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Abstract—We present a parameter free and monotonic alternative

to the parametric variable precision model of rough set data

analysis, based on the well known PRE index λ of Goodman

and Kruskal. Using weighted (parametric) λ models we show how

expert knowledge can be integrated without losing the monotonic

property of the index. Based on a weighted λ index we present

a polynomial algorithm to determine an approximately optimal

set of predicting attributes. Finally, we exhibit a connection to

Bayesian analysis.

I. INTRODUCTION

Rough set data analysis (RSDA) was introduced by Z. Pawlak

in the early 1980s and have since become an established tool

in information analysis and decision making. Lack of space

allows us only to define some of the concepts we require, and

we invite the reader to consult [1] for details.

A decision system in the sense of rough sets is a tuple

〈U,Ω, (Da)a∈Ω, (fa)a∈Ω, d,Dd, fd〉, where

• U,Ω, Da, Dd are nonempty finite sets. U is the set of

objects, Ω is the set of (independent) attributes, and Da

is the domain of attribute a. The decision attribute is d,

and Dd is its domain.

• For each a ∈ Ω, fa : U → Da is a mapping; furthermore

fd : U → Dd is a mapping, called the decision function.

Since all sets under consideration are finite, an information

system can be visualized as a matrix where the columns are

labeled by the attributes and the rows correspond to feature

vectors. An example from [2] is shown in Table I.

There, U = {1, . . . , 21} and Ω = {a, b, c}. Each nonempty

set Q of attributes leads to an equivalence relation ≡Q on U

in the following way: For all x, y ∈ U ,

x ≡Q y ⇐⇒ (∀a ∈ Q)[fa(x) = fa(y)]. (I.1)
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TABLE I

A DECISION SYSTEM FROM [2]

U a b c d U a b c d

1 1 0 0 1 12 0 1 1 1

2 1 0 0 1 13 0 1 1 2

3 1 1 1 1 14 1 1 0 2

4 0 1 1 1 15 1 1 0 2

5 0 1 I 1 16 1 1 0 2

6 0 1 1 1 17 1 1 0 2

7 0 1 1 1 18 1 1 0 3

8 0 1 1 1 19 1 0 0 3

9 0 1 1 1 20 1 0 0 3

10 0 1 1 1 21 1 0 0 3

11 0 1 1 1

The tenet of rough sets is that, given a set Q of attributes, the

elements of the universe U can only be distinguished up to

the classes of ≡Q. A similar assumption holds for the decision

classes of θd. To continue the example of Table I, the classes

of θΩ are

X1 = {1, 2, 19, 20, 21}, X2 = {3}, (I.2)

X3 = {4, . . . , 13}, X4 = {14, . . . , 18},

and the decision classes are

Y1 = {1, . . . , 12}, Y2 = {13, . . . , 17}, Y3 = {18, . . . , 21}.

A class X of θQ is called deterministic (with respect to d) if

there is a class Y of θd such that X ⊆ Y . In this case, all

members of X have the same decision value. The set of all

deterministic classes is denoted by Pos(Q, d).

The basic statistic used in RSDA is as follows:

γ(Q, d) =
|
⋃

Pos(Q, d)|

|U |
. (I.3)

γ(Q, d) is called the approximation quality of Q with respect

to d. If γ(Q, d) = 1, then each element of U can be correctly

classified with the granularity given by Q. In the example, the

only deterministic class is {3}, and thus, γ(Ω, d) = 1
21 .
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One problem of decision making using γ is the assumption

of error free measurements, i.e. that the attribute functions fa
are exact, and even one error may reduce the approximation

quality dramatically [3]. Therefore, it would be advantageous

to have a mechanism which allows some errors in order to

result in a more stable prediction success. Such mechanism

should be in the parameter – free spirit of the rough set model.

In the sequel we exclude trivial cases and suppose that θQ and

θd have more than one class.

II. THE VARIABLE PRECISION MODEL

A well established model which is less strict in terms of

classification errors is the variable precision rough set model

(VP – model) [2] with the following basic constructions: Let

U be a finite universe, X,Y ⊆ U , and first define

c(X,Y ) =

{

1− |X∩Y |
|X| , if |X| 6= 0,

0, if |X| = 0.

