
 

 

 

 

 Abstract— In this paper principles of relative 

dilemmatic logic as a modification of conventional relative logic 

are formulated and based on them methods of logical reasoning 

are presented and illustrated by examples. It is shown that 

dilemmatic logic makes possible not only to relatively evaluate  

logical values of statements without using any numerical 

parameters but also it makes possible to eliminate from logical 

inference process premises and inductions whose relative value 

is lower than this of their negations. Graphical representation 

of logical inference processes by bi-partite and tri-partite 

graphs is proposed and the role of graph theory methods in 

solution of the logical inference tasks based on relative 

dilemmatic logic is indicated.  

Keywords: artificial reasoning, relative logic, logical 

dilemmas, dilemmatic logic, Hasse diagrams 

I. INTRODUCTION 
INCE the first works of J. Łukasiewicz concerning  non-

classical logics [1,2] various attempts to  make  logical 

systems more flexible and suitable to simulate the natural 

reasoning principles have been proposed. In fact, a binary 

(“true”, “false”) logical scale widely used in classical logical 

systems  [3,4] in everyday human thinking is rather 

occasionally used. The last is based mostly on vague 

concepts and  non-determined sharply inference rules based 

on experience, intuition, analogies, etc. This is invariance of 

the natural rules governing in  the real world that for long 

decision sequences makes this type of  reasoning  effective. 

The main ideas in the logical inference “naturalization” took 
the form of multi-valued logic [5], modal  logics [6], 

inductive  logic [7], fuzzy sets logic [8], rough sets logic [9], 

possibility theory [10], etc. In all the above-mentioned cases, 

a common idea consists in an extension of the scales of  

logical values with respect to the classical, binary one. 

However, in all cases the scales remain linearly ordered,  

numerical. Even the widely known rough set approach, based 

on the categories  “surely  yes”, “possibly yes” and “surely 

no”, is in fact  a sort of a three-valued  logic [11]. On the 

other hand, in natural thinking numerical scales for logical 
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evaluation of statements are rarely used. Nevertheless, the 

classical logic rules play an irreplaceable role in any exact 

non-classical logic description. And still, the problem: how 

to evaluate or to establish an intuitive  probability, a 

membership function value, a logical value level, etc. of a 

statement has no satisfactory explanation. This is why a 

proposal of  a relative logic (originally called topological 

logic, due to its graphical representation [12]) draw attention 

of some authors [13, 14, 15]. In relative logic any statement 

A may be less, more or comparably true with respect to some 

other one B  or A and B  may be mutually incomparable; 

however, no numerical values of their “trueness” or 
“falseness” are used. Instead, logical relationships among the 

statements by  contour-free directed (not obviously compact) 

graphs  can  be represented. This approach makes us free of  

any logical values  (membership levels, probabilities, etc.) 

calculation; the most and/or the less logically valuable 

statements can be found  by analysis of the graphs. However, 

this approach has also some  drawbacks. Knowing  that  “A 

is more logically valuable  than B” tells nothing about A and 

B  being  true at all. Only adding  that e.g. “A is as logically 

valuable as 2 +  2 =  4” makes the former statement anchored  
on a logical scale.  It thus arises a problem  whether it is 

possible and if so, how  to extend  the relative logic so as to 

establish a logical reference  level for the considered  

sentences without  taking  into account any additional, 

reference statements.  The answer  is positive if taking  into 

account  that  to each statement  its negation in a natural way 

can  be assigned and  their logical validities can  be 

compared.  In other words, before asking whether a 

statement A is less or more logically valuable than  a 

statement B, it is natural to ask  whether A is less or more 

logically valuable than “not A”. A pair consisting of a 

statement and of  its logical negation  constitutes a logical 

dilemma. In [14] using a mode “rather A” has been  
proposed in the case if higher logical value to the statement  

A  than  to its negation  is assigned. Moreover, the  more  

different  logical values to the components of a dilemma are 

assigned, the  lower  is the uncertainty  that  a real  situation  

by the  more logically valuable statement  is described. This 

uncertainty does not concern  the  information carried  by the  

lexical expression  of the statement but a meta-information  
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about the assigned to it truth  level. In  this paper a concept  

of using  the comparative dilemmas’  uncertainty assessment 
to decision  making instead of  the “conventional” relative 
logic approach  is  presented  and  illustrated by examples. 

