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Abstract—This paper discusses a multi-agent based model of 

binary choice behavior with interdependence of decision-

makers’ choices. Analytical results established by other authors 

are briefly summarized where agent heterogeneity is not 

explicitly treated. Next the well-known Erdős-Rényi network 

class is considered to introduce agent heterogeneity via an 

explicit local interaction structure. Then the model is applied in 

an example of intercity travel demand using empirical data to 

introduce individual agent heterogeneity beyond that induced 

by the local interaction structure. Studying the long run 

behavior of more than 120,000 multi-agent based simulation 

runs reveals that the initial estimation process can be highly 

sensitive to small variations in network instantiations. We show 

that this is an artifact of two issues in estimation, and highlight 

particular attention that is due at low network density and at 

high network density. Limitations in the present work are 

summarized and suggestions for future research efforts are 

outlined. 

I. INTRODUCTION 

IONEERED in the domain of travel demand by Ben-

Akiva [1], Domencich and McFadden [2], and others, 

discrete choice analysis has become an industry standard in 

land use and transportation planning models. An outstanding 

methodological challenge remains however in the treatment 

of the interdependence of various decision-makers’ choices. 

There is growing awareness and interest in the influence that 

social factors have on transportation and land use behaviors 

[3], [4].  

While there exists a substantial stream of research in 

identifiable intra-household interactions and explicit inter-

household interactions of extended family, friends and 

colleagues in travel demand modeling such as coordination 

of individual daily activity patterns, joint participation in 

activities and travel, mechanisms for allocation of 

maintenance activities, and activity location and residential 

location choice behavior, the topic of aggregate or collective 

social interactions between individuals in different 

households at a market level in travel demand has only 
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recently begun to attract attention. Some examples of the 

empirical estimation of a discrete choice model with 

aggregate social interactions with application to 

transportation include Dugundji and Walker [5], Goetzke 

[6], Goetzke and Andrade [7], Goetzke and Rave [8], and 

Goetzke and Weinberger [9]. Some explorations of the 

dynamical behavior of such a model with application to 

transportation include Fukuda and Morichi [10], Páez and 

Scott [11], Páez, Scott and Volz [12], Arentze and 

Timmermans [13], and Dugundji and Gulyás [14]. This 

paper continues this line of research, exploring a multi-agent 

based model of binary choice behavior with interdependence 

of decision-makers’ choices.  

Discrete-choice estimation results controlling overall 

mechanisms related to individual heterogeneous preferences 

are embedded in a multi-agent based model to be able to 

observe the simulated evolution of choice behavior over 

time with socio-dynamic feedback due to network effects. 

Studying the long run behavior of more than 120,000 multi-

agent based simulation runs reveals that the initial 

estimation process can be highly sensitive to small 

variations in network instantiations. We show that this is an 

artifact of two issues in estimation, and highlight particular 

attention that is due at low network density and at high 

network density. This finding is an important warning with 

respect to empirical application of agent-based models. 

II. MODEL 

Discrete choice theory allows prediction based on 

computed individual choice probabilities for heterogeneous 

agents’ evaluation of alternatives. In accordance with the 

notation and convention in Ben-Akiva and Lerman [15], the 

so-called binary logit model is specified as follows. Assume 

a population of N decision-making entities indexed 

(1,...,n,...,N) each faced with a choice among two 

alternatives of some universal choice set C = {i,j}, say, 

choice of travel by car versus by railway, which we assume 

to be available to all agents.  The choice alternatives are 

further assumed to be mutually exclusive (a choice for one 

alternative excludes the simultaneous choice for another 

alternative, that is, an agent cannot choose two alternatives 
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at the same moment in time) and collectively exhaustive 

within C (an agent must make a choice for one of the 

options in the choice set).   

