Householder and also

the accuracy is not worse than Householder. Ref [Bjo67]

has shown that MGS produces a computed matrix Q̂ in QR

decomposition that satisfies Q̂T Q̂ = I + △IM ,
∥∥△IM

∥∥
≈

ǫκ2 (A) whereas the corresponding result for Householder

transformation is Q̂T Q̂ = I +△IH ,
∥∥△IH

∥∥
≈ ǫ. In our case

(A is full column rank matrix), κ2 (A) is very small because

the columns of A are independent. From the definition of

κ2 (A) in our case, if orthonormality is critical, then MGS

should be suggested used. Moreover, [Hig96] mentions that

the computed matrix Q̂ and R̂ produced by MGS satisfies∥∥A − Q̂R̂
∥∥

≈ ǫ
∣∣A

∣∣ and there exists a Q with perfectly

orthonormal columns such that
∥∥A−QR̂

∥∥
≈ ǫ

∣∣A
∣∣.

Beside the comparison with Householder and MGS algo-

rithm, we also compare all of these algorithms for some

types of matrix. We have compared all of them for some size

in previous section. All of the above experiment were done

for matrix whose element are integer numbers. For any real

numbers, result of the experiment can be seen an Fig. 5. It

can be seen that the Feng and Liu’s algorithm is still worse

than the others.

Fig. 5. Comparison time and error between Feng-Liu, improved, Householder
and MGS algorithm for small matrix

Fig. 6. Comparison time and error between Feng-Liu, improved, Householder
and MGS algorithm for sparse matrix

Until now, we have considered about full matrix. But how

about sparse matrix? As we now, sparse matrix is very useful

in many kind of applications, i.e. image processing, computer

graphics, etc. Figure 6 tells about the result. This experiment

was repeated for 5 times. Unfortunately, Feng and Liu’s

algorithm is still worse than the others. The experiment results

the same also for matrix whose has magic number.

VI. CONCLUDING REMARK

The QR decomposition is often used for counting the eigen

values from giant matrix or for solving the least square prob-

lem. Besides, there also many practical issues that need QR

decomposition to be solved. Therefore, the QR decomposition

is not only an important problem in matrix theory, but also

has an extensive application prospect. This thing becomes

a trigger for many researchers for doing experiment in QR
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decomposition including Feng Tianxiang and Liu Hongxia. In

[FL09], they presented new algorithm for finding Q̂ and R̂ so

that A=Q̂R̂ using elementary operation. Unfortunately, they

did not give the numerical analysis and experiment of theirs in

[FL09]. This paper gives the analysis of their algorithm and

tries to compare their algorithm with other basic algorithm

for finding QR decomposition i.e. Householder transforma-

tion. The result is, the algorithm in [FL09] is worse than

Householder. Without changing their idea, this paper gives

improvement for improving their algorithm. The comparison

result with this algorithm can be seen in Fig. 3. Because the

result is still worse than Householder, then we try to find an-

other existing algorithm that has same features like algorithm

proposed by Feng and Liu, i.e. simpler calculation and clearer

complexity. The chosen algorithm is modified Gram-Schmidt

(MGS). The experiment for comparing their algorithm with

Householder and also MGS method can be seen in Fig. 4. The

result is MGS method is better than the algorithm in [FL09]

and also than Householder if orthonormality is important.

After all of the comparison, we are still try to compare all

of these algorithms for some types of matrix: matrix with real

numbers in its element, sparse matrix, and also matrix with

magic number. The result is, Feng and Liu’s algorithm is still

worse than the others.
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