The concept is based on the idea that  if  A has relatively 

higher logical value than B then this statement is more 

convincing if we know that B is of high certainty then if it is 

close to ambivalence. The paper  is organized  as follows. In 

Sec. 2 some  basic notions concerning the relative logic of 

dilemmas are introduced. Sec 3 presents a  method  of  

logical inference based on dilemmas. In Sec. 4 application of 

the proposed approach to a pattern recognition problem is 

described. Conclusions are formulated in Sec. 5. 

 

II. BASIC NOTIONS 

We will consider a non-empty set U of simple assertive 

propositions u called statements. It is assumed that no 

statement in U concerns  direct or hidden assessment  of its 

proper logical value. A proposition  is called simple if it 

contains a single subject and a single  predicate and, thus, it 

cannot be presented  by several propositions connected  by 

conjunctions.  It is assumed  that  in U a first-order 

propositional calculus with logical operators of negation , 

disjunction  and conjunction  of statements  has been 

defined. Then, it will be defined a set D of ordered pairs (u | 

 u) called dilemmas. The propositional calculus can easily 

be on the dilemmas extended: 

Definition 1 . For a given set D of dilemmas it is defined: 

a) A negation of a dilemma d = (u |  u) as a dilemma  

d = (  u | u); 

b) A disjunction of the dilemmas d’ = (u’ |  u’), d” = 

(u” |  u”) as a dilemma d’  d” =  [u’  u” |  (u’  

u”)]; 

c) A conjunction of the dilemmas d’ = (u’ |  u’), d” = 

(u” |  u”) as a dilemma d’  d” =  [(u’  u” |  (u’  

u”)]   

From the Definition 1 and the de Morgan laws [3] it 

follows: 

Corollary 1. The following identities hold: 

a) (  d)  d; 

b) d’  d”  [u’  u” | (  u’)  (  u”)]; 

c) d’  d”  [(u’  u” | (  u’)  (  u”)]  

In the set of dilemmas a semi-ordering  relation of their 

certainty can be defined in the below described way. 

Definition 2. Let D be a set of dilemmas. Then in D a 

binary relation 
c
  satisfying the conditions of: 

a) reciprocity: for each d  D it holds d 
 c 

d; 

b) symmetry: for any d’, d”  D if d’  c
 d” then also d” 

 c d’ holds; 

c) reflexivity: for any d’, d”  D if d’  c d” then also  

d’ c 
 d” holds; 

d) transitivity: for any d’, d”, d’’’  D if d’ c d” and d” 
c d’’’ then also d’ 

c d’’’  holds; 

e) fixation: for any d’, d”  D if d’ c  d’ and d” c 
 

d” then also d’  
c d” holds, 

will be called an equal certainty relation. Any dilemma  

satisfying the condition d 
c  

d  will be called an  

ambivalent dilemma; any dilemmas such  that  d’ c
 d” holds 

will be called equivalent dilemmas; any dilemmas such that  

d’ c
 
 

 d” holds will be called anti-equivalent dilemmas   

It thus follows from  the Definition  that all ambivalent 

dilemmas are both  mutually equivalent and mutually anti-

equivalent. As such, they can be established  as a reference 

level for other dilemmas’ certainty assessment. 

