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Abstract—Nonnegative Matrix Factorization (NMF) is one

of the most promising techniques to reduce the dimensional-

ity of the data. This presentation compares the method with

other popular matrix decomposition approaches for various

pattern analysis tasks.  Among others,  NMF has been also

widely applied for clustering and latent feature extraction.

Several types of the objective functions have been used for

NMF in the literature.  Instead of minimizing the common

Euclidean Distance (EucD) error, we review an alternative

method that maximizes the correntropy similarity measure

to  produce  the  factorization.  Correntropy  is  an  en-

tropy-based criterion defined as a nonlinear similarity mea-

sure. Following the discussion of maximization of the cor-

rentropy function,  we use it  to  cluster document  data set

and  compare  the  clustering  performance  with  the

EucD-based NMF.  Our approach  was  applied  and  illus-

trated for the clustering of documents in the 20-Newsgroups

data set. The comparison is illustrated with 20-Newsgroups

data set. The results show that our approach produces per

average  better  clustering  compared  with  other  methods

which use EucD as an objective function.

Keywords—Nonnegative  Matrix  Factorization;  Corren-

tropy; Principal Component Analyis; Face recognition

I.  INTRODUCTION

he ever-increasing amount of data recorded, stored

and processed worldwide necessitates the develop-

ment  of  new representations  and  is  becoming a  major

task for data analysis research [1, 2, 3, 4, 17, and 18]. Di-

mensionality reduction of the data is a technique that de-

scribes each multidimensional data sample with a small

number of coefficients that are the sample’s coordinates

in a new, particular to this dataset, feature space. Often

dimensionality reduction is accomplished by finding fac-

torizations  of  a  matrix  representing  the  dataset.  Most

widely-known methods are Principal Component Analy-

sis (PCA), Independent Component Analysis (ICA) and

Singular Value Decomposition (SVD). Recently defined

Nonnegative Matrix Factorization (NMF) approach also

has been successfully applied in pattern recognition. It is

an unsupervised learning method that also reduces the di-

mensionality of the data. It has also been used for several

applications [5-8, 14-16, 19, 20].

T

Matrix factorization methods treat the data as an m×n

matrix in which every column represents a data sample.

This matrix is approximated by a product of two rank  k

matrices, as follows:

where A is the data matrix, W is the m×k matrix of basis

vectors and H is a k×n matrix that gives the coordinates

of samples in the feature space. We can think of the fac-

torization as of a decomposition of the  j-th sample (j-th

column of  A,  A:j) into a linear combination of features

given by columns of W:

For instance, consider a small artificial data set of doc-

uments shown in Figure 1. The documents are encoded in

the bag-of-words format. Here, A is a 6×4 data matrix fo-

rmed by 4 documents, 6 words of interest, and 3 topics.

The topics are ANIMAL (d1 and d4), RELIGION (d2) an

d FOOD (d4). Once the factorization is computed we can

cluster the documents [14]. It can be accomplished by as-

signing each document to the topic that contributes the

Figure 1. A small document-term matrix and its nonnegative factor-

ization. Indicated are terms that are most important for each topic and

assignments of documents into topics (clusters).
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most to its nonnegative representation (has the largest entry 

in the matrix  ). The matrices   and   that form a 

nonnegative factorization are shown in Figure 1. We have 

indicated the most important words for each topic and 

demonstrated the cluster memberships. 

II. NONNEGATIVE MATRIX FACTORIZATION (NMF) 

The intuitive definition of matrix factorization asks to 

find two matrices,   and  , whose product approximates a 

given matrix. Specific matrix factorization schemes are 

differentiated by the error function used to describe the 

quality of the approximation and by the constraints imposed 

on the elements of   and  . The family of nonnegative 

factorizations imposes that elements of   and   be 

nonnegative. A necessary prerequisite is that the data matrix   must also contain nonnegative elements only. Fortunately, 

this is often the case. In example documents in a bag-of-

words format or images are non-negative. Application areas 

for NMF include face recognition, bioinformatics, text 

mining and audio (speech) processing [2, 3, 6-8, 14, 19]. 