Let Uin = Vin + εin be the utility that a given decision-

making entity n is presumed to associate with elemental 

alternative i in its choice set, where Vin is the deterministic 

(to the modeler) or so-called “systematic” utility and εin is 

an error term. The error term represents unobserved 

heterogeneity. Such unobserved heterogeneity may arise due 

to unobserved attributes of the choice alternatives, 

unobserved characteristics of the decision-making entities or 

simply measurement errors in observed attributes and/or 

characteristics. Also in the case where instrumental variables 

are used as a proxy for variables which are not observable, 

the error term is relevant for capturing unobserved 

heterogeneity. Under the assumption of Gumbel distributed 

disturbances εin, the probability Pin that agent n chooses 

alternative i has a convenient closed form expression, given 

by: 

 
exp[ ( )]

exp[ ( )] 1

in jn

in

in jn

V V
P

V V

µ

µ

−
=

− +
 (1) 

where ȝ is a strictly positive scale parameter which we 

generally normalize to 1. The assumption that the 

disturbances are Gumbel distributed can be defended as an 

approximation to the normal density. 

A. Global Social Influence: The Field Effect Model 

The classical discrete choice framework discussed so far 

assumes independent individuals. Aoki [16], Brock and 

Durlauf [17], and Blume and Durlauf [18] relax this 

assumption. Their approach is to assume that the otherwise 

independent individuals are influenced by an aggregate of 

all other choices in the community. There is an inherent 

dynamic because each individual re-evaluates its choice 

based on the choices made by other individuals. This implies 

an implicit time-trajectory of repeated choices that defines 

the dynamics of the system. It is in this sense that we call 

this a “socio-dynamic” model: the dynamics are driven by 

social influence, albeit global social influence at this stage. 

The steady states of this dynamic process are reviewed 

below. 

Let Ni and Nj  be the total numbers of decision-making 

entities who have chosen respectively alternative i and 

alternative j at time t. Since we assume the choice set to be 

mutually exclusive and collectively exhaustive, for the 

binary case we have N = Ni + Nj. Now let xi = Ni / N and xj 

= Nj / N = (1 - xi ) be the global proportions of decision-

making entities who have made each choice, and define the 

field variable: 

 (1 ) 2 1i j i i ix x x x x x≡ − = − − = −  (2) 

Note that the field variable x varies on the range -1 to 1. 

In the limit where x = -1, none of the decision-making 

entities in the sample have chosen alternative i, that is, all 

have chosen alternative j. In the limiting case where x = 1, 

all of the decision-making entities in the sample have chosen 

alternative i, and none have chosen alternative j. In the case 

where x = 0, half of the decision-making entities in the 

sample have chosen alternative i, and half have chosen 

alternative j. 

Global social dynamics are introduced by allowing the 

term Vin – Vjn in equation (1) to be a linear-in-parameter ȕ 

function of the proportions xi and xj of decision-making 

entities who have made each choice: 

 ( ) ( )in jn i jV V f x x f xβ β− ≡ − =  (3) 

The function f(x) is an arbitrary function of x. In our 

application we consider f(x) linear in x, however the 

analytical results apply more generally. Substituting 

equation (3) into (1) and normalizing the scale parameter μ 
=1, we have: 

 ( )
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in

f x
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Aoki (1995) shows that the mean φ of the field variable x 

is governed by the deterministic differential equation 

 ( ) ( )
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2 2
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Substituting (4) into (5) and normalizing ț =1 and Ȝ =1, 

we have: 

 ( )
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Stationary points are zeros of dφ /dt. Thus the key 

equation to determine local equilibria is: 

 ( )
1

0 :   tanh
2

d
f

dt

ϕ
ϕ β ϕ= =  (7) 

This equation can be solved conveniently by plotting the 

left-hand-side and the right-hand-side on a graph, and 

finding their intersection. Depending on the specification of 

f(φ) and the value of ȕ, this equation may have more than 

one solution. 

B. Local Social Influence: Erdős-Rényi Networks 

The model described in the previous section assumes 

uniform, global and perfect information access. The very 

fact that certain influences are transferred via social 

interactions, and thus via social networks implies 

heterogeneous local information. Therefore, in the following 

we extend the model to explicitly model interaction 

networks.  

Each decision-making entity n is assigned a set of 

“reference” decision-making entities influencing its choice. 

