
Formal specification to support advanced model
based testing

Karel Frajták, Miroslav Bureš, Ivan Jelínek
Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University in Prague

Karlovo náměstí 13, 121 35 Praha 2, Czech Republic

Email: {frajtak, buresm3, jelinek}@fel.cvut.cz

Abstract—Reliability and correctness of a web application
are crucial factors to its success. Errors occurring in non-
deterministic moments do not attract the target audience of
the application. It is quite impossible to deliver 100% reliable
application. Hidden errors are discovered when target users are

using the application. With proper tooling and support the time
between the error discovery or report and the error elimination
can be reduced. In this paper we are proposing formal model
for a model based improvement of a testing process of the web
application. Our goal is to create a formal model and design
a testing framework based on the direct guidance of a tester
through the testing process, verifying his steps and providing
better feedback.

Index Terms—test automation, test case scenario generation,
guidance application.

I. INTRODUCTION

In a software development life-cycle a software testing

phase is the most important phase. In this phase most errors

are discovered and fixed. Different types of software testing

techniques can be chosen to be used in the testing phase. For

example unit tests are executed automatically and repeatedly

to discover the errors made in development phase when a new

feature was introduced. Only single subsystem or individual

module is tested using unit testing approach. The more sub-

systems are involved in unit testing, the more complicated the

test set up and the initialization phase are—the subsystems

that are not directly under test must be mocked or proxies

have to be created to simulate their functionality.

Logical next step is integration testing approach where

individual modules are combined and tested as a group. As

testing becomes more complex, a different approach must be

taken. The steps in integration tests are described in test case

scenarios. For every step in the test case scenario a action that

have to be taken and set of the input values to be supplied is

defined.

Test case scenarios created manually by test coordinators

are usually given to testers. Testers have to follow the steps

specified in these test scenarios and testewr reports back

the result of the testing process. The main problem is the

quality of provided feedback, untrustworthy tester can report

no problems at all.

An architecture of our proposed system was presented in [3].

The proposed system guides the tester through every single

step of test scenario. Every input value and every action taken

by the tester is verified. One of the important parts of the

proposed system is the test scenario dispatcher. It watches the

entire system under test (SUT) and serves the scenarios to the

tester based on various criteria—for example it dispatches the

scenarios for testing of mission critical subsystems first, or do

not dispatch tests for subsystems currently not available.

In our proposal we will focus on a model based improve-

ment of a testing process of the web application. It will

be achieved by eliminating the unnecessary paperwork by

introducing the formal automatic test case specification. Our

application for tester’s guidance proposed in our previous

paper [3] will help tester through the testing process. The

guidance application that will be designed, is based on the

proposed formal model.

II. RELATED WORK

In [1] web application is described as a set of web page

schemas. User interaction with the web page schema is de-

scribed by input and action schemas. On a single page repre-

sented by a web page schema user input is captured in a input

schema. Then the user executes one of the actions available in

the action schema. The resulting sequence of events is verified

after. We have adapted the definition of the web application

published in [1] to suit our needs. We need to capture business

properties, resp. technical properties not directly related to the

problem domain and we call them business, resp. technical

(non-model) metadata. Maximal throughput of given segment

of the web application is an example of a technical metadata.

Metadata will be used in a test case generation and during the

test case scenario dispatching.

It is not possible for humans to verify every web page

schema and every possible combination of input values and

actions taken. Testing of the system based on its model, so

called model-based testing, is the key approach here [2, 4, 5].

We will generate these tests automatically. Model of the web

application is input to the test case scenario generator.

The application can be modelled using UML [6] notation.

In [5] test case scenarios are generated using UML activity

diagrams. These diagrams are used to express all possible

controls flows in defined uses cases. Many aspects of the web

application can be expressed in UML diagrams, but there are

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1311–1314

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 1311

some limitations. For example the relationship between web

pages, their input and action elements. WebML [7], an UML–

like graphical notation, allows the architect to describe these

features.

For the design of the solution a methodology called Test by

Contract [8] can be used. It defines test contracts extending the

definition of the component contracts concept [4] to the test

domain. A component contracts specify how to use the com-

ponent interfaces correctly to access component functionality.

The component contracts capture the mutual responsibilities

that both partners of a component (i.e. service contractor

and client) must comply with, independent of how they are

implemented. Any violation of these contracts indicates a

potential fault.

The test contracts are designed and constructed based

on the well-developed component contracts (e.g. interface

contracts, element contracts, etc.), and are used in various

testing approached (unit testing, integration testing, etc.). Their

implementation using the form of aspects (precondition, post

condition and invariant) results in designing component test

cases based on contracts - contract-based component test.