Clustering task is also one of the main topics for NMF and it 

has been extensively applied and discussed in the literature 

[6, 8, 14-16]. 

Nonnegative factorizations are motivated by their 

enhanced interpretability. When subtraction is forbidden no 

cancelations occur in the topic (cluster) definitions and 

meanings can be deduced, as in the example shown in 

Figure 1. Indeed, for many applications subtraction is not 

meaningful. However, except for NMF, other matrix 

factorization methods generally allow the subtraction of 

values. These values can be faces, audio or gene expression 

levels according to application areas. But in these cases, 

basis values (for instance images for face recognition) are 

not physically intuitive.  

Typically, in NMF the factorization objective is the 

Euclidean distance between the elements of   and the 

elements of    (i.e. the Frobenius norm of the difference     ). This measure is well-known and often used in the 

literature. However, other distance (or similarity) measures 

can be used, and they will often produce different 

factorizations. In example, calculations derived from the 

Kullback-Leibler divergence have often been studied in the 

literature [1-4, 9, and 14]. Often the loss function is chosen 

to match a specific application domain. In [7], authors used 

the Itakura-Saito (IS) divergence as an objective function 

and in [5] authors used the β-divergence. 

In [1-4], authors used a distance measure based on the 

Kullback-Leibler divergence. The measure           is a 

symmetric divergence of   with respect    given by  [2]: 

   (     )   (      )   (      )  
where:          ∑     ‖ ‖    ቆ    ‖ ‖     ‖ ‖ ቇ    

Another distance measure suitable for the NMF is the 

correntropy function, described in details in Section III. 

Extensions of the NMF methodology involve imposing 

other constraints on the matrices   and  , such as 

sparseness or orthogonality. Bayesian approaches and other 

conditions for factorization have also been considered [3, 8].  

The typical algorithm used to compute the NMF 

factorization with the Euclidean distance measure begins 

with   and   randomly initialized. It then uses the 

multiplicative update rules to minimize the error function 

[1,4]:                                               
The rules ensure that at each iteration the error function 

does not increase, while the matrices   and   stay non-

negative. The rules are applied iteratively until convergence. 

Faster converging alternatives to the multiplicative 

updates, that have been proposed for the NMF include the 

projected gradient descent (PGD) and the alternating least 

squares (ALS) algorithm [2, 16].  

III. CORRENTROPY SIMILARITY MEASURE 

We have recently proposed to use the correntropy 

similarity measure as an objective function for nonnegative 

matrix factorization [26, 27]. The correntropy is a localized 

similarity measure between two random variables that was 

proposed in [9-12, 14]. It can be used as a cost function for 

NMF. We use it to calculate the element-wise similarity 

between the matrix   and its factorization:                      ∑   ( (          )    )             
where    is a parameter of the correntropy similarity 

measure. We note that for NMF we need to minimize the 

negative of correntropy since it is a similarity and not a 

distance measure [14]. 

 It can easily be seen from eq. 1 that            is 

always bounded and nonnegative. Moreover, the 

correntropy saturates when the disagreement between 

elements of   and its factorization    is large. This 

property is important. It makes correntropy insensitive to 

outliers, because errors for badly approximated elements 

have less influence on the factorization. We illustrate 

correntropy as the error surface in Figure 2. It shows the 

errors for a single element of             . We can 

change the shape of the function and control the level of 

saturation by adjusting the parameter  . When   is large 

little saturation occurs. Lowering   causes that more and 

more elements of the difference      saturate and are 

treated as outliers. 
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IV. EXEMPLARY APPLICATIONS OF NMF 

A. Document Clustering with NMF 

For the first real life example we report the result of a 

comparison between quality of NMF factorizations based on 

the Euclidean distance and based on correntropy [14, 26]. 

