
An Improved Algorithm for the Strip Packing
Problem

Hakim Akeb
ISC Paris School of Management

22 Bd du Fort de Vaux

75017 Paris, France

Email: hakeb@iscparis.com

Mhand Hifi, Dominique Lazure
Université de Picardie Jules Verne,

UR EPROAD,

7 Rue du Moulin Neuf,

80039 Amiens, France

Email: {mhand.hifi, dominique.lazure}@u-picardie.fr

Abstract—This paper solves the strip packing problem (SPP)
that consists in packing a set of circular objects into a rectangle
of fixed width and unlimited length. The objective is to minimize
the length of the rectangle that will contain all the objects such
that no object overlaps another one. The proposed algorithm
uses a look-ahead method combined with beam search and a
restarting strategy. The particularity of this algorithm is that
it can achieve good results quickly (faster than other known
methods and algorithms) even when the number of objects is
large. The results obtained on well-known benchmark instances
from the literature show that the algorithm improves a lot of
best known solutions.

I. INTRODUCTION

C
UTTING & PACKING (C&P) problems are well known

in Operations Research since they have many practical

applications. They can be encountered in the storage and

transportation of objects of different shapes (Baltacioglu et

al. [1]; Conway and Sloane [2]; Lewis et al. [3]). In this

case, the objective is to arrange these objects in order to save

space. C&P problems are also used in the industry when a

set of pieces of predetermined shapes have to be cut from a

rectangular plate (Menon and Schrage [4]). The objective in

this second example is to minimize the waste due to the space

between the pieces to cut.

This paper studies the problem of cutting (or packing) a set

N of n circular pieces Ci of known radii ri, i ∈ N, from (or

into) a strip S of fixed width W and unlimited length L. The

objective is to place the n pieces inside the smallest rectangle

R of dimensions W ×L∗ such that no piece overlaps another

one and no piece exceeds the limits of the rectangle. This

problem is known as the Strip Packing Problem or SPP (see

Wäscher et al. [5]).

The mathematical formulation for SPP is as follows:

min L (1)

(xi−xj)
2+(yi−yj)

2 ≥ (ri+rj)
2, for j < i, (i, j) ∈ N2 (2)

xi − ri ≥ 0, ∀i ∈ N, (3)

yi − ri ≥ 0, ∀i ∈ N, (4)

L− xi − ri ≥ 0, ∀i ∈ N (5)

W − yi − ri ≥ 0, ∀i ∈ N (6)

L ≥
π

W
×

n
∑

i=1

r2i (7)

Equation 1 indicates the objective to minimize, i.e., the

length of the target rectangle that will contain the n pieces.

Equation 2 ensures that any pair of distinct circles Ci and

Cj do not overlap each other, i.e., the distance between their

centers must be greater than or equal to the sum of their radii

ri+rj . Equations 3–6 mean that any circle Ci does not exceed

the container boundary. Finally, Equation 7 indicates that the

problem contains a lower bound limit for L, this limit, denoted

by L, is equal the sum of the surfaces of the n circles divided

by the width of the rectangle W . Any value for L cannot then

be smaller than this lower bound.
A solution for the strip packing problem consists to find the

minimum value for the length of the rectangle that will contain

all the pieces while verifying the constraints represented by

Equations 2–7.

II. RELATED LITERATURE

The problem of packing circular objects of different radii

into a container is well known and very studied in the

literature. Since there is no method calculating exact solu-

tions, the authors use generally heuristic-based approaches in

order to compute approximate solutions for the problem. Two

categories of containers can be distinguished: the first one

corresponds to a circle and the second one to a rectangle.
Packing different-sized circles into the smallest circle was

for example studied by Huang et al. [6] where the authors

proposed greedy algorithms based on the Maximum Hole

Degree (MHD) heuristic. Hifi and M’Hallah [7] proposed

a dynamic adaptive local search where the radius of the

containing circle is increased when placing the circles. For

the same problem, Akeb et al. [8] used beam-search based

algorithms.
The problem of packing circles of different radii into a

rectangular container is more studied in the literature because

of its many applications. For example George et al. [9]

proposed several rules based essentially on the use of a

genetic algorithm as well as a random strategy. Stoyan and

Yaskov [10] designed a mathematical model whose objective

is to search for feasible local optima by combining a tree-

search procedure and a reduced-gradient. A genetic algorithm

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 357–364

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 357

was also used by Hifi and M’Hallah [11]. Huang et al. [12]

designed two greedy algorithms for the strip packing problem,

the algorithms, denoted by B1.0 and B1.5, are based on the

Maximum Hole Degree (MHD) heuristic. Birgin et al. [13]

used a non-linear approach for placing circles inside a rectan-

gle. Kubach et al. [14] proposed a parallel version of the MHD

heuristic for tackling the strip packing problem. Finally, Akeb

et al. [15] proposed a beam-search based algorithm coupled

with a restarting strategy for SPP.

In this paper, an improved algorithm is proposed for the

strip packing problem. This algorithm combines beam search,

a restarting strategy, and a look-ahead method. The objective

of the look-ahead is to accelerate the search to obtain quickly

solutions. In addition, the parameters of the restarting and the

look-ahead strategies are studied in order to adapt them to the

characteristics of each instance.