Operations for testing of the system components are going

to be essential part of the system and they will allow dynamic

system testing

III. FORMAL MODEL

System under test, a web application, is based on the

following formal model. We have adapted the formal definition

of the web application published in [1]. We have extended this

definition with definition of finite sets of metadata (technical

and business) values.

Definition 1: A web application A is a tuple

〈W,S, I, A,W0,Wε,M, T 〉, where:

• S, I, A are disjoint finite sets of state, input, and action

values. Constant values can be shared among these sets.

• W is finite set of the representations of web pages,

• W0 ∈ W is the representation of home page, Wε /∈ W
is the the representation of error page,

• M is a set of business metadata values,

• T is a set of technical (non-model) metadata values

In the testing process tester has to pass through all the

test case scenario steps defined in selected test case scenario.

A specification of an interaction of the tester with system

under test is defined in each of test case scenario step.

Instructions describing the test case scenario step are defined

clearly without ambiguities. For brevity we will limit the user

interaction with the SUT to only one action that is captured

in the test scenario step.

Definition 2: Test case scenario is finite sequence

{〈Vi, Si, Ii, Ai, Ri, TDi〉}i≥0 where Vi is a web page page

representation used in step i, Si ⊂ S is set of state values

used in step i, Ii ⊂ I is set of values of input elements used

in step i, Ai ∈ A is an action taken in step i, Ri is set of

restricting constraints rules, TDi ⊂ Si ∪ Ii ∪M ∪ T is finite

set of state, input, business and technical metadata values

Fig. 1. Locations of constraint evaluation

used in step i. 〈Vi, Si, Ii, Ai, Ri, TDi〉 is called configuration

of test case scenario step.

The tester will be therefore instructed what to do, where to

do it, how the data will be shaped and under what conditions

it will be done. One step in test case scenario is described by:

• web page that uniquely identifies the “location” of user

interaction (where)

• action to be taken (what to execute)

• constraint rules (under what conditions)

• step data (domain entities, domain metadata, technical

metadata) that will be used to evaluate constraint rules

(shape of data)

If any constraint is violated, the user has option to fix the

problem—user can enter the right input values or can abort the

test case scenario and create an error report and provide useful

feedback. If an unexpected error occurs in the application

(this often indicates a problem inside the system) the test

case scenario is automatically aborted. Discovered problem is

reported back to the developers with the context of the SUT

containing all data necessary to reproduce the error and fix it.

Tester can provide additional feedback before the error report

is submitted.

In standard client-server web application client requests a

page, the server receives the request, executes corresponding

code and sends back response. This response consists only

of data—HTML, images or data. We try to capture the user

interaction with the SUT in test case scenario step. The user

interaction with SUT is bounded by client request and server

response, either synchronous or asynchronous.

The constraint rules can be therefore divided into two sepa-

rate groups: inbound constraint rules and outbound constraint

rules. See Figure 1 for a schema describing the location of

invocation of constraint evaluation.

The inbound client-side constraint rules are rules vali-

dating the user input before it is sent to the server side

and a violation of such rule can be signalled immediately

to the user and no request is raised—a server round trip

is saved. The client-side inbound constraint rules are val-

idating elements from Ii. In a similar way, the inbound

server-side constraint rules are the rules validating user

input, server-side state, any metadata and database right

before the server action is executed. The inbound client-

side constraint rules can be implemented using client-side

1312 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

scripting language running in the browser, for example

JavaScript.

Definition 3: Inbound client-side constraint rule is a func-

tion φin : I → {0, 1}.

Definition 4: Inbound server-side constraint rule is a func-

tion Φin : S ∪ I ∪M ∪ T → {0, 1}.

The outbound server-side constraint rules are the rules

validating the state on the server side, any metadata and

database right after the server action is executed and before

the data is sent back to client.

Definition 5: Outbound server-side constraint rule is a func-

tion Φout : S ∪ I ∪M ∪ T → {0, 1}.

Example 3.1: The human-readable instruction in test case

scenario instructs the tester to “Login into the system as a

user with user name ‘administrator’.”. The constraint rule

expression “User name is equal to ‘administrator’” can be of

both types—either client-side or server-side inbound constraint

rule.