Clearly, c(X,Y ) = 0 if and only if X = 0 or X ⊆ Y , and

c(X,Y ) = 1 if and only if X 6= ∅ and X ∩ Y = ∅. The

majority requirement of the VP – model implies that more

than 50% of the elements X should be in Y ; this can be

specified by an additional parameter β which is interpreted

as an admissible classification error, where 0 ≤ β < 0.5.

The majority inclusion relation
β

⊆ (with respect to β) is now

defined as

X
β

⊆ Y ⇐⇒ c(X,Y ) ≤ β. (II.1)

Given a family of nonempty subsets X = {X1, ..., Xk} of U

and Y ⊆ U , the lower approximation Y β of Y given X and

β is defined as the union of all those Xi, which are in relation

Xi

β

⊆ Y , in other words,

Y β =
⋃

{X ∈ X : c(X,Y ) ≤ β} (II.2)

The classical approximation quality γ(Q, d) is now replaced

by a three-parametric version which includes the external

parameter β, namely,

γ(Q, d, β) =
|Pos(Q, d, β)|

|U |
, (II.3)

where Pos(Q, d, β) is the union of those equivalence classes

X of θQ for which X
β

⊆ Y for some decision class Y . Note

that γ(Q, d, 0) = γ(Q, d). Continuing the example from the

original paper ( [2], p. 55), we obtain

γ(Ω, d, 0) =
|X2|

|U |
= 1/21

γ(Ω, d, 0.1) =
|X2 ∪X3|

|U |
= 11/21

γ(Ω, d, 0.2) =
|X2 ∪X3 ∪X4|

|U |
= 16/21

γ(Ω, d, 0.4) =
|X2 ∪X3 ∪X4 ∪X1|

|U |
= 21/21

Although the approach shows some nice properties, we think

that care must be taken in at least three situations:

1) If we have a closer look at γ(Ω, d, 0.1), we observe

that, according to the table, object 13 is classified as

being in class in Y2, but with β = 0.1 it is assigned to

the lower bound of Y1. Intuitively, this assignment can

be supported when the classification of the dependent

attribute is assumed to be erroneous, and therefore, the

observation is “moved” to a more plausible equivalence

class due to approximation of the predicting variables.

However, this may be problematic: Assume the decision

classes arise from a medical diagnosis - why should

an automatic device overrule the given diagnosis? Fur-

thermore, the class changes are dependent on the actual

predicting attributes in use, which is problematic as well.

This is evident if we assume for a moment that we want

to predict d with only one class X = U . If we set

β = 9
21 < 0.5, we observe that U

9
21

⊆ Y1, resulting in

γ({U}, d, 9
21 ) = 1.

2) Classical reduct search is based on the monotone relation

P ⊆ Q implies γ(P, d) ≤ γ(Q, d).

Unfortunately, the generalized γ(Q, d, β) is not neces-

sarily monotone [4]. As a counterexample, consider the

information system shown in Table II which adds an

additional independent attribute e to the system of Table

I. Setting P = {a, b, c} and Q = {a, b, c, e}, we observe

TABLE II

AN ENHANCED DECISION SYSTEM

U a b c e d U a b c e d

1 1 0 0 0 1 12 0 1 1 1 1

2 1 0 0 0 1 13 0 1 1 1 2

3 1 1 1 0 1 14 1 1 0 0 2

4 0 1 1 0 1 15 1 1 0 0 2

5 0 1 1 0 1 16 1 1 0 0 2

6 0 1 1 0 1 17 1 1 0 0 2

7 0 1 1 0 1 18 1 1 0 0 3

8 0 1 1 0 1 19 1 0 0 0 3

9 0 1 1 1 1 20 1 0 0 0 3

10 0 1 1 1 1 21 1 0 0 0 3

11 0 1 1 1 1
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that Q generates five classes for prediction. The three

classes X1, X2, and X4 are identical to those of the

first example – given in (I.2) –, here given by P , but Q

splits the class X3 into the new classes X3,0 = {4...8}

and X3,1 = {9...13}. We now have

γ(Q, d, 0.1) =
|X2 ∪X3,0|

|U |
=

6

21
< γ(P, d, 0.1) =

11

21
.

The reason for this behavior is that c(X3,1, Y ) > 0.1.