The rest of the paper is organized as follows. Section III

explains how to use beam search in order to resolve the strip

packing problem (SPP). Section IV returns on some existing

beam-search based algorithms for SPP. Section V details the

improved algorithm denoted by IA. Section VI discusses the

results obtained by IA on the most known instances in the

literature. Finally, Section VII summarizes the results obtained

and indicates some orientations for future work.

III. BEAM SEARCH FOR RESOLVING SPP

Beam search (BS) [16] is a tree-based search and is an

adaptation of the best first search. BS selects, at each level of

the tree, the most promising nodes to expand. The number of

the nodes chosen at each level is denoted by ω and represents

the beam width.

This section is organized as follows. First, the different

notations used throughout the paper are given. After that,

a greedy procedure, denoted by MLDP (Minimum Local

Distance Position) is described. The objective of MLDP is

to try to place the n circles inside the current rectangle

R =W ×L, i.e., when the length of the rectangle is fixed to

a given value L.

A. Notations

In order to simplify the reading of the paper, here are the

different notations used throughout the document :

1) N = {1, ..., n} is the set of circles to pack into the

strip S placed with its bottom left corner at (0, 0) in the

Euclidean plan,

2) M = {1, ...,m} is the set of circle types (the set of

different radii in the instance),

3) Sleft, Stop, Sright, and Sbottom are the four edges of S,
4) The circular piece Ci of radius ri is placed with its

center at coordinates (xi, yi),
5) Ii corresponds to the set of circles already packed inside

the strip (|Ii| = i),
6) Ii contains the circles not yet placed (Ii ∪ Ii = N),
7) PIi is the set of distinct corner positions for the next

circle to place Ci+1 given the set Ii,

1

2

)3(

3
p

)1(

3
p

)3(
3

ˆ
p

δ

)2(
3

ˆ
p

δ

)2(

3
p

)1(
3

ˆ
p

δ

Fig. 1. The MLDP strategy

8) A corner position pi+1 ∈ PIi for Ci+1 is computed by

using two elements e1 and e2. An element is either

a piece already placed (set Ii) or one of the three

edges of S (Sleft, Stop, Sbottom). Tpi+1
denotes the set

composed of both elements e1 and e2.

B. The MDLP Greedy Procedure

The Minimum Local Distance Position (MLDP) procedure

can be used as a greedy algorithm in order to compute a

solution. Indeed, given the set Ii of circles already placed

inside the current rectangle and the set of corner positions

Pi+1 for the next circle Ci+1, MLDP selects the best corner

position for this circle. This process is repeated until all

the circles are placed or no additional circle can be placed.

Fig 1 explains the mechanism of MLDP where two circles

are already placed, thus i = 2 and I2 =
{

C1, C2

}

. There

are also three possible positions to place the next circle C3:

PI2 =
{

p
(k)
3 , k = 1, .., 3

}

. The first corner position p
(1)
3

touches circle C2 and the top-edge of the strip Stop, then

T
p
(1)
3

= {C2, Stop}. For the two others corner positions,

T
p
(2)
3

= {C1, C2} and T
p
(3)
3

= {C1, Sbottom}.

Let Ci+1 be the circular piece to place at position pi+1

and δi+1(edge), edge ∈ Eedge = {Sleft, Sbottom, Stop}, the

three distances defined as follows: δi+1(Sleft) = xi+1 − ri+1,

δi+1(Sbottom) = yi+1 − ri+1, and δi+1(Stop) =W − yi+1 −
ri+1.

The euclidean distance from the edge of the next circle to

pack Ci+1 (when positioned at pi+1) and Cj is denoted by

δi+1(j) and is computed as follows:

δi+1(j) =
√

(xi+1 − xj)2 + (yi+1 − yj)2 − (ri+1 + rj) (8)

The MLDP of the circular piece Ci+1 when placed at

pi+1 ∈ PIi is calculated as follows:

δ̂pi+1
= min

α∈Ii∪Eedge\Tpi+1

{δi+1(α)} (9)

Equation (9) gives the MLDP of Ci+1 which is computed by

using the distances between the piece to place at position pi+1

and the elements of the set Ii ∪ {Sleft, Sbottom, Stop}\Tpi+1

containing the pieces already placed, the three edges of the

strip, but by excluding the two elements of Tpi+1
used for

358 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

computing the coordinates of Ci+1 because the corresponding

distance is always equal to zero. Note however that the MLDP

is equal to zero when Ci+1 touches more than two elements

because one of the three elements does not belong to the set

Tpi+1
and then the distance to this element can be taken into

account. Fig. 1 indicates the MLDP δ̂
p
(k)
3

of each position

p
(k)
3 , k = 1, 2, 3.
For calculating a packing of the pieces when using the

MLDP procedure, the following process is executed: MLDP

starts by placing the first circular piece C1 at the bottom-left

corner (at coordinates (r1, r1)), the n − 1 remaining pieces

are successively packed by using the MLDP rule as explained

above. For example, in Fig. 1, C3 will be placed at position

p
(1)
3 since the corresponding MLDP has the minimum value.