The configuration for the i-th test case scenario step from

Example 3.1 can be described as the following:

• web page Vi = {loginpage}
• action Ai = {login}
• constraint rules:

– client-side inbound constraint rules: value of the

input element identified by name UserName is

‘administrator’, although for simplicity this can be

specified as “User name name is equal to ‘admin-

istrator’” and expressed in suitable constraint lan-

guage (for example object constraint language, OCL)

in following form: UserName == ‘administrator’

– Ri = {UserName == ‘administrator′}

• data - values of input elements identified by UserName

and Password identifiers

– TDi = {valueUserName, valuePassword}

Example 3.2: On the contrary the instruction “Login into

the system as a user with administrator rights.” can be defined

only as a server-side outbound constraint rule, because the sys-

tem cannot verify whether the user logged in has administrator

rights until the moment data is ready to be sent back to client.

The configuration for the i-th test case scenario step from

Example 3.2 can be described as the following:

• web page Vi = {loginpage}
• action Ai = {login}
• constraint rules:

– server-side outbound constraint rules: User is in

administrator role

– Ri = {User is in administrator role}

• data: empty set—we don’t care about input values in this

step, but input values set to the server in the request can

be used for tracing and other purposes

– TDi = ∅

The form on login page is very simple—it contains only

two input elements (UserName, Password) and two ac-

tion buttons (Login, Register). The tester can locate the

elements specified in the constraint rules very easily in this

case, but can have problems with more complicated web forms

with tens of input and action elements. We will introduce

some usability features to make the tester interaction with our

guideline application and SUT more comfortable. For example

the name of the element in constraint rule can navigate the

tester in the form and locate and highlight the corresponding

input element.
The server-side inbound, resp. outbound, constraint rules are

executed before, resp. after, the action is executed. The code

of the system itself remains unchanged. We will encapsulate

the execution of the action in our execution context. In many

web frameworks for developing application these point-cuts

can be implemented using filters, for example before, after, and

“around” filters in Ruby on Rails. For other web frameworks

not supporting this features an aspect oriented framework

should be used to implement this.
Definition 6: Test case scenario step i with configuration

〈Vi, Si, Ii, Ai, Ri, TDi〉 where Vi is a web page page repre-

sentation used in step i, Si ⊂ S is set of state values used in

step i, Ii ⊂ I is set of values of input elements used in step

i, Ai ∈ A is an action taken in step i, Ri is set of restricting

constraints rules, TDi ⊂ Si ∪ Ii ∪M ∪T is finite set of state,

input, business and technical metadata values used in step i,
is called passed when for all rule constraints f ∈ Ri

• if f is client-side inbound rule, then f(j) = 1 where

j ∈ Ii
• if f is client-side outbound rule or server-side inbound

rule, then f(k) = 1 where k ∈ TDi

• Vi+1 is not error web page Wǫ

• execution of action Ai results in success

Definition 7: Let W = 〈W,S, I, A,W0,Wε,M, T 〉 be

a web application. A test scenario of W is an fi-

nite sequence of test case scenario step configurations

{〈Vi, Si, Ii, Ai, Ri, TDi〉}i≥0 where Vi is a web page page

representation used in step i, Si ⊂ S is set of state values

used in step i, Ii ⊂ I is set of values of input elements used

in step i, Ai ∈ A is an action taken in step i, Ri is set of

restricting constraints rules, TDi ⊂ Si ∪ Ii ∪M ∪ T is finite

set of state, input, business and technical metadata values used

in step i, we say that given test case scenario is passed when

each test scenario step Ki is passed for each i ≥ 0.
Our target is to find errors left in the system that were

not discovered by the unit testing. To have higher confidence

about the correctness of the implementation of the system

the SUT must be covered by our test case scenarios—every

single action the user can execute must be used in at least

one test case scenario step and this test case scenario must be

successfully completed by the tester without problems.
Definition 8: A test scenario step Ki with test case scenario

step configuration 〈Vi, Si, Ii, Ai, Ri, TDi〉 where Vi is a web

page page representation used in step i, Si ⊂ S is set of state

values used in step i, Ii ⊂ I is set of values of input elements

used in step i, Ai ∈ A is an action taken in step i, Ri is set of

restricting constraints rules, TDi ⊂ Si ∪ Ii ∪M ∪ T is finite

set of state, input, business and technical metadata values used

KAREL FRAJTK, MIROSLAV BURE, IVAN JELNEK: FORMAL SPECIFICATION TO SUPPORT ADVANCED MODEL BASED TESTING 1313

in step i, then action Ai, resp. input element Ii, resp. action

Ai, is covered by Ki when Ki is passed.