The evaluation analyses the quality of clusters computed 

from factorizations. We have used the 20-newsgroups data 

set, which is one of the popular benchmarks used for 

clustering and classification of the text data. It has 

approximately 11,000 documents taken from 20 different 

newsgroups pertaining to various subjects. 

After the factorization process, we obtain   and  .   

can be used to group the data ( ) into   clusters by choosing 

the largest value of each column in    
The 20 newsgroups data contains ground-truth 

document labels which can be used to evaluate the quality 

of the clustering. We evaluate the clustering performance 

with the entropy measure. Total entropy for a set of clusters 

is calculated as the weighted mean of the entropies of each 

cluster weighted by the size of each cluster. Firstly, we 

calculate the distribution of the data for each cluster. For 

class   we compute     , the probability that a member of 

cluster   belongs to class   as            , where    is 

the number of objects in cluster   and     is the number of 

objects of class    in cluster  . Entropy of each cluster   is 

defined as:      ∑       (   ) 
     

where   is the number of classes. Entropy of the full data set 

as the sum of the entropies of each cluster   weighted by the 

size of each cluster:    ∑    
      

where   is the number of clusters and   is the total number 

of data points [24]. 

Table 1 shows the entropy values of NMF-PGD (EucD) 

and NMF-Corr approaches for 20-Newsgroups data set. We 

graph these values ( NMF-PGD (EucD) and NMF-Corr (for    ,       and       ) ) in Figure 3. Here, “ ” 
denotes the assumed number of clusters and equals to the 

ranks of    . We change it from 2 to 20 to track the 

clustering performance. We show all entropy values in 

Figure 3, but for brevity we only illustrate 10 data points in 

Table 1. Since lower entropy values indicate better 
clustering performance, it can be seen from Table 1 and 

Figure 3, that NMF-Corr (     ) demonstrates superior 

clustering performance than NMF-PGD (EucD) for every 

evaluated number of clusters. 
Experiments and comparative results between NMF-

PGD (EucD) and NMF-Corr show that NMF-Corr (     ) has better clustering performance than NMF-PGD 

(EucD). Therefore, we can conclude that correntropy-based  

 

Table 1.  Entropy of 20-Newsgroups data set with NMF-PGD (EucD) 

and NMF-Corr. 

Number of 

Clusters (k) 

NMF-PGD 

(EucD) 

NMF-Corr 

(σ = 1) 
NMF-Corr 

(σ = 0.5) 
NMF-Corr 

(σ = 0.01) 

r = 2 3.84 3.86 3.85 4.30 

r = 3 3.86 3.79 3.58 4.27 

r = 4 3.78 3.49 3.50 4.27 

r = 5 3.74 3.60 3.38 4.24 

r = 6 3.49 3.36 3.30 4.23 

r = 7 3.44 3.28 3.26 4.20 

r = 8 3.30 3.26 2.94 4.19 

r = 9 3.30 3.34 3.13 4.18 

r = 10 3.16 3.23 2.93 4.20 

 

 
Figure 2. Correntropy objective function 1+Loss(A,WH) with          

σ=0.5,m=n=1. 

 
Figure 3. Entropy comparison for NMF-PGD (EucD) and NMF-Corr. 

NMF             has comparatively better clustering 

performance vs. EucD-based NMF for the evaluated data 

set. However, NMF-Corr does not show improved 

performance for     and specifically worst performance 

for       . This can be seen from Figure 3 and Table 1. 

Also, the deterioration of clustering results for   values  

below 0.5 requires further studies. One additional question 
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is whether this dependence on   value is a property of the 

method or else whether it lies in the properties of the data 

for which experiments have been conducted. This will 

warrant further studies. 

B. Occluded Face Recognition Using NMF 

In the second example we report the results of an 

application of NMF to the problem of occluded face 

recognition [26]. 