IV. BEAM SEARCH-BASED ALGORITHMS FOR SPP

Akeb et al. [15] proposed an augmented beam search algo-

rithm, denoted by SEP-MSBS, for the strip packing problem.

SEP-MSBS combines two main techniques:

• A strategy based on the use of separate beams that aims

to diversify the search space compared to the standard

beam search,

• A restarting strategy that consists to rerun the search by

changing the first circle to place. The objective of this

second technique is to escape from local optima.

The separate-beams mechanism is displayed in Fig. 2. The

root node η1 at level ℓ = 1 contains the starting configuration

(one circle placed in the bottom-left corner of the rectangle) as

well as the possible positions for the n− 1 remaining circles.

The best positions (having the smallest MLDP values) are

chosen for branching, this creates the second level ℓ = 2 (note

that each branching consists to choose a position where to

place the next circle). From this second level, separate beams

are initiated. More precisely, a beam of width ω = 1 is initiated

from the first node (the best node), a beam of width ω = 2
is initiated from the second best node, and so on. Thus, the

node at position i in the second level is explored by applying

a beam search of width ω = i. This is to say that the best

nodes do not require an extensive search, the beam width has

then a small value, unlike the last nodes in the level that need

larger values for the beam width. The separate-beams strategy

was shown in [15] to be better than the standard beam search.

Even if SEP-MSBS obtains good results (often the best

results in the literature) on the instances used, its run time

remains too large. This is mainly due to the restarting strategy,

which is executed m times (the number of different circles

(radii) in the instance).

V. AN IMPROVED ALGORITHM FOR SPP

In this paper, we try to improve the SEP-MSBS algorithm

by adding a look-ahead strategy. The look-ahead-based mecha-

nism will be described in Section V-A. The proposed improved

algorithm, denoted by IA, will be given and explained in

Section V-B. Some adjustments are introduced in algorithm

IA in order to reduce the computation time, these adjustments

concern the number of corner positions to explore by the look-

ahead strategy as well as the number of circles to take into

account in the restarting strategy.

A. A Look-Ahead Based Algorithm

Algorithm SEP-MSBS [15] selects, at each level of the

tree, the best nodes by using the MLDP rule (Sect. III-B).

This can be assimilated to a local evaluation, the packing

process does not take into account the remaining circles to

place. The look-ahead proceeds differently. Indeed, given the

set of nodes B = {η1ℓ , ..., η
ω
ℓ } of the current level ℓ in

the tree, each node ηiℓ is characterized by the set Iℓi of ℓ
circles already placed in the current rectangle and the set

Pℓi of corner positions for the remaining circles, the look-

ahead evaluates each position p ∈ Pℓi by continuing the

placement of the remaining circles by using the MLDP rule.

The objective is to compute final solutions which will help to

choose the actual positions for branching from the current level

ℓ. This strategy is implemented in the Look-Ahead Branching

Procedure (LABP) displayed in Algorithm 1.

In addition to the set of nodes B, LABP (Algorithm 1)

receives as input parameter an indicator feasible set to the

value false as well as a real number 0 < ψ ≤ 1. Parameter

ψ serves to determine the proportion of corner positions to

evaluate by the look-ahead, for example, if ψ = 0.8, then

only the best 80% of corner positions (those having the

smallest MLDP values) are evaluated. The objective of this

parameter is to accelerate the algorithm for large instances

(those containing a large number of circles, and therefore a

large number of corner positions at each step).

The set Π of positions to evaluate by the look-ahead, as

explained above, is constructed in Steps 2 and 3. After that,

LABP considers each position pj ∈ Π (Step 4) by packing

Algorithm 1 The Look-Ahead Branching Procedure (LABP)

Require: A set B = {η1ℓ , ..., η
ω
ℓ } of ω nodes, a boolean indicator

feasible=false, and 0 < ψ ≤ 1

Ensure: A feasible solution if feasible=true, or a set Bω of ω
nodes (those leading to the highest densities through the MLDP
packing procedure).

1: Let Pℓi denotes the set of corner positions of node ηiℓ ∈ B;
2: Let Π be the set of all corner positions of B, i.e., Π =

⋃
Pℓi ;

3: Reduce Π to the ⌈ψ×|Π|⌉ best corner positions (having the best
MLDP values);

4: for all corner positions pj ∈ Π do
5: Pack Cℓ+1 in pj and insert the resulting node ηℓ+1 into Bω;
6: Place in ηℓ+1 the remaining circles by using the MLDP

packing procedure;
7: if all circles are placed then
8: feasible = true;
9: exit with a feasible solution;

10: else
11: Assign to ηℓ+1 the density obtained by MLDP;
12: end if
13: end for

14: Reduce Bω to the ω nodes that led to the highest densities by
MLDP;

15: return Bω .