3) A third – perhaps minor – problem is the choice of |U | as

the denominator in γ(Q, d, β). Using |U | makes sense,

when a no-knowledge-model cannot predict anything of

d, and therefore any prediction success of Ω can be

attributed to the predicting variables in Ω. But, as we

have shown in the current section, there are situations

in which a simple guessing model serves as a “perfect”

model in terms of approximation quality.

III. CONTINGENCY TABLES AND INFORMATION SYSTEMS

In this and the following sections we describe a formal

connection of statistical and rough set data analysis. First of

all, we need data structures which can be used for both types of

analysis. It is helpful to observe that rough set data analysis

is concept free because of its nominal scale assumption; in

other words, only cardinalities of classes and intersection of

classes are recorded. As Q ⊆ Ω and d induce partitions on

U , say, X with classes Xj , 1 ≤ j ≤ J , respectively, Y

with classes Yi, 1 ≤ i ≤ I , it is straightforward to cross–

classify the classes and list the cardinalities of the intersections

Yi ∩Xj in a contingency table‘(see also [5]). As an example,

the information system of Table I is depicted as a contingency

array in Table III.

TABLE III

CONTINGENCY TABLE OF THE DECISION SYSTEM OF TABLE I

X1 X2 X3 X4 ni•

Y1 2 1 9 0 12

Y2 0 0 1 4 5

Y3 3 0 0 1 4

n•j 5 1 10 5 21

The actual frequency of the occurrence, i.e. the cardinality of

Yi ∩Xj , is denoted by nij and the row and column sums by

ni• and n•j respectively. The maximum of each column is

shown in bold.

If a column Xj consists of only one non-zero entry, the

corresponding set Xj is a deterministic class, and, in terms of

classical rough set analysis, any column Xj which has at least

two non-zero entries is not deterministic. The approximation

quality γ(Q, d) can now easily be derived by adding the

frequencies nij in the columns with exactly one non-zero

entry and dividing the sum by |U |. To conform with statistical

notation, we will frequently speak of the classes of θQ as

categories of the variable X and of the classes of θd as

categories of the variable Y .

IV. PRE MEASURES AND THE GOODMAN-KRUSKAL λ

Statistical measures of prediction success – such as R2 in

multiple regression or η2 in the analysis of variance – are often

based on the comparison of the prediction success of a chosen

model with the success of a simple zero model. In categorical

data analysis the idea behind the Proportional Reduction of

Errors (PRE) approach is to count the number of errors, i.e.

events which should not be observed in terms of an assumed

theory, and to compare the result with an “expected number

of errors” , given a zero (“baseline”) model [3], [6], [7]. If the

number of expected errors is not zero, then

PRE = 1−
number of observed errors

number of expected errors

More formally, starting with a measure of error ǫ0, the relative

success of the model is defined by its proportional reduction

of error in comparison to the baseline model,

PRE = 1−
ǫ1
ǫ0
.

A very simple strategy in the analysis of categorical data is

betting on the highest frequency; this strategy is normally used

as the zero model benchmark (“baseline accuracy”) in machine

learning.

A simple modification which fits the contingency table was

proposed by Goodman and Kruskal in the 1950s [8]. When no

other information is given, it is reasonable to guess a decision

category with highest frequency (such as Y1 in Table III). If

the categories of X and the distribution of Y in each Xj are

known, it makes sense to guess within each Xj some Yi which

shows the highest frequency. The PRE of knowing X instead

of guessing is given by

λ = 1−
n−

∑J
j=1 maxIi=1 nij

n−maxIi=1 ni•
. (IV.1)

Here, n = |U |. Note that n−maxIi=1 ni• 6= 0, since we have

assumed that θd has at least two classes. For our example we

obtain

λ = 1−
21− (3 + 1 + 9 + 4)

21− 12
= 1−

5

9
= 0.444

We conclude that knowing X reduces the error of the pure

guessing procedure by 44.4% in comparison to the baseline

accuracy.
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The λ-index is one of the most effective methods in ID3 [9],

and a slightly modified approach in [10] – known as the 1R

learning procedure – was shown to be a quite effective tool as

well [11].

V. WEIGHTED λ

If we compare the set of classes C(β) of θQ used to determine

Pos(Q, d, β) in the VP-model, and the set of classes C used

in the computation of λ , we observe that C(β) ⊆ C for any

value of 0 ≤ β < 0.5. The proof is simple: For every j more

than 50% of the observations must be collected in one nij , and

so these frequencies are the maximal frequency in column j.