Face recognition is one of the well-studied real life 

problems. Several methods have been defined and applied 

for this task. Above mentioned methods and Neural 

Networks (NN) have been studied to recognize face images 

[1, 19-26]. In fact, faces are not clear for daily life, because 

some obstacles can be in front of the face. These obstacles 

can be scarf, glasses, hats or some occlusion on the face. 

Therefore, occluded face recognition is important area in 

pattern analysis. There are many studies in the literature for 

occluded face recognition task, especially using PCA and 

NMF [19-26]. 

In this section, we evaluate the recognition performance 

of occluded face images on ORL face data set. We have 

compared PCA, NMF and correntropy based NMF (NMF-

Corr) formulations by evaluating quality of recognition rates 

computed from factorizations. The ORL data consists of 40 

persons, each photographed in 10 different poses. The data 

set was partitioned into two equal parts for training and 

testing. We have resized face images from original 112x92 

pixels to 56x46 pixels for efficient computation.  

Face recognition in the NMF and NMF-Corr linear 

subspace is performed by first computing the pseudo-

inverse of the W matrix as             . Then, all 

samples were encoded using this pseudo inverse. Finally, 

we have used 1 nearest-neighbor (1-NN) classifier for the 

recognition process. 

In order to generate occluded faces, we have used 

randomly located black patches for both training and testing 

face images. In this way we test the robustness of the 

compared dimensionality reduction methods to noise on 

both training and testing data. Each patch covers from 10% 

to %50 of the face image at a random location. Sample 

patched face images can be seen from Figure 4. 

Recognition results have been obtained by running each 

method (PCA, NMF and NMF-Corr) 10 times, and then 

average recognition rate has been calculated. 

NMF-Corr and NMF algorithms were run with the 

random initial matrices   and  . For NMF-Corr, we set 

stopping criteria at most 1000 iterations and relative 

tolerance       PCA, NMF and NMF-Corr basis images has 

been shown in Figure 5, respectively.  

 

 

 

 
Figure 4 Randomly located occluded face samples from ORL face 

dataset with 10%, 20%, 30%, 40% and 50% patch sizes (From left to right). 

 
a) PCA basis 

 
b) NMF basis 

 
c) NMF-Corr basis 

Figure 5. Basis images of PCA, NMF and NMF-Corr for 64 grids. 
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Figure 6. Recognition rates (%) versus number of basis images for 10% and 50% patch occlusions (On the legend, values in paranthesis indicate the 

corresponding σ parameter for NMF-Corr). 
 

  
Figure 7. Recognition rates (%) versus patch sizes (%) of face images for 64 and 121 basis images. 

 

For brevity we only illustrate for 10% and 50% 

occlusions in Figure 6, for different number of basis images. 

It can be easily seen that NMF-Corr with      

demonstrates superior recognition performance than NMF 

and PCA. Therefore, NMF-Corr with      has the best 

accuracy. (In the case of 50% patch occlusion, generally     has better accuracy than     ). Recognition rate 

plots versus patch occlusion sizes have been also calculated 

for 25, 36, 49, 64, 81, 100, 121 and 144. Again, we only 

demonstrate for 64 and 121 basis in Figure 7 for brevity. 

Here, NMF-Corr has the best recognition rate for all patch 

sizes. Additionally, it can be seen from Figure 7, the graphic 

lines are u-shaped, because training and testing parts have 

been done with occluded face images. 

V. CONCLUSION 

In this contribution we have first introduced the topic of 

nonnegative matrix factorization and reviewed its major 

applications and implementations. The NMF factorizes a 

given data matrix into a product of two matrices that contain 

nonnegative elements only. Subtraction is forbidden which 

enhances sparsity of the patterns that are found in the data. 

This leads to a better interpretability of the factorization. 

The usefulness of nonnegative factorizations was 

demonstrated using two real-life tasks: document clustering 

and occluded face recognition. Moreover the demonstrations 

used correntropy, a novel similarity measure that enhances 

the robustness to outliers. Experiments on both datasets 

have shown that using the correntropy criterion has led to 

better cluster purity and recognition rates than NMF and 

PCA.  
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