HAKIM AKEB, MHAND HIFI, DOMINIQUE LAZURE: AN IMPROVED ALGORITHM FOR THE STRIP PACKING PROBLEM 359

the corresponding circle in pj (Step 5). This generates a new

node ηℓ+1 that is added to the set of offspring nodes Bω . The

new node is then processed by placing the remaining circles

by using the MLDP rule (Step 6). Two cases may then be

distinguished:

• A feasible packing is obtained (Step 7), meaning that

the n circles were successfully placed inside the cur-

rent rectangle. In this case, the procedure stops with

feasible=true (Steps 8 and 9), meaning that the

length L of the rectangle could be decreased;

• A feasible packing was not obtained (the n circles cannot

be placed into the current rectangle by MLDP). In this

second case, the procedure assigns to the node ηℓ+1 the

density of the circles placed (Step 11). The density of

a given packing is equal to the sum of the surfaces of

the circles placed divided by the surface of the rectangle

L×W.

Finally, when all the corner positions are processed without

obtaining a feasible packing, then the ω best nodes (those that

have led to the highest densities) are returned (Steps 14, 15).

This means that the current length of the rectangle is too small

and should be increased.

Note that procedure LABP (Algorithm 1) is called by

a beam search algorithm denoted by BSLA (Algorithm 2,

Line 10). BSLA implements a width-first beam search. It uses

an interval search [L,L] in order to compute the best length

Algorithm 2 Beam Search Look-Ahead algorithm (BSLA)

Require: A node ηℓ, the beam width ω, the bounds of the

interval search (L,L), and 0 < ψ ≤ 1

Ensure: The best value for the rectangle’s length (Lbest) and

the corresponding feasible packing.

1: Let B denote the set of nodes to be considered;

2: Let Bω denote the set of descendants of the nodes in B;

3: Let Lbest be the best length found so far;

4: Let feasible be a boolean indicator;

5: while (L− L > δ) do

6: Set B = {ηℓ}, where ηℓ is a starting node of level ℓ
characterized by Iℓ, Iℓ, and PIℓ ;

7: L∗ = (L+ L)/2;
8: feasible = false;

9: while (B 6= ∅ and feasible=false) do

10: Bω = LABP(B, feasible, ψ);

11: if feasible=true then

12: Lbest = L∗; L = L∗;

13: else

14: ℓ = ℓ+ 1; B = Bω; Bω = ∅;

15: end if

16: end while

17: if feasible=false then

18: L = L∗;

19: end if

20: end while

level ℓ=2

level ℓ=3

level ℓ=4

level ℓ = n

BSLA with = 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

BSLA with = 2

BSLA with = 3

.

Starting node 1, level ℓ=1

Fig. 2. Separate beams and Look-ahead

of the rectangle containing all the circles. BSLA receives

several input parameters: the starting node ηℓ containing the

starting configuration, the beam width value ω, the values of

the interval search, and parameter ψ indicating the proportion

of corner positions to process by LABP.

BSLA calls, at Step 10, the LABP procedure (Algorithm 1)

for each value of the rectangle’s length L∗. If LABP has

computed a feasible packing with the current value of L, then

the best length (Lbest) is updated (Step 12) and the upper

bound of the interval search L is set equal to the current length.

Otherwise, level ℓ is incremented by 1, the best expanded

nodes returned by LABP (Step 10) replace the nodes of the

current level in the tree (B = Bω), and Bω is reset to the

empty set (Step 14). If LABP did not succeed to compute

a feasible packing with the current value of the rectangle’s

length (Step 17), then the lower bound of the interval search

L is set equal to the current value of L, i.e., L = L∗ (Step 18)

meaning that the rectangle’s length is too small. Finally, it is

to note that the binary interval search is stopped when the

difference between L and L becomes less than or equal to a

given gap δ.

B. The Improved Algorithm (IA)

The improved algorithm, denoted by IA, is given in Al-

gorithm 3. It combines three main techniques: separate beam

search, a restarting strategy, and look-ahead. Fig.2 shows how

algorithm IA works.

IA receives as input parameters the beam width ω, param-

eter τ that serves to indicate the proportion of circles taken

into account by the restarting strategy, and parameter ψ used

to choose the proportion of corner positions to evaluate by

the look-ahead branching procedure LABP (Algorithm 1).

The output of algorithm IA is a feasible packing and the

corresponding best length of the rectangle Lbest.
At Step 1 of algorithm IA, the best length Lbest is set equal

to the upper bound of the length L which is computed by an

Open Strip Generation Solution Procedure (OSGSPa) [17].