The connection of λ and the approximation quality γ is

straightforward: Whereas λ counts a maximum per column

j, γ counts this maximum only if nij = n•j , i.e if exactly

one entry in column j is nonzero. We observe that |U | is a

suitable denominator for γ, since by our assumption θd has

more than one class. In this situation, ni• 6= |U | for any class

Yi, and therefore all observations have to be considered as

“error”.

As γ is a special case by filtering maximal categories by an

additional condition, we define a weighted λ by

λ(w) = 1−
n−

∑J
j=1(maxIi=1 nij) · w(j)

n− (maxIi=1 ni•) · w(U)
. (V.1)

where w : {1, . . . , J} ∪ {U} → [0, 1] is a function weighting

the maxima of the columns of the contingency table. In the

cases we consider w will be an indicator taking its values from

{0, 1}.

Now we set

Xj ⊆w Yi ⇐⇒ nij = maxIk=1 nkj and w(j) > 0,

and define the lower approximation of Yi by X with respect

to w by

Loww(X , Yi) = Yi ∩
⋃

{Xj : Xj ⊆w Yi}.

Observe that Loww(Yi) ⊆ Yi unlike in the lower approxi-

mation of the VP – model. For the upper approximation we

choose the “classical” definition

Upp(X , Yi) =
⋃

{Xj : Xj ∩ Yi 6= ∅}.

The w-boundary now is the set

Bndw(X , Yi) = Upp(X , Yi) \ Loww(X , Yi).

Unlike in the VP – model, elements of non–deterministic

classes are not re–classified with respect to the decision

attribute but are left in the boundary region.

We can now specify the error of the lower bound classification

by

Errw(X , Yi) =
⋃

{Xj \ Yi : Xj ⊆w Yi}.

Various other indices may be defined: Let X be the partition

associated with θQ and Yi be a decision class. In a slight

different meaning to machine learning, we will use the terms

(Rough-)sensitivity and (Rough-)specificity for the results of

our analysis:

1) The Rough-sensitivity of X with respect to Yi (ratio of

conditional positive to mutual positive results)

αw(X , Yi) =
|Loww(Yi)|

|Upp(Yi)|
,

2) The Rough-specificity of X with respect to Yi (ratio of

classified errors to mutual errors)

ζw(X , Yi) =
|Errw(Yi)|

|Bndw(Yi)|

If Y is the partition induced by the decision attribute, we

consider

1) The Rough-sensitivity of the partition X with respect to

the partition Y

γw(X ,Y) =

∑

Yi∈Y |Loww(X , Yi)|

|U |

2) The Rough-specificity of the partition X with respect to

the partition Y

ζw(X ,Y) =

∑

Yi∈Y |Errw(X , Yi)|
∑

Yi∈Y |Bndw(X , Yi)|

If X and Y are understood, we will just write γw and ζw. The

Rough-sensitivity tells us about the approximation of the set

or partition, whereas the Rough-specificity is an index which

expresses the relative error of the classification procedure.

Both indices are bounded by 0 and 1, and there is a partial

monotone relationship: The higher the Rough-specificity the

higher the Rough-sensitivity.
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VI. SOME WEIGHTING SCHEMES

The Rough-sensitivity index γw captures the rough set approx-

imation quality γ in case w is defined as

w(j) =

{

1, if n•j = maxIi=1 nij

0, otherwise,

and w(U) = 0.

If we assume that errors are proportional to the number of

entries in the contingency table – but independent of the joint

distribution – it makes sense to count the absolute error cj =

n•j −maxIi=1 nij for every column j and compare it to some

cutpoint C. This leads to the following definition:

wC
eq(j) =

{

1, if n•j −maxIi=1 nij ≤ C,

0, otherwise

and

wC
eq(U) =

{

1, if n−maxIi=1 ni• ≤ C,

0, otherwise.

respectively.

It is easy to see that λeq = γ if C = 0, and λeq = λ if

C = ∞, i.e. if λeq ≡ 1. Furthermore, if C ≤ maxJj=1(n•j −

maxIi=1 nij), then the denominator of λ(weq) is |U |.