Definition 3. Let D  be a set of dilemmas with 

established  equal certainty relation. Then  a binary  relation  

 c 
described in

 
D and satisfying the conditions of: 

a) reciprocity: for each d  D it holds d  c
 d; 

b) symmetry: for any d’, d”  D   d’  c
 d” and d”  c

 d’ 
hold if and only if d’  c d” holds; 

c) anti-reflexivity: for any d’, d”  D if d’ 
 c

 d” then  

d”  c
 
 

 d’ holds; 

d)   transitivity: for any d’, d”, d’’’  D if d’ c
 d” and d” 

 c
 d’’’ then also d’ 

 c
 d’’’   holds,  

will be called a certainty ranking  

If for any two dilemmas d’  c
 d” holds and d”  c

 d’ 
does not hold then it will be called  that the certainty of  d’ is 
dominated by this of d ”; if  d  is dominated by d  then d 

will be called a correct dilemma, in the opposite case  it will 

be called incorrect; any two dilemmas such that neither d’  

c
 d” nor d”  c

 d’ holds will be called mutually 

incomparable and denoted by d’ ?  c d”. 

It remains to establish the rules of assigning certainty 

relations between algebraic compositions of dilemmas 

described by Definition 1 and their components. 

Definition 4. Let D  be a set of dilemmas with 

established  equal certainty and certainty ranking relations. 

Then for any d’, d”  D 

a)  if d’ 
  c

 d” and not d” 
  c

 d’  then d’  d” 
 c
 
 d”; 

b)  if d’ 
 c
 d” and not d” 

  c
 d’  

then d’  d” 
 c
 
 d’; 

c) if d’ 
 c
 d” then d’  d”  c

 
 d’  d”  c

 d’,   c d”; 

d) if d’ ?
 c
 d” then d’  d”   c

 d’, d”; 

e) if d’ ?
 c
 d” then d’, d”   c

 d’  d”  

Logical value of a dilemma is thus characterized by two 

parameters: its certainty related to the level of ambivalence 

and its correctness (a binary parameter). The certainty 

ranking of a set D of dilemmas can be  presented  by a 

labeled  contour-free directed graph (the term contour is 

94 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012



 

 

 

 

used here for an uniformly directed cycle) with a single input 

node representing all ambivalent (and mutually equivalent) 

dilemmas.  Any other node of the digraph represents a single 

or a group of equivalent correct dilemmas. Arcs (arrows) 

directed from d’ to d” correspond to situations when d’ is 

dominated by d”. Parallel to directed paths (by-passing) arcs  

in the digraph are omitted. An example of a digraph 

describing a certainty ranking of a set of dilemmas is 

presented in Fig. 1. It in two versions is shown. Version a) 

corresponds to an initial state of the digraph construction 

when contours corresponding to mutually equivalent 

dilemmas, a surplus arc and (marked in black) nodes 

representing  incorrect dilemmas yet exist.    

a) 

 

  

 

 

 

 

 

 b) 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Digraph representation of dilemmas’ certainty ranking: a) 
initial version, b) simplified version. 

 

 

This version of the digraph then has been modified 

(simplified), as shown in Fig. 1 b. In this version the nodes 

of the equivalent dilemmas d1 and d7 have been merged so 

that the corresponding contour disappeared; the surplus arc 

from d1 to d9 has been removed; the incorrect dilemmas d3 

and d6 by the correct ones, d6 and d6  have been replaced. 

So, the digraph took the form of a Hasse diagram [16]. A 

difference to the Hasse diagrams used in conventional 

relative logic systems consists in a) nodes being assigned to 

dilemmas, not to single statements and b) the diagram being 

anchored to a single input node assigned to a collection of all 

ambivalent dilemmas. The difference between the 

conventional and dilemmatic relative logic can be illustrated 

by the following example. 