Definition 9: Given the finite set A of action symbols of

the web application A, then

averify =
|Averified|

|A|

is called test case action verification ratio of the SUT

Averified =
⋃

T∈E

⋃

τ∈T

{a|a ∈ Ai ∧ τ is passed}

is the finite set of actions covered by all passed test scenarios.

E is the set of executed test case scenarios, T denotes test

case scenario test, τ is i-th single step in test case scenario

with configuration 〈Vi, Si, Ii, Ai, Ri, TDi〉.
We then use Ra = 100% · averify to express the SUT

test case action verification percentage. The test case state,

respectively input, verification ratio of the SUT are defined in

a similar way.

Definition 10: Given the finite set S of state symbols of the

web application A, then

sverify =
|Sverified|

|S|

is called test case state verification ratio of the SUT and

Sverified =
⋃

T∈E

⋃

τ∈T

{s|s ∈ Si ∧ τ is passed}

is the finite set of state covered by all passed test scenarios.

E, T and τ are defined as in Defintion 9.

Definition 11: Given the finite set I of input symbols of the

web application A, then

iverify =
|Iverified|

|I|

is called test case input verification ratio of the SUT, and

Iverified =
⋃

T∈E

⋃

τ∈T

{i|i ∈ Ii ∧ τ is passed}

is the finite set of input constants covered by all passed test

scenarios. E, T and τ are defined as in Defintion 9.

Our goal is to achieve nearly 100% test case verification of

the SUT. Since it is possible for the test designers to create

test case scenarios with steps covering every possible action in

system manually, this can be cumbersome for them to use our

approach. Existing model of the SUT describing the system

can be used to automatic test case scenario generation. Test

case scenario steps covering every action in the system will be

generated and test designer can customize them and combine

them to build meaningful test case scenarios.

IV. CONCLUSION AND FUTURE WORK

In this paper we have presented a formal model for a model

based improvement of testing process of the web application.

Our goal was to create a formal model and design a testing

framework based on direct guidance of a tester through testing

process. Our application for the tester’s guidance proposed

in [3] helps tester through the testing process.

Our solution is based on an automatic test case scenario gen-

eration. The automation of this process will help to generate

the test case scenarios effectively covering the system under

test providing a higher test coverage. Model of web application

formalized by our proposed formal model will be used as an

input to this model based test case scenario generation.

We have adapted formal model of web application published

in [1] and extended it with the notation of technical, resp.

business, metadata. The metadata represent properties not

directly related to the problem domain. It will be used in test

case generation and during the test dispatching.

The key component of our proposal is the guidance appli-

cation which will be implemented. By using this application

we will eliminate the unnecessary paperwork - no test case

scenarios will be created manually, test specification docu-

ments will be created with assistance of our system and the

feedback provided by the tester on every step taken will be

provided through our system. We focus on improving tester’s

feedback and verifying tester’s work and validating all steps

of test case scenario taken.

The future work will include an implementation of the

application for tester’s guidance. We will develop the extension

points that will be added to SUT and will be used to commu-

nicate with guidance application and the backend system.

REFERENCES

[1] Alin Deutsch, Liying Sui, and Victor Vianu. “Specifica-

tion and verification of data-driven Web applications”.

In: J. Comput. Syst. Sci. 73.3 (May 2007), pp. 442–474.

[2] Mohamed El-Attar and James Miller. “Developing com-

prehensive acceptance tests from use cases and robust-

ness diagrams”. In: Requir. Eng. 15.3 (Sept. 2010),

pp. 285–306. ISSN: 0947-3602.

[3] Karel Frajták, Miroslav Bureš, and Ivan Jelínek. “Manual

testing of web software systems supported by direct

guidance of the tester based on design model”. In: World

Academy of Science, Engineering and Technology. Paris,

FR, 2011, pp. 542–545.

[4] Helaine Sousa et al. “Building Test Cases through Model

Driven Engineering”. In: Innovations in Computing Sci-

ences and Software Engineering. Ed. by SousaEditors.

Springer Netherlands, 2010, pp. 395–401.

[5] T.T.D. Trong. Rules for Generating Code from UML Col-

laboration Diagrams and Activity Diagrams. Colorado

State University, 2003.

[6] Unified Modelling Language. Object Management

Group. URL: http://www.uml.org.

[7] Web Modelling Language. URL: http://www.webml.org.

[8] Weiqun Zheng and Gary Bundell. “Model-Based Soft-

ware Component Testing: A UML-Based Approach”. In:

6th IEEEACIS International Conference on Computer

and Information Science ICIS 2007. 2007, pp. 891–898.

1314 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