At each time step during the iteration phase, the decision-

making entities look at the choices their particular reference 

entities made in the previous round, plus their own choice, 
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and calculate localized values of the difference in systematic 

utility between the alternatives: 

 ( ) ( )in jn in jn nV V f x x f xβ β− ≡ − =  (8) 

The critical difference between equations (8) and (3) is 

that subscript n now becomes important in determining xn = 

xin – xjn. The “reference” relationships introduced here 

define a graph or network.  

It is hypothesized that different network structures yield 

different system behavior. In practice however, it can be 

difficult to reveal the exact details of the relevant network(s) 

of reference entities influencing the choice of each decision-

making entity. Moreover, the actual reference entities for a 

given decision-making entity may not be among those in the 

data sample. One way to test the above hypothesis 

theoretically even without reliable empirical information 

about the social influence network is by studying abstract 

classes of networks in the hope of identifying classes of 

networks that yield similar results. 

An early abstract model of social interaction is due to 

Erdős and Rényi [19]. Their random network consists of a 

number of nodes and set of random edges between them, 

such that the probability of the existence of a given link is 

uniform across all possible edges. The actual number of the 

links is determined by the density p of the network, which is 

usually perceived as a parameter of the Erdős-Rényi graph. 

Here network density p is defined as the ratio of the number 

of actual existing links to the number of all theoretically 

possible links in a fully connected network with the given 

number of nodes. Otherwise said, p is the “link probability,” 

the probability that a link exists. 

One advantage of studying random networks is that they 

are perhaps the simplest possible networks that are general 

enough to describe a wide range of graphs, from 

unconnected nodes to a fully connected network (ie. a graph 

that contains all possible links). In addition, they accomplish 

this without introducing any explicit bias into the structure 

of the network. Moreover, results are known about 

important properties such as at approximately what value of 

p will the network become connected (ie. when each node is 

“reachable” along the edges from any other node), or 

otherwise said, when a so-called “giant component” will 

emerge. Finally, an important feature of random networks 

which is observed in real-life social networks is the so-

called “small-world” property: the average path length l (the 

average number of “hops” between an arbitrary pair of 

nodes) is less than or of the order ln(N), where N is the 

number of nodes. 

III. EMPIRICAL DEMONSTRATION 

In the next step of our model development process we 

now turn our attention to an empirical application of 

intercity transportation mode choice behavior. Here we 

include individual level heterogeneity in two ways. We use 

revealed preference survey data collected by the Hague 

Consulting Group for the Netherlands Railways to assess 

factors which influence the binary choice between car versus 

rail for intercity travel [20]. We also test the role of the 

social influence, modeled as an Erdős-Rényi graph over a 

full sweep of link probabilities from zero to one. In the limit 

that the link probability approaches zero, we have a classical 

binary logit model without social interaction. In the limit 

that the link probability approaches one, we recover a fully-

connected network. For the special case of very high link 

probabilities, we can therefore apply approximate theoretical 

benchmark results in section II.A to verify our agent-based 

model implementation. 

At the outset of section II, we discussed the notion of a 

“systematic” utility Vin  that a given decision-making entity 

n is presumed to associate with a particular alternative i. We 

have considered until now the interaction effect as the only 

term in the systematic utility. In typical transportation 

applications, the systematic utility is commonly assumed to 

be defined by a function of observable characteristics Sn of 

the decision-making entity and observable attributes zin of 

the choice alternative for a given decision-making entity. 

We will consider the term Vin – Vjn in equation (1) to have 

the general form:  

 
( ) ( )

           ' ' '

in jn in jn n

n n i in j jn

V V f x x f x

x h
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β

− ≡ − =

= + + + −γ S ζ z ζ z
 (9) 

where Ȗ = [Ȗ1, Ȗ2, …]’ , ζi = [ζi1, ζi2, …]’ and ζ j = [ζj1, 

ζj2, …]’ are vectors of unknown utility parameters 

respectively corresponding to the relevant observable agent 

characteristics Sn, and observable agent-specific attributes 

zin of the choice alternative such that: 
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The term h is a so-called “alternative specific constant” 

(ASC); it is included as good practice to explicitly account 

for any underlying bias for one alternative over another 

alternative. In other words, h reflects the mean of ε jn - ε in, 

that is, the difference in the utility of alternative i from that 

of j when all else is equal. In general the utility parameters ζi 
and ζj may take alternative specific values, however in this 

paper we will consider only “generic” values of the utility 

parameters ζ  ≡ ζ i = ζ j and define zn ≡ zin – zjn so that we 

have the further simplification: 

 ' 'in jn n n nV V x hβ− = + + +γ S ζ z  (11) 

The travel behavior data available to us is cross-sectional. 