Example 1.  Fig. 2 presents a microscopic image of a 

stained  human blood specimen containing granulocytes 

affected by different states of necrosis. The most advanced 

states are characterized by fuzziness  of cells’ contours and 
large amount of vacuoles in the cytoplasm surrounding the 

nuclei. A practical problem consists in selection and 

counting  of the most damaged cells.  For this purpose, there 

have been distinguished circular dark objects in the image 

reminding cells’ nuclei and they have been denoted by the 
letters a, b, c,…,k. We try to assign logical values to the 

statements: 

ux = “Object x represents a cell in advanced necrotic 
state” 

for x  {a, b, c, …, k} as a criterion for final selection of the 

objects of interest. However, it can be observed that a quite 

unambiguous selection in this case is not possible. If any 

objective methods (spectral analysis, morphological analysis, 

etc.) are used to characterize the selected objects they give at 

most some premises for inferring about the state of the  

necrotic process.  That is why a  relative logic seems to be 

more suitable than the classical logic to decide about the 

classification of the objects. According to the conventional 

relative logic methodology,  for some pairs of statements (ux, 

uy) their logical equivalence (
 c

) or order ( c
 ) was  

established and the corresponding Hasse diagram  shown in 

Fig. 3a  has been constructed.  

 

 

Fig. 2. Microscopic image of blood specimen with objects 

selected for analysis. 

 

Similarly,  according to the dilemmatic logic approach 

the dilemmas dx =  (ux, ux) are taken into consideration and  

some pairs of them are compared in order to establish their 

logical equivalence or dominations. Then a  corresponding 

Hasse diagram is constructed as shown in Fig. 3 b. 

 

Definition 5.  A minimal node of a Hasse diagram  is a 

node not  preceded by any other node of the diagram  

{d2, d4} 

d

d1 d3 

{d8, d10} d6 

d9 
d12 

d7 

{d2, d4, d5} 

{d1,d7 d3 

{d8, d10} d6 

d9 
d12 
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Fig. 3. Hasse diagrams of  logical values: a) of statements in 

conventional relative logic, b) of dilemmas in dilemmatic relative logic. 

 

Let us remark that  a Hasse diagram contains at least one 

minimal node, however, it may contain more than one of 

them. The Definition 5 can easily be extended on the 

maximal node of a Hasse diagram. The dilemmas 

represented by a minimal (maximal) node of the Hasse 

diagram are called, respectively, minimal (maximal). 

Ambivalent dilemmas are thus mandatory minimal dilemmas 

in a Hasse diagram of a set D of dilemmas; if no such 

dilemma really exists,  the diagram should be completed by a  

hypothetical ambivalent dilemma  , as shown in Fig. 3b.  

III. DILEMMATIC LOGICAL INFERENCE       

3.1.  Basic logical induction rule. 

A classical logical inference is based on a modus 

ponens scheme [3]: 

If A then B 

                               A                                          (1)    

B                                                                                                                               

A multi-step logical inference consists of a network of 

modus ponens acts schemes ordered so that some 

conclusions (B) of  foregoing schemes are used as the 

premises (A) in the succeeding schemes. In relative logic it 

arises  the problem of relative logical evaluation of  the 

conclusion B with respect to the premise A and the induction  

If… then , the last also being logically relatively evaluated.  

Like in classical logic, the induction  “If A then B” 
(symbolically  denoted by A  B) can be interpreted as “Not 

A or B”. Therefore, the modus ponens scheme in relative 

dilemmatic logic takes the form:  

 

[( A  B), (A   B)] 

                      (A, A)                                          (2)                                                     

                      (B | B) 

 

and the problem consists in evaluation of the concluding 

dilemma’s  (B | B) sign and  certainty level if the relative  

certainty levels of dilemmatic premise  d’ = (A, A) and 

induction d”= [( A  B), (A  B)] are given.  First, it will 

be assumed that  both d’ and d” are correct (or at least 

ambivalent) dilemmas, otherwise,  they should be replaced 

by the  corresponding negative dilemmas. Then, the 

conclusion d = (B | B) can be evaluated as a conjunction d’ 
 d” . Taking into account the correctness of d’ and 

Definition 4 the following situations thus can be taken into 

consideration: 

1
0
, if  d’  

c
 d” and not the reverse then it should be        

d  
c
 d’; 

2
0
, if  d’ c

  d” then it should be d’ c
 d 

c
 d”; 

3
0
 , if d”  

c
 d’ and not the reverse then it should be        

d  
c
 d”; 

4
0
 , if d’ ? 

c
 d” then it should be d  

c
 d’ as well as          

d  
c
 d”. 