The lower bound of the interval search L is set equal to

360 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Algorithm 3 The Improved Algorithm (IA)

Require: The beam width ω, parameters τ and ψ
Ensure: A feasible packing with the best length Lbest for the

strip

1: Lbest = L; L = (π ×
∑n

i=1 r
2
i)/W ;

2: Rank the pieces of N in decreasing value of their radii;

3: Let T be the set of circle types (different circles in N);

4: Reduce T by keeping only ⌈τ × |T |⌉ circles;

5: Set iorder = 1, where iorder is the index of the first

circular piece of the set T ;

6: while (iorder ≤ |T |) do

7: Generate the node η1, characterized by I1, I1, and PI1 ,

by placing the first circle Ciorder inside the current

rectangle and let B = η1;

8: Branch out of B and generate the list of offspring nodes

Bω;

9: Let B = min(ω, |Bω|) nodes having the best MLDPs

and corresponding to distinct corner positions and reset

Bω = ∅;

10: Let η2 be the node at position ω in B;

11: feasible = BSLA(η2, ω, L, L, ψ);

12: if feasible= true then

13: L and Lbest are updated if a better length is obtained

by BSLA;

14: end if

15: L = (π ×
∑n

i=1 r
2
i)/W ;

16: iorder = iorder + 1;

17: end while

18: exit with the best target length Lbest.

the natural lower bound, i.e., L = (π ×
∑n

i=1 r
2
i)/W which

corresponds to a density equal to 1, this density is of course

not possible to obtain because there is always a non-occupied

space between the circles and between the circles and the

edges of the rectangle. The pieces are then ranked by de-

creasing value of their radii (Step 2). The set of circle types

T to use in the restarting strategy is constructed in Steps 3

and 4. The index serving to indicate the first circle to place in

the bottom-left corner of the current rectangle is initialized in

Step 5.

The root node η1 (cf. Fig. 2) is generated in Step 7. This

corresponds to the placement of circle Ciorder in the bottom-

left corner of the rectangle. In Step 8, the list of offspring

nodes Bω is generated. The set B is after that set equal to the

ω best nodes of Bω , this correspond to level ℓ = 2 in Fig. 2.

Since the separate-beams mechanism is used, then only the

node at position ω in this level is explored. The node chosen

(η2) is then transmitted to the Beam Search Look-Ahead

algorithm BSLA (Algorithm 2) in order to try to compute

a feasible solution (Step 11). If BSLA have reached a feasible

packing, then the upper bound L of the interval search and the

best solution Lbest are updated (Step 13). Indeed, the upper

bound L is set to the best value obtained Lbest. After that the

lower bound L is reset to the natural lower bound (Step 15).

In Step 16, the next circle in set T is chosen in order to restart

the algorithm.

It is to note that the main interest of the look-ahead strategy

is that it allows algorithm IA, for which the mechanism is

described in Fig.2, to compute feasible solutions from the

second level (ℓ = 2) in the search tree in opposite to the

other beam search-based algorithms where feasible solutions

are obtained in the last level (ℓ = n).

VI. COMPUTATIONAL RESULTS

The algorithms are coded in C++ language and run on a

computer with a 3-GHz processor and 256 MB of RAM.

Eighteen instances are considered containing from 20 to 200

circles (note that the problem is considered to be large when

the number of pieces is at least n = 100). The first six

instances, denoted by SY1, SY2, SY3, SY4, SY5, and SY6,

contain from 20 to 100 circles. They were proposed by Stoyan

and Yaskov [10] and are the most known ones in the literature

for the strip packing problem, they were for example used

in [10], [12], [17], [14], [15]. Twelve additional instances

were proposed by Akeb and Hifi [17], these instances are

obtained by concatenating the six original instances of Stoyan

and Yaskov and contain from 45 to 200 pieces.

It is to note that all these instances are strongly hetero-

geneous, i.e., the pieces are practically all of different radii

(m / n) where n is the number of circles in the instance and

m the number of circle types (different radii).

A. Varying the Beam Width When the Look-Ahead is Used

In a standard beam-search-based algorithm, like for algo-

rithm BSBIS [17], it is difficult to know in advance what

value to use for the beam width (ω). Indeed, increasing the

value of ω does not necessarily improve the solution, even

if that increase the search space. This can be explained by

the fact that a standard beam search is based on a local

evaluation (e.g. MLDP rule) for branching from the current

level of the search tree in order to create the next level. As

a result, the value of the solution (the length of the rectangle

L) oscillates when increasing the beam width. An example

is shown in Fig. 3 where BSBIS was executed on the first

instance (SY 1, n = m = 30) for all the values of 1 ≤ ω ≤ 75.
Note that this phenomenon concerns also algorithm SEP-

MSBS [15] since this one is based on the MLDP selection

strategy.

But when the look-ahead is introduced (see Algorithm 2,

BSLA), the solution L oscillates much less (as indicated in

Fig. 3) and the value of L often decreases when the value of

the beam width ω increases. In addition, the solution obtained

by the look-ahead (BSLA) is practically always better than

that given by BSBIS and the example shown in Fig. 3 is

very representative since this phenomenon was shown for all

the instances. It is then not necessary to run a look-ahead-

based algorithm with all the possible values of ω. In fact,

the computational investigation showed that starting with the

value ω = 10 and increasing this value by step of 5, i.e.,

HAKIM AKEB, MHAND HIFI, DOMINIQUE LAZURE: AN IMPROVED ALGORITHM FOR THE STRIP PACKING PROBLEM 361

17.0

17.2

17.4

17.6

17.8

18.0

18.2

18.4

18.6

0 10 20 30 40 50 60 70

BSBIS

BSLA

Length (L)

Beam width ()

Fig. 3. Effect of the use of the look-ahead on the solution quality, here when
varying ω from 1 to 75 on instance SY1 (m = n = 35) circles.