Due to the expense and logistical aspects of data collection, 

it is common that a transportation agency or other 

commissioning party will use cross-sectional data to 

estimate a model, and then make forecasts about how 

variables will change over time and use the revised variables 
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to make forecasts [15]. This is the approach taken in this 

paper. This said, it would be better to have estimated a panel 

model and use the panel estimates within our agent-based 

model if we had had panel data available. We hope this 

paper may serve as a call to the community for the relevance 

of network panel data in improving modelling efforts. 

Descriptions of the survey variables available for use in our 

modeling endeavor are given in Table I. There are no 

reported missing values. 

TABLE I. 

DESCRIPTION OF VARIABLES IN SURVEY DATA 

Name Type of variable Description 

choice yn Travel mode choice indicator:  

1 if rail; 0 if car 

gender Sn Gender of the respondent:  

1 if female; 0 if male 

business Sn Business trip indicator 

shoprec Sn Shopping/recreation trip indicator 

ttcar zin, i = car In-vehicle travel time for the car 

alternative 

tccar zin, i = car Travel cost for the car alternative 

ovtcar zin, i = car Out-of-vehicle time to walk from 

parking place to destination 

ttrail zjn, j = rail In-vehicle travel time for the rail 

alternative 

tcrail zjn, j = rail Travel cost for the rail alternative 

ovtrail zjn, j = rail Out-of-vehicle time for access and 

egress for rail 

 

As in section II.B, in our agent-based model each 

decision-making entity n is assigned a set of “reference” 

decision-making entities influencing its choice. At each time 

step, the decision-making entities look at the choices their 

particular reference entities made in the previous round, plus 

their own choice, and calculate localized values of the 

difference in systematic utility between the alternatives: 

 

1

2 3

1 car rail 2 car rail

3 car rail

*gender

*business *shoprec

*(tt tt ) *(tc tc )

*(ovt ovt )

in jn n n

n n

n n

n

V V x hβ γ

γ γ

ζ ζ

ζ

− = + +

+ +

+ − + −

+ −

 (12) 

We are interested in how the dynamics of the discrete 

choices of these heterogeneous individuals depend on the 

structure of the underlying social influence network. We 

vary the network density p on the parameter range (0,1) 

ranging from a non-connected to a fully-connected graph, 

excluding endpoints. We select the following 30 values of p 

to sample: 0.005 to 0.100 at increment 0.005 (20 network 

density values), 0.200 to 0.600 at increment 0.100 (5 

network density values), 0.700 to 0.900 at increment 0.050 

(5 network density values). In each case, we repeatedly 

situate the agents in 20 distinct instantiations of an Erdős-

Rényi graph per network density value. 

For these 600 networks (30 network density values times 

20 network instantiations per density value), we repeatedly 

compute the local interaction field variable xn for each of 

the 235 agents in the sample in two ways, one with counting 

the agent’s own choice in its reference group (that is, with 

so-called “self loops”), and one without counting the agent’s 

own choice in its reference group (that is, without self 

loops). From a theoretical perspective, the model with self-

loops is interesting because in the limiting case of network 

density p = 1 (a fully-connected network), we recover 

Aoki’s original model if there were no other explanatory 

variables in the utility function. Likewise from a theoretical 

perspective, the model without self-loops is interesting 

because in the limiting case of network density p = 0 (a non-

connected network), we have pure random behavior if there 

were no other explanatory variables in the utility function. 

From a multi-agent based simulation perspective, the model 

with self-loops at low network density might logically 

provide inertia in the behavior, damping down the volatility 

of switching from one choice to another. At high network 

density, when the number of agents is large, there is not 

likely to be discernible difference in the multi-agent based 

simulation behavior between the model with self-loops and 

without self-loops. 