In other words, the certainty level of a dilemmatic 

conclusion following from the correct dilemmatic 

premise  and  induction  does not transcend the lower 

certainty level of the premise and the induction.  

The multi-step logical inference processes can be 

classified according to their topological properties. The 

processes consist of logical induction steps in which some 

premises are transformed into local conclusions. Then, 

algebraic combinations of initial premises and local 

conclusions are used as premises of next induction steps up 

to the steps leading to final conclusions. The variety of 

possible topological structures is very large, however, they 

can be classified within several below described typical 

schemes.   

3.2. Single-way reasoning scheme. 

The simplest  type of logical inference process starts 

from a single  initial premise dilemma d1 and it leads to a 

conclusion dk  through a final number (at least one) linearly 

ordered mediate dilemmas. Any pair of consecutive 

dilemmas constitutes a logical induction  di  dj . The 

scheme can be presented in the form of a bi-partite digraph 

whose nodes assigned to dilemmas (premises and 

conclusions) and to inductions constitute two disjoint subsets 

as shown in Fig. 4.  

According to Definition 4b and conclusion following 

from the dilemmatic modus ponens properties, the 

uncertainty of the final conclusion dk of the single-way 

reasoning process, assuming that no pair of inductions is 

incomparable, is given by the expression: 

     dk  
 c
 min(d1, d1  d2, d2  d3, ... , dk-1  dk) .       (3)                                    

 

3.3. Confluence-tree reasoning scheme. 

In  this reasoning scheme the inductions, like before, are 

sequentially ordered but more than one premise is taken into  

consideration; additional premises are  included into 

the process at consecutive reasoning steps as shown in  

Fig. 5.  

{uk, uj}    uh       ue 

 

 

  {uc, ui}         ug 

 

 

ua   {uf, ud}    ub 

{dk, dj}      dh          de 

 

 

{da, db}   dd, df}     dg  

 

 

             { , di, dc} 
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Fig. 4. A bi-partite digraph illustrating the structure of a single-way reasoning process. 

 

 

 
 

 

 

 

 

Fig. 5. A bi-partite digraph illustrating the structure of a confluence-tree  reasoning process. 

In this case, like before, the final conclusion is given by a 

conjunction of inductions. Moreover, the premises of 

inductions are also given as conjunctions of dilemmas. 

However, it may happen that some  pairs of premises are 

incomparable. Therefore, according to Definition 4, the 

relative uncertainty of final conclusion is in general given by 

the formula 

dk   
c
 min (d1,  d2,…, dk-1, d*1  d4, d*2  

                         d5, ... , d*k-1  dk)                                     (4) 

where d*1, d*2, ... , d*k-1 denote the composed premises of 

inductions. 

3.4. Reasoning schemes based on composed inductions. 

 

The above-considered reasoning scheme cannot easily be 

extended on the situations when the premises and/or 

conclusions take the form of sophisticated logical formulae 

consisting of several logical terms. The following Example 

illustrates the problem. 

Example 2. Let us take into consideration the following 

statement: “If somebody has studied computer science (d1) 

or mathematics (d2) and  logics (d3) then he is  familiar with 

backgrounds of graph theory (d4) and  propositional 

calculus (d5) or propositional calculus and the theory of 

finite automata (d6)”. More formally, it can be written as: 

     If [d1  (d2 d3)] then [(d4 d5)  (d5 d6)]             (5)                  

The problem consists in relative evaluation of the 

conclusions d5  and d6 in this type of dilemmatic induction. 