In classical rough set theory, adding an independent attribute

while keeping the same decision attribute will not decrease

the approximation quality γ. The same holds for γweq
:

Proposition VI.1. Let Qa = Q∪{a} and Xa be its associated

partition. Then, γC
weq

(X ,Y) ≤ γC
weq

(Xa,Y).

Proof: We assume w.l.o.g. that a takes only the two values
0, 1 (see e.g. [12] for the binarization of attributes). Let Z0, Z1

be the classes of θa. The classes of θQa
are the non–empty

elements of {Xi ∩ Z0 : 1 ≤ 1 ≤ I} ∪ {Xi ∩ Z1 : 1 ≤
1 ≤ I}. Each nij is split into n0

ij = |Xi ∩ Yj ∩ Z0| and

n1
ij = |Xi ∩ Yj ∩Z1| with respective columns j0 and j1, and

sums n0
•j and n1

•j . Then, n0
ij + n1

ij = nij , n0
•j + n1

•j = n•j ,

and maxIi=1 n
0
ij + maxIi=1 n

1
ij ≥ maxIi=1 nij by the triangle

inequality. Thus, if n•j −maxIi=1 nij ≤ C, then

n
0

•j −maxI
i=1 n

0

ij ≤ n
0

•j −maxI
i=1 n

0

ij + n
1

•j −maxI
i=1 n

1

ij

= n
0

•j + n
1

•j − (maxI
i=1 n

0

ij +maxI
i=1 n

1

ij)

= n•j − (maxI
i=1 n

0

ij +maxI
i=1 n

1

ij)

≤ n•j −maxI
i=1 nij

≤ C.

Similarly, n1
•j −maxIi=1 n

1
ij ≤ C. Therefore, if weq(j) = 1,

then weq(j0) = weq(j1) = 1.

Again by the triangle inequality, the sum of errors in the two

j0 and j1 columns is no more than the error in the original

column j. As the overall error is simply the sum of the errors

per column, the proof is complete.

Note that ζ need not be monotonically increasing if an error

class changes to a deterministic class when adding a new

independent attribute. To prevent such behavior one may

require that any deterministic class has to consist of more than

C elements. Hence, using

w̃C
eq(j) =















1, if n•j −maxIi=1 nij ≤ C

and maxIi=1 nij > C,

0, otherwise

is a weighting function for which ζ is monotone when classes

are split. It is straightforward to show that γ is monotone as

well when using w̃ as the weight function.

VII. USING ADDITIONAL EXPERT KNOWLEDGE

Weights given by experts or a priori probabilities of the

outcomes Yi (1 ≤ i ≤ I) are one of the simplest assumptions

of additional knowledge which can be applied to a given

situation: We let πi (1 ≤ i ≤ I) be weights of the outcomes

and w.l.o.g. we assume that
∑

i πi = 1. Now, we obtain a

weighted contingency table simply by defining n∗
ij = nij · πi

and use n∗
ij instead of nij of the original table.

TABLE IV

WEIGHTED CONTINGENCY TABLE OF THE DECISION SYSTEM OF TABLE I

USING π = 〈0.5, 0.3, 0.2〉

X1 X2 X3 X4 n∗

i•

Y1 1 0.5 4.5 0 6

Y2 0 0 0.3 1.2 1.5

Y3 0.6 0 0 0.2 0.8

n∗

•j 1.6 .5 4.8 1.4 8.3

Using Table IV and applying the bounds E = 0, 0.2, 0.3, 0.6

to compute wE
eq(j), we observe the approximation qualities

shown in Table V. We see that λ increases here as well

TABLE V

λ GIVEN VARIOUS BOUNDS

E Formula (IV.1) Weighted λ

0.0 1− 8.3−0.5
8.3

0.060

0.2 1− 8.3−0.5−1.2
8.3

0.250

0.3 1− 8.3−0.5−1.2−4.5
8.3

0.747

0.6 1− 8.3−0.5−1.2−4.5−1

8.3
0.867

as in case of the unweighted λ, but if we consider the

weighted λ, the approximation qualities differ from those in

the unweighted case. Furthermore, even the (approximate)

deterministic class may change, if the weights differ largely:
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Note, that in case E = 0.6 we choose class X1 as the (ap-

proximate) deterministic class, whereas X3 would be chosen,

if we use equal (or no) weights.