After preliminary model specification testing, we proceed 

to repeatedly estimate sets of the utility parameters ȕ, h, Ȗ1, 

Ȗ2, Ȗ3, ζ1, ζ2, ζ3 in equation (12) via maximum likelihood 

estimation for each of the 1200 network scenarios described 

above, with two different binary logit utility specifications: 

with the alternative specific constant h freely estimated, and 

with the alternative specific constant constrained to zero. 

Using the distinct sets of coefficients for each of the 2400 

estimated models, we then run 50 multi-agent based 

simulations with distinct pseudo-random number sequences 

for 2000 iterations per each run, per each model. The value 

of x representing the difference between the aggregate mode 

shares xi and xj in the sample at the last time step of each 

run is counted in histograms, one per each network 

instantiation. We group these histograms by network density 

in each of the four experimental settings (with or without 

self-loops and with and without an alternative specific 

constant). Fig. 1 shows aggregate histograms from each 

experimental setting at low and high network density values. 

Molloy and Reed [21] have shown that the critical point 

when a giant component emerges, occurs around p = 1/N + 

ε, where N is the number of nodes and ε > 0 is a small value. 

In our case of 235 agents this formula gives p ~ 0.005 as a 

critical point when, in practical terms, the graph becomes 

connected. We therefore might potentially expect to see 

behavioral transitions occurring somewhere in the low 

network densities. However, the most striking result is that 

only with the model with the alternative specific constant 

and with self loops do we ever get the signature bimodal 

histogram.. 
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Fig. 1 Aggregate histograms for four model specifications with and 

without an alternative specific constant and with and without self loops, 

at network density p = 0.005 and p = 0.9; for each histogram there are 

20 Erdős-Rényi network instantiations per density value, 50 multi-

agent based simulation runs per network instantiation, and 2000 

iterations per simulation run; the values of the set of utility parameters 

are re-estimated per each network instantiation; the bins of the 

histogram encompass a range from -1 to 1 

 

We can conclude that adding additional agent-specific 

heterogeneity in our model beyond the heterogeneity 

automatically induced by the localized interactions does 

indeed seem to matter. A closer analysis of the histograms 

however reveals a significant insight: not all of the network 

instantiations for the models with the alternative specific 

constant and with self loops give the signature bimodal 

histogram. In fact at higher network densities we see both 

the single sharply-peaked distribution and the signature 

bimodal histogram co-existing as outcomes with the 

alternative specific constant and with self loops, giving a 

hint at some kind of instability in the model. See Fig. 2. This 

insight motivates a further analysis of the estimated 

coefficient values which we will undertake in section IV. 

For the case shown in Fig. 2 with p = 0.9, we may 

suppose that the network density is close enough to 

approaching unity that the mean field analytical results in 

section II.A may be relevant as an approximate guidepost.  

 

 

Fig. 2 Individual histograms for four Erdős-Rényi network 

instantiations with different network generator random seeds for the 

model specification with an alternative specific constant and with self 

loops at network density p = 0.9; there are 50 multi-agent based 

simulation runs per network instantiation, and 2000 iterations per run; 

the value of the model coefficients are re-estimated per each network 

instantiation; the bins of the histogram encompass a range from -1 to 1 

 

Using the mean values of variables given in Table 1 and 

the estimated utility parameters ȕ, h, Ȗ1, Ȗ2, Ȗ3, ζ1, ζ2, ζ3 for 

each of the network instantiations with random seeds shown 

in Fig. 2, we plot the left-hand-side and the right-hand-side 

of equation (7) on a graph, and find their intersection for ȕ 

f(xn) = Vin – Vjn = ȕxn + h + Ȗ’Sn + ζ’zn  as given in 

equation (12). In Fig. 3, we can see that the effect of adding 

the alternative specific constant, the agent characteristics 

and the agent-specific attributes of choice alternatives to the 

model is to shift the tanh curve horizontally so that the curve 

no longer crosses the line y = φ at φ = 0. A larger value of 

the certainty parameter ȕ is accordingly necessary to achieve 

the signature bimodal behavior. 