Taking into account that each  logical formula can  be 

presented in a disjunctive normal form (the form of 

disjunction of conjunctions of single statements or of their 

negations [3]), a composed logical formula like this given by 

(5) can be presented in the form of a disjunction of simple 

formulae: 

 [d1  (d4 d5)]  [d1  (d5 d6)]  [(d2 d3)  

            (d4 d5)]  [(d2 d3) (d5 d6)].                        (6)                                

For a graphical representation of this formula a tri-partite 

directed  graph  can  be used as shown in Fig. 6.  

Suppose, a  problem consists in evaluation of  the 

dilemma: 

d5 = [“N is familiar with propositional calculus” | 

          “N is not familiar  with   propositional   

          calculus”]  

d1  d2 d2  d3 dk -1  dk 

 d1 d2 d3 dk dk -1 

d1 d6 d5 d4 d3 d2 dk dk-1 

   ... dk-1 dk        d3 d4 d5     d1 d2 d4  
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Fig. 6. Graphical representation of a composed induction . 

 

as a conclusion  following from the  premises: 

d1 = [“N has studied computer sciences” | “N has not 

studied computer sciences”] 

or d2 d3 where: 

d2 = [“N has studied mathematics” | “N has not studied 
mathematics”], 

d3 = [“N has studied logics” | “N has not studied 
logics”], 

First, it should be proven whether  all the above-

mentioned dilemmas are correct; otherwise, the incorrect 

dilemmas should be replaced by their negations. Then, the 

following  paths in  the graph  in Fig. 6 should be taken into 

consideration: 

a) [d1]  [d1  (d4 d5)] [d4 d5]  [d5], 

b) [d1]  [d1  (d5 d6)] [d5 d6]  [d5], 

c) [d2 d3]  [(d2 d3) (d4 d5)]  [d4 d5]  [d5], 

d) [d2 d3]  [(d2 d3) (d5 d6)]  [d5 d6]  [d5]. 

(symbols  denote connections of the reasoning steps 

represented by arcs in the tri-partite graph). Reaching d5 is 

possible by at least one of the above-presented paths, 

therefore, its certainty level is given as maximum of 

certainties assigned to the paths. It also follows from the 

Definition 4 b, c, d  that the certainty levels of the final 

dilemma d5 can not be dominated by the certainty levels of 

the preceding conjunctions of dilemmas. Therefore, the 

solution of the problem is given formally by the following 

expression: 

 d5  
c
 max{min[d1, d1 (d4 d5)],        

           min[d1, d1 (d5 d6)],  

           min[(d2 d3), d2 d3) (d4 d5)],     

           min[(d2 d3), (d2 d3) (d5 d6)]}.                (7)    

 

A final result depends on the relationships established 

between 6 dilemmas d1, d1 (d4 d5), d1 (d5 d6), (d2 d3), 

(d2 d3) (d4 d5) and  (d2 d3) (d5 d6). The number of 

possibilities is quite enormous: it corresponds to the number 

of different Hasse diagrams consisting of at most 6 nodes 

labeled  by 6 elements  (some labels can be assigned  to the 

same  node). For example, 6 linearly ordered elements can 

be in  6! ways represented by linear  Hasse diagrams whose 

arcs correspond  to the   
c
 signs. Each of such sequences 

generates next Hasse diagrams if some of the   
c
 signs are 

replaced by the 
 c

 or ?
c
 signs, etc.  Let the following 

situation be assumed: 

[d1] 
c 

[d1 (d4 d5)] 
c
 [d1 (d5 d6)] 

c
 [(d2 d3)] 

 c
 

[(d2 d3) (d4 d5)] 
 c
 [(d2 d3) (d5 d6)]. 