(ω = 10+5×k, k ∈ N) corresponds to a good setting. Then,

the proposed algorithm (IA) is run with these values of ω.

B. Values of Parameters ψ and τ

Another investigation was conducted. It concerns the values

of parameter ψ corresponding to the proportion of positions

to evaluate by the look-ahead branching procedure (see Algo-

rithm 1) at each level of the tree, and parameter τ that indicates

the proportion of circles to use for restarting algorithm IA (see

Algorithm 3).

Each parameter ψ and τ was varied in the discrete interval

{0.5, 0.75, 1}, which gives 9 possibilities. The nine possibili-

ties were tested on 3 sets of instances:

• the two smallest instances SY2 (n = m = 20) and SY3

(n = m = 25),

• two medium-sized instances SY23 (n = m = 45) and

SY14 (n = m = 65),

• two large instances SY6 (n = 100,m = 98) and SY1234

(n = 110,m = 105).

Table I indicates the best values for parameters ψ and τ
according to the size of the instance. For example, when

considering a small-sized instance (n < 40), then all the

corner positions have to be processed by the look-ahead

(ψ = 1) and each circle type have to be used by the restarting

strategy (τ = 1). The results of algorithm IA presented

in Table II and Table III are obtained by using the values

indicated in Table I.

C. Solution Quality of Algorithm IA

Table II shows the results obtained by algorithm IA as well

as those obtained by different other algorithms. Column 1

TABLE I
BEST VALUES FOR PARAMETERS ψ AND τ ACCORDING TO THE SIZE OF

THE INSTANCE

Instance size ψ τ

small (n < 40) 1 1

medium (40 ≤ n < 100) 0.75 0.75

large (n ≥ 100) 0.5 1

contains the name of the instance and Column 2 (W) indicates

the width of the strip. Column 3 (n) gives the size of the

instance and Column 4 (m) is the number of circle types in

the instance. Column 5 (MHD) represents the best length of

the rectangle obtained by the Maximum Hole Degree (MHD)

heuristic (Huang et al. [12]). The next column (B16) contains

the result obtained by a parallel version of MHD (Kubach

et al. [14]), symbol “–” means that the result of B16 is not

known for the corresponding instances. Column 7 indicates

the result obtained by the Beam Search Binary Interval Search

algorithm (Akeb and Hifi [17]), the value between parentheses

correspond to the value of the beam width with which the

solution was obtained. The solution obtained by algorithm

SEP-MSBS (Akeb et al. [15]) is given in Column 8 as well as

the corresponding beam width. Column 8 (Best Lit.) shows the

best known solution in the literature for the studied instances.

Finally, the last column contains the result obtained by the

Improved Algorithm (IA).

It is to note that the beam-search based algorithms (BSBIS,

SEP-MSBS, and IA) were run by using a beam width limit

ω̄ = 100 and a computation time limit of thirty hours (as in

[15]). For a fair comparison, MHD was also run (on the same

computer) by using a time limit of thirty hours.

From the results of Table II, we can see clearly that the new

algorithm (IA) has improved twelve results out of eighteen,

i.e, 67% of the best known results in the literature. Algorithm

SEP-MSBS remains better on four instances (SY12, SY13,

SY23, and SY123) and algorithm B16 is better on instances

SY5 and SY6.

The computation time is not indicated in Table II for algo-

rithm IA because the limit of thirty hours was reached for all

the instances except for the smallest one (SY2, n = m = 20)

for which the algorithm has attained the beam width limit

(ω̄ = 100) and terminated after 13 hours. For the SEP-

MSBS algorithm [15], the time limit was reached for thirteen

instances out of eighteen (except for instances SY1, SY2, SY3,

SY4 and SY23), i.e., when n ≤ 45. The reason for which

algorithm IA reached the time limit is that the look-ahead

strategy consumes a lot of time.

What will be the behavior of the proposed algorithm (IA)

when fixing a relatively short time limit? Another investi-

gation, in which the time limit was fixed at thirty minutes,

was conducted. Table III displays the comparison between the

beam search-based algorithms (BSBIS, SEP-MSBS, and IA)

when using this new time limit. The first column (Instance)

contains the name of the instance. Column 2 contains the best

value obtained by the BSBIS algorithm (based on a standard

beam search) as well as the corresponding beam width. Col-

umn 3 indicates the cumulative computation time (in seconds)

in order to obtain the best value L in Column 2. The results

obtained by the two other algorithms (SEP-MSBS and IA) are

indicated in Columns 4–7. Column 8 gives the percentage of

improvement obtained by the new algorithm IA on BSBIS, the

improvement is computed as LBSBIS−LIA

LBSBIS
×100%. In the same

way, the last column contains the percentage of improvement

obtained by algorithm IA on algorithm SEP-MSBS.