IV. ISSUES IN ESTIMATION 

We plot the sets of estimated coefficient values for the 

same 30 network density values swept in section III. Fig. 4 

shows the four model specifications with and without an 

alternative specific constant and with and without self loops 

(20 network instantiations per density value). Analyzing the 

plots, the clue to our puzzling behavior in section III 

becomes obvious in light of the analytical results in section 

II.A. Far from being constant across all estimated models, 

we see instead systematic variation in the estimated 

coefficient values. From the analytical benchmark in section 

II.A, we know that the coefficient on the interaction variable 

must be sufficiently large and positive relative to the other 

contributions in the utility in order to trigger the signature 

bimodal histogram long-run behavior. What we see is that 

for many of the models, this coefficient on the local 

interaction variable is in fact negative. In such case we can 

never expect to see the signature bimodal histogram.  
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Fig. 3 Plots of y = tanh (1/2) [ȕxn + h + Ȗ’Sn + ζ’zn ] and y = φ versus 

φ for values of estimated utility parameters ȕ, h, Ȗ1, Ȗ2, Ȗ3, ζ1, ζ2, ζ3 in 

the individual network instantiations with the same network generator 

random seeds shown in Fig. 2; stable equilibria are seen where the tanh 

curves the line y = φ “from above,”  and unstable equilibrium are seen 

where the tanh curves the line y = φ “from below”; both the y-axis and 

φ are shown in the range from -1 to 1 

 

There are two subtle issues to understand about the 

estimation. One issue has to do with correlation of 

explanatory variables. The other issue has to do with an 

explanatory variable or linear combination thereof being 

(almost) a perfect predictor for the dependent variable.  

A key aspect to recognize about the local interaction 

variable is that in networks with a large number of agents 

and at high network density, the “local” interaction variable 

will become effectively “global”, ie. constant across agents 

in the network - whereby this variable will become highly 

correlated with the value of unity included in the model 

when estimating an alternative specific constant. This leads 

to a violation in the estimation process. In fact the local 

interaction variable will be perfectly correlated with unity at 

network density p = 1 (a fully-connected network) when the 

model includes self loops. In Fig. 4, we can visually track 

the increasing correlation as the network density increases, 

between the coefficient on the local interaction variable and 

the alternative specific constant (ASC) for rail in the models 

with the ASC.  

When the model does not include an alternative specific 

constant, the local interaction variable takes on this role at 

high densities. Since the alternative specific constant 

happened to be positive for this case study in a baseline 

model without any interaction, simple calculation can show 

that the coefficient on the local interaction variable will be 

negative for this case study in models without an alternative 

specific constant for high network density, since the “local” 

interaction variable itself will be negative (the sample mode 

share for rail is less than the sample mode share for car). 

This is the reason why we never saw the signature bimodal 

histogram in section III for the models without an alternative 

specific constant at high network density. 

At low network densities in models with self loops, we 

have a problem in that the local interaction variable will be 

almost a perfect predictor for the dependent variable, 

particularly if we do not have time series data. At high 

network density in models without self loops and with an 

alternative specific constant, we are confronted with a 

double effect: the local interaction variable is almost 

perfectly correlated with unity whereby we have a violation 

in estimation due to the correlation between explanatory 

variables, and additionally a linear combination of the local 

interaction variable and unity is highly correlated with the 

choice variable itself, leading to the second violation in 

estimation. This linear combination is a perfect predictor for 

the model without self loops and with an alternative specific 

constant when network density p = 1.  

V. CONCLUSIONS 

In this paper, we have explored a multi-agent based 

model of discrete choices with interdependence of decision-

makers’ choices. By applying the model to an example of 

intercity travel demand using empirical data, we introduced 

individual agent heterogeneity beyond that induced by the 

local interaction structure. We found that the model’s 

characteristic phase transition is dependent on network 

density in an example with Erdős-Rényi graphs, as well as 

on the importance of the estimated value of the coefficient 

for the local interaction variable relative to other coefficients 

in the binary model. Furthermore, we find that the 

estimation process to determine the set of coefficients can be 

highly sensitive to the small variations in the different 

instantiations, particularly in models including an alternative 

specific constant. 