Then, it can be found that: 

 d5  
c
 max{d1, d1, (d2  d3), (d2 d3)}  

c
 (d2 d3)   

A general reasoning scheme can be presented as a 

network consisting of  simple or composed premises and 

inductions. Like before, the structure of such scheme  can be 

presented by a tri-partite digraph whose nodes constitute 

three mutually disjoint subsets representing  inductions, their 

composite premises or conclusions and simple premises or 

conclusions. The network is correctly constructed if the 

following conditions are  satisfied:  

i. All its components are correct dilemmas; 

ii. Composite premises and conclusions are presented 

in  disjunctive canonical forms; 

iii. The corresponding  tri-partite digraph is compact 

and contour-free; 

iv. The subset of simple premises contains a non-empty 

sub-subset of  initial premises which all are the 

elements of composite premises or are  directly used 

as single premises of inductions; 

d6 

d1  (d4 d5) d1  (d5 d6) (d2 d3) (d4 d5) (d2 d3) (d5 d6) 

d2 d3 d4 d5 d5 d6 

 

d1 d2 d3 d4 d5 d6 
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v. The subset of simple premises contains a non-empty 

sub-subset of terminal premises which are not initial 

and are not used as components of premises of any 

inductions. 

For using a correctly designed scheme in logical  

reasoning the subsets of its initial premises and inductions 

should be  relatively evaluated  according to the Definitions 

2 and 3. Unlike other logical systems, relative logic  does not 

force an user to assign logical values to all premises, 

however, in the case of a lack of some relative assessment 

the final conclusions may be undefined, like it happens in 

natural thinking. At the next step, as it was illustrated above, 

for relative evaluation of a conclusion: 

I. There should be found in the network all alternative 

paths from the initial premises to the conclusion; 

II. There should be found the relative certainty levels of 

the paths as minima of the certainty levels of  their 

components; 

III. It should be found the global certainty level of the 

conclusion as a maximum of the certainty levels of 

the leading to it alternative paths. 

3.5. Remark about a solution method. 

Formula (7), consisting of a maximum of minima,  is 

typical for finding the most certain conclusion  in a reasoning 

network. In the case of a large number of terms that should 

be compared for finding a minimum and a large number of 

paths connecting the initial assumptions with final 

conclusions a solution of the problem may be a very large 

time consuming one. However, it can be simplified if taking 

into account that if d* is a minimal term found in a path by 

pair-wise comparison of its consecutive terms then no other 

path containing d* can contribute to reaching a higher 

maximum and all such paths can be removed from further 

considerations. This remark may lead to a significant 

reduction of the number of paths that should be analyzed in 

order to find a final solution of the problem.  

IV. CONCLUSIONS 

The dilemmatic logic is a modification of conventional 

relative logics; it consists in replacing the statements by 

dilemmas defined as pairs (A,  A) where A is a statement 

and  A is its logical negation. Dilemmas are logically 

evaluated by their correctness (or ambivalence) and relative 

certainty levels; in logical inference correct and ambivalent 

dilemmas only are used. Due to this, the problem of non-

admittance of rather false premises or inductions 

(represented by incorrect dilemmas) to be included into the 

reasoning process can be solved. The way of logical 

reasoning based on relative dilemmatic logic has been 

illustrated by examples. Relative approach makes the logical 

evaluation and reasoning free of using any numerical 

characteristics of statements (logical values in multi-valued 

logics, probabilities, membership values in fuzzy logics, 

etc.). In fact, it is easier in practice to relatively compare 

logical values of any  two statements then to assign to them 

rationally founded membership values or  probabilities. 

Graph representation of the reasoning processes makes them 

easy for a direct, manual analysis in simpler cases (say, up to 

few dozens of nodes). However, due to easily accessible 

effective programs of computer operations on graphs (e.g., 

detection of contours, paths, minimal and maximal nodes, 

etc., [16, 17]) a computer implementation of relative 

reasoning  methods in more complicated cases seems to be 

not a serious computational problem. In particular, an 

important problem of analysis of the influence of relative 

certainty assessment of premises and inductions on the 

certainty level of conclusions can be effectively used on the 

basis of typical graph theory methods and algorithms.  
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