362 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

TABLE II
SOLUTION QUALITY OF ALGORITHM IA

Instance W n m MHD B16 BSBIS SEP-MSBS Best Lit. IA

SY1 9.5 30 30 17.291 17.247 17.2315 (45) 17.2070 (50) 17.2070 17.0954 (20)

SY2 8.5 20 20 14.535 14.536 14.6277 (86) 14.5287 (24) 14.5287 14.4548 (15)

SY3 9 25 25 14.470 14.467 14.5310 (78) 14.4616 (44) 14.4616 14.4017 (80)

SY4 11 35 35 23.555 23.717 23.6719 (42) 23.4921 (66) 23.4921 23.3538 (10)

SY5 15 100 99 36.327 35.859 36.0796 (95) 36.1818 (22) 35.8590 36.0045 (15)

SY6 19 100 98 36.857 36.452 36.8456 (85) 36.7197 (26) 36.4520 36.5573 (10)

SY12 9.5 50 48 30.0668 – 29.7011 (52) 29.6837 (61) 29.6837 29.7024 (30)

SY13 9.5 55 54 30.8906 – 30.6371(100) 30.3705 (68) 30.3705 30.4231 (20)

SY14 11 65 65 38.2652 – 38.0922 (79) 37.8518 (63) 37.8518 37.6187 (10)

SY23 9 45 45 28.2697 – 27.8708 (98) 27.6351 (89) 27.6351 27.7148 (35)

SY24 11 55 54 34.6048 – 34.5476 (26) 34.1455 (49) 34.1455 34.0970 (30)

SY34 11 60 59 34.9011 – 34.9354 (39) 34.6859 (43) 34.6859 34.5983 (25)

SY56 19 200 193 69.9790 – 64.7246 (65) 65.2024 (06) 64.7246 64.6904 (10)

SY123 9.5 75 72 43.6257 – 43.2558 (64) 43.0306 (25) 43.0306 43.1709 (15)

SY124 11 85 82 49.3345 – 48.8927 (90) 48.8411 (35) 48.8411 48.6432 (10)

SY134 11 90 88 49.7214 – 49.3954(100) 49.3362 (27) 49.3362 49.2238 (10)

SY234 11 80 78 45.8880 – 45.9526 (83) 45.6115 (39) 45.6115 45.4260 (10)

SY1234 11 110 105 61.9060 – 60.2613 (48) 60.0564 (25) 60.0564 60.0036 (10)

TABLE III
SOLUTION QUALITY OF ALGORITHM IA WHEN FIXING THE TIME LIMIT AT 30 MINUTES

BSBIS SEP-MSBS IA %imp. %imp.

Instance L (ω∗) t∗(sec) L (ω∗) t∗(sec) L (ω∗) t∗(sec) BSBIS SEP-MSBS

SY1 17.2315 (45) 166 17.2145 (34) 1463 17.2029 (20) 1790 0.17% 0.07%

SY2 14.6277 (86) 222 14.5287 (24) 155 14.4548 (15) 216 1.18% 0.51%

SY3 14.5310 (78) 308 14.4616 (44) 1253 14.4106 (20) 750 0.83% 0.35%

SY4 23.6719 (42) 211 23.5335 (27) 1662 23.3538 (10) 1007 1.34% 0.76%

SY5 36.4042 (14) 445 36.3362 (2) 1324 36.1707 (10) 1432 0.64% 0.46%

SY6 36.9387 (26) 1637 37.2555 (3) 669 36.9232 (10) 1135 0.04% 0.89%

SY12 29.7011 (52) 875 30.0447 (9) 650 29.9744 (10) 1800 -0.92% 0.23%

SY13 30.7415 (21) 165 30.7843 (13) 1800 30.6149 (10) 1710 0.41% 0.55%

SY14 38.3573 (37) 885 38.2962 (6) 851 37.9690 (10) 1501 1.01% 0.85%

SY23 27.9146 (70) 1116 28.0388 (13) 885 27.8493 (10) 1768 0.23% 0.68%

SY24 34.5476 (26) 266 34.6732 (8) 766 34.3544 (10) 675 0.56% 0.92%

SY34 34.9354 (39) 720 34.9614 (9) 1304 34.7531 (10) 914 0.52% 0.60%

SY56 65.5565 (8) 1022 65.7608 (1) 1800 65.3079 (10) 1800 0.38% 0.69%

SY123 43.4907 (44) 1745 43.5815 (6) 1412 43.4793 (10) 1511 0.03% 0.23%

SY124 49.3281 (19) 456 49.6348 (5) 1720 49.1915 (10) 1661 0.28% 0.89%

SY134 49.8705 (32) 1536 49.9136 (5) 1397 49.8184 (10) 1621 0.10% 0.19%

SY234 45.9913 (27) 775 46.1901 (4) 880 45.9209 (10) 1321 0.15% 0.58%

SY1234 60.9055 (15) 565 60.8783 (3) 1800 60.5660 (10) 1369 0.56% 0.51%

From Table III, we can see clearly that when using a

relatively short time limit (which is more practical), the

proposed algorithm (IA) is practically always the best one (in

17 cases out of 18), except for the instance SY12 where BSBIS

remains better. The good results obtained by algorithm IA can

be explained by the fact that the look-ahead strategy computes

quickly feasible solutions, i.e., from level ℓ = 2 in the search

tree (see Fig. 2) when BSBIS and SEP-MSBS obtain feasible

solutions at level ℓ = n only. So, even if algorithm IA is

stopped after a short computation time, it will have calculated

a lot of feasible solutions, increasing the probability to obtain

good ones. Fig. 4 displays for example the solution obtained

by the proposed algorithm (IA) on the largest instance that

contains 200 circles. The new best length is L = 64.6904, the

previous best known value in the literature was L = 64.7246.