Special care must be taken in estimation of empirical 

models with networks with:  

� very low network densities when the model includes 

self loops;  

� very high network densities when the model includes 

an alternative specific constant (ASC), especially in a model 

without self loops. 

In general, preference goes to models with an ASC in 

order to ensure the error terms in the utility function have 

zero mean and the estimated coefficients are unbiased. 

Whether self-loops are implemented or not in an empirical 

model depends on the rationale of the system, and ideally on 

availability of panel data over multiple time periods. In 

addition to this central contribution, we hope that our work 

also serves a secondary function to highlight good practice 

with multi-agent based social simulation. 
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A key feature of agent-based modeling is internal 

verification, or otherwise said, how can the researcher be 

confident that the agent-based model is performing the 

actions that it is expected to do? What is the evidence that 

the programming implementation of the abstract or 

conceptual model is correct? To address this fact, we began 

our modeling endeavor with a very simplified model studied 

previously by others as a cornerstone, and built up our 

multi-agent based model step by step, and adding different 

layers of complexity one at a time. In our case, this meant 

adding different kinds of heterogeneity. In section II.A, the 

dynamics of the model are driven by choices made by  

agents with global information. For this simple model, there 

is an analytical solution. The analytical benchmark gives us 

behavioral insights for corner solutions in parameter space, 

and also serve as a cross-check that the subtleties of 

scheduling, event simulation and sequences of random 

draws in our model behave as expected. In section II.B, 

there is additional heterogeneity due to the network structure 

and the fact that agents have local information, rather than 

global information. We experiment with a well-known 

abstract class of networks to see the effect of density, and 

drawn on established results about connectivity in such 

graphs to guide behavioral hypotheses.  Finally, in the 

empirical demonstration, we add heterogeneity due to 

individual characteristics of agents (gender, travel purpose) 
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Fig. 4 Estimated coefficient values for the four model specifications with and without an alternative specific constant, and with and without 

self loops; there are 20 network instantiations per density value for the sweep of network density from p = 0.005 to 0.9; the solid line shows 

variation in local interaction coefficient and the dotted line shows the variation in the alternative specific constant for rail bias 
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as well as agent-specific attributes of choice alternatives 

(travel time, travel cost). 

VI. RECOMMENDATIONS 

In order to be able to apply the agent-based model for 

policy purposes, more extensive data would be desirable 

than what was available to us for this exploratory 

methodological study applying abstract classes of networks. 

Manski [22] highlights three hypotheses in his classic 

monograph “to explain the common observation that 

individuals belonging to the same group tend to behave 

similarly... endogenous effects, wherein the propensity of an 

individual to behave in some way varies with the prevalence 

of that behavior in the group; contextual effects, wherein the 

propensity of an individual to behave in some way varies 

with the distribution of background characteristics in the 

group; and correlated effects, wherein individuals in the 

same group tend to behave similarly because they face 

similar institutional environments or have similar individual 

characteristics.” The first two hypotheses express inter-agent 

causality in a model. The third hypothesis does not. The 

important distinction between the two inter-agent causal 

effects is that the first involves feedback that can be 

reinforcing over the course of time depending on the 

strength of the certainty parameter in relation to the rest of 

the utility function as we have seen in our agent-based 

model. The policy implications of the approaches are widely 

different, especially if there exists a case of an inherent 

dynamic with feedback. Access to temporal panel data is 

highly desirable in order to better empirically distinguish the 

effects during the estimation of the utility parameters. 

In addition to the availability of empirical data on the 

change in the choice distribution over time, as well as 

changes in agent characteristics and agent-specific attributes 

of the choice alternatives over time, another consideration in 

applying the agent-based model for policy purposes is the 

availability of data on the possible change in the population 

itself, both its size and its network structure. In the agent-

based model in this study, we have fixed the population in 

the initialization phase of the model and this population 

continues at each time step throughout all iterations of a 

simulation run until time T. In a policy application however, 

the links in the base population may change among existing 

agents, and furthermore perhaps some agents may leave and 

other new agents may enter.  
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