The algorithm given below and the monotonicity of λ given

a split (or using an additional attribute) stay valid in case

of introducing weights for the decision category as in the

unweighted case. This holds because we have changed the

entries of the table only – the structure of the table remains

unchanged.

VIII. A SIMPLE DECISION TREE ALGORITHM BASED ON

ROUGH SETS

In order to find an algorithm for optimization, not only the

Rough-sensitivity but also the Rough-specificity must be taken

into account, and we have to find a function which reflects the

status of the partitions in a suitable way. Numerical experi-

ments show that neither the difference γw − ζw nor the odds
γw

ζw
are appropriate for the evaluation of the partitions. The

reason for this seems to be that the amount of deterministic

classification, which is a function of |U | · γw, as well as

the amount of the probabilistic part of ζw are not taken into

account.

Therefore we define an objective function based on entropy

measures, which computes the fitness of the partition X on

the basis of the difference of the coding complexity of the

approximate deterministic and indeterministic classes, which

is an instance of a mutual entropy [13]:

O(Y|X ) = −γw ln(|U | ·γw)+ζw ln(
∑

Yi∈Y

|Bndw(X , Yi)| ·ζw)

The algorithm proceeds as follows:

1) Set a cutpoint C for the algorithm.

2) Start with Q = ∅.

3) Add any attribute from Ω \Q to Q. Compute O for the

chosen cutpoint C

4) Choose a new attribute which shows the maximum in

O.

5) If the new maximum is less than or equal to the

maximum of the preceding step, then stop.

Otherwise add the new attribute to Q and proceed with

step 2.

The time complexity of the algorithm is bounded by O(J2)

and it will find a partition X which shows a good approxima-

tion of Y with an error less than C.

Applying the algorithm to the decision system given in Table

I and using C = 1 (we allow 1 error per column), results in

the following steps:

Step 1 C = 1

Step 2.0 Q = ∅

Step 3.0.a Test attribute a

X1 (a=0) X2(a = 1)

Y1 9 3

Y2 1 4

Y3 0 4

n•j 10 11

O 0.942

Step 3.0.b Test attribute b

X1 (b=0) X2(b = 1)

Y1 2 10

Y2 0 5

Y3 3 1

n•j 6 16

O 0.000

Step 3.0.c Test attribute c

X1 (b=0) X2(b = 1)

Y1 2 10

Y2 4 1

Y3 4 0

n•j 10 11

O 1.096

Step 4.0 Choose attribute c, since it is maximal

in terms of O.

Step 5.0 Iterate step 2.1

Step 2.1 Q = {c}.

Step 3.1.a Test attribute a.

X1 X2 X3

(c = 0, a = 1) (c = 1, a = 0) (c = 1, a = 1)

Y1 2 9 1

Y2 4 1 0

Y3 4 0 0

n•j 10 10 1

O 1.096

Step 3.1.b Test attribute b

X1 X2 X3

(c = 0, b = 0) (c = 0, b = 1) (c = 1, b = 1)

Y1 2 0 10

Y2 0 4 1

Y3 3 1 0

n•j 5 5 11

O 1.561
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Step 4.1 Choose attribute b, since it is maximal

in terms of O.

Step 5.2 Iterate step 2.2

Step 2.2 Q = {b, c}.

Step 3.2.a Test attribute a.

X1 X2 X3 X4

Y1 2 1 9 0

Y2 0 0 1 4

Y3 3 0 0 1

n•j 5 1 10 5

O 1.561

Step 4.2 Stop, because O does not increase.

The attributes.Q = {b, c} show the best behaviour in terms of

O.

IX. BAYESIAN CONSIDERATIONS

As we introduced weights for the decision attribute, and

since the weights may be interpreted as prior probabilities,

it is worthwhile to find a connection to Bayesian posterior

probabilities1 . Choose some cutpoint C; we shall define a

two dimensional strength function sC(i, j) (1 ≤ i ≤ I, 1 ≤

j ≤ J), which reflects the knowledge given in column Xi to

predict the category Yj . As we use approximate deterministic

classes as basis of our knowledge, the strength function is

dependent on C as well.