VII. CONCLUSION

In this paper an improved algorithm, denoted by IA, was

proposed in order to solve the strip packing problem. IA is

a beam-search based algorithm that includes a look-ahead

strategy in order to improve the selection mechanism in each

HAKIM AKEB, MHAND HIFI, DOMINIQUE LAZURE: AN IMPROVED ALGORITHM FOR THE STRIP PACKING PROBLEM 363

Fig. 4. Solution obtained by the proposed algorithm IA on the largest instance SY56 (n = 200,m = 193, L = 64.6904)

level of the tree. In addition, a restarting strategy was also

used.
The computational investigation, conducted on a set of well-

known instances in the literature, showed the effectiveness

of the proposed algorithm since it has succeeded to improve

67% of the best known solutions in the literature. In addition,

another experimentation has indicated that the look-ahead

obtains good solutions more quickly, i.e., faster than the

existing beam-search based algorithms.
As a future work, it would be interesting to use a parallel

algorithm in order to reduce the computation time.

REFERENCES

[1] E. Baltacioglu, J. T. Moore, and R. R. Hill, “The distributor’s three-
dimensional pallet-packing problem: a human intelligence-based heuris-
tic approach," Int. J. Oper. Res., vol. 1, 2006, pp. 249–266.

[2] J.H. Conway and N.J.A. Sloane, “Sphere packings, lattices and groups,"
A Series of comprehensive studies in Mathematics, Springer, vol. 290,
1999, 703 pages.

[3] R. Lewis, S. Song, K. Dowsland, and J. Thompson, “An investigation
into two bin packing problems with ordering and orientation implica-
tions," Eur. J. Oper. Res., vol. 213, 2011, pp. 52–65.

[4] S. Menon and L. Schrage, “Order allocation for stock cutting in the
paper industry," Oper. Res., vol. 50, 2002, pp. 324–332.

[5] G. Wäscher, H. Haussner, and H. Schumann, “An improved typology of
cutting and packing problems," Eur. J. Oper. Res., vol. 183, 2007, pp.
1109–1130.

[6] W. Q. Huang, Y. Li, C. M. Li, and R. C. Xu, “New heuristics for packing
unequal circles into a circular container", Comput. Oper. Res., vol. 33,
2006, pp. 2125–2142.

[7] M. Hifi, R. M’Hallah, “A dynamic adaptive local search algorithm for
the circular packing problem," European J. Oper. Res., vol. 183, 2007,
pp. 1280–1294.

[8] H. Akeb, M. Hifi, and R. M’Hallah, “A beam search based algorithm
for the circular packing problem," Comput. Oper. Res., vol. 36, 2009,
pp. 1513–1528.

[9] J. A. George, J. M. George, and B. W. Lamar, “Packing different-sized
circles into a rectangular container," Eur. J. Oper. Res., vol. 84, 1995,
pp. 693–712.

[10] Y. G. Stoyan and G. N. Yaskov, “Mathematical model and solution
method of optimization problem of placement of rectangles and circles
taking into account special constraints," Int. Trans. Oper. Res, vol. 5,
1998, pp. 45–57.

[11] M. Hifi and R. M’Hallah, “Approximate algorithms for constrained
circular cutting problems," Comput. Oper. Res., vol. 31, 2004, pp. 675–
694.

[12] W. Q. Huang, Y. Li, H. Akeb, and C. M. Li, “Greedy algorithms for
packing unequal circles into a rectangular container", J. Oper. Res. Soc.

vol. 56, 2005, pp. 539–548.
[13] E. G. Birgin, J. M. Martinez, and D. P. Ronconi, “Optimizing the packing

of cylinders into a rectangular container: A nonlinear approach," Eur. J.

Oper. Res., vol. 160, 2005, pp. 19–33.
[14] T. Kubach, A. Bortfeldt, and H. Gehring, “Parallel greedy algorithms

for packing unequal circles into a strip or a rectangle," Cent. Eur. J.

Oper. Res., vol. 17, 2009, pp. 461–477.
[15] H. Akeb, M. Hifi, and S. Negre, “An augmented beam search-based

algorithm for the circular open dimension problem," Comput. Ind. Eng.,
vol. 61, 2011, pp. 373–381.

[16] P. S. Ow, and T. E. Morton, “Filtered beam search in scheduling," Int.

J. Prod. Res, vol. 26, 1988, pp. 35–62.
[17] H. Akeb and M. Hifi, “Algorithms for the circular two-dimensional open

dimension problem," Int. Trans. Oper. Res., vol. 15, 2008, pp. 685–704.

364 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