First consider the case that the column Xj satisfies the

condition

n•j −maxIi=1 nij ≤ C. (IX.1)

In that case there is one class with frequency maxIi=1 nij

which is interpreted as the approximate deterministic class; all

other frequencies are assumed as error. In this case we define

sC(i, j) :=
n(i,j)

n
. This is simply the joint relative frequency

p(i, j) of the occurrence of Y = Yi and X = Xj . If the

column Xj does not fulfill condition (IX.1), we conclude that

Xj cannot be used for approximation.

In this case no entry of column Xj contains (approximate)

rough information about the decision attribute. Therefore we

define sC(i, j) := 0 for 1 ≤ i ≤ I .

Now we define a conditional strength sC(X = Xj |Y = Yi):

If there is a least one 1 ≤ j ≤ J with sC(i, j) > 0, then there

1For other views of Bayes’ Theorem and its connection to rough sets see

e.g. [14–16].

is at least one (approximate) deterministic class Xj , which

predicts Yi. In this case we set

sC(X = Xj |Y = Yi) =
sC(i, j)

∑I
k=1 sC(k, j)

. (IX.2)

Obviously, sC(X = Xj |Y = Yi) reflects the relative strength

of a rule predicting Y = Yi.

If there is no (approximate) deterministic attribute X = Xj ,

which predicts Y = Yi, the fraction sC(X = Xj |Y = Yi) of

(IX.2) is undefined, since its denominator is 0. In this case – as

we do not know the result –, we use sC(X = Xj |Y = Yi) = 0

as the lower bound, and sC(X = j|Y = Yi) = 1 as the upper

bound.

Now we are able to define lower and upper posterior strength

values by setting

sC(Y = Yi|X = Xj) =
sC(X = Xj |Y = Yi)πi

∑

r sC(X = Xj |Y = Yr)πr

and

sC(Y = Yi|X = Xj) =
sC(X = Xj |Y = Yi)πi

∑

r sC(X = Xj |Y = Yr)πr

If C ≥ n, i.e. if the cutpoint is not less than the number of

objects, then (IX.1) is true for every Xj , and we observe that

sC(Y = Yi|X = Xj) =
n(i,j)

n
= p(i, j) for any i, j. Hence,

sn(Y = Yi|X = Xj) = sn(Y = Yi|X = Xj)

= p(Y = Yi|X = Xj)

and we result in the ordinary posterior probability of Y =

Yi given X = Xj . Note, that although sC ≥ sC holds, the

probability estimators p(Y = Yi|X = Xj) may be greater than

sC or smaller than sC . This is due the fact that the strength

tables for different cutpoints C may looks quite different.

X. SUMMARY AND OUTLOOK

Whereas the variable precision model uses a parameter β to

relax the strict inclusion requirement of the classical rough set

model and to compute an approximation quality, a parameter

free λ model based on proportional reduction of errors can be

adapted to the rough set approach to data analysis. This index

has the additional property that it is monotone in terms of

attributes, i.e. if our knowledge of the world increases, so does

the approximation quality. Weighted λ measures can be used

to include expert or other context knowledge into the model,

and an algorithm was given which approximates optimal sets

of independent attributes and that is polynomial in the number

of attributes. In the final section we showed how to explain

Bayesian reasoning into this model. In future work we shall

compare our algorithm with other machine learning procedures

and extend our approach to unsupervised learning.
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Furthermore, we would like to point out that the approach can

be characterized as a task to ”generate deterministic structures

which allow C errors within a substructure”, and that this

approach can be generalized for other structures as well. For

example, finding deterministic orders of objects may be quite

unsatisfactory, because given a linear order and adding one

error could result in a much larger deterministic structure.

As an example note that the data table

Case number a b c d e

1 1 0 0 0 0

2 1 1 0 0 0

3 1 1 1 0 0

4 1 1 1 1 0

5 1 1 1 1 1

produces a linear order as a concept lattice [17]. Now consider

the following table with one erroneous observation:

Case number a b c d e

1 1 0 0 0 0

2 1 1 0 0 0

3 1 1 1 0 0

4 1 1 1 1 0

5 0 1 1 1 1

This data structure results in a concept lattice consisting of

|U | − 2 more nodes than the simple order structure. Hence,

leaving out some erroneous observation may lead to a smaller,

stronger and mutually more stable structure. We will investi-

gate this in future work.
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