
A Maximum Matching Based Heuristic Algorithm

for Partial Latin Square Extension Problem

Kazuya Haraguchi∗, Masaki Ishigaki and Akira Maruoka†

Department of Information Technology and Electronics

Faculty of Science and Engineering

Ishinomaki Senshu University

Ishinomaki, Miyagi 986-8580, Japan

Email: kzyhgc@gmail.com∗, amaruoka@isenshu-u.ac.jp†

Abstract—A partial Latin square (PLS) is an assignment of
n symbols to an n × n grid such that, in each row and in
each column, each symbol appears at most once. The partial
Latin square extension (PLSE) problem asks to find such a
PLS that is a maximum extension of a given PLS. The PLSE
problem is NP-hard, and in this paper, we propose a heuristic
algorithm for this problem. To design a heuristic, we extend
the previous 1

2
-approximation algorithm that utilizes the notion

of maximum matching. We show the empirical effectiveness
of the proposed algorithm through computational experiments.
Specifically, the proposed algorithm delivers a better solution
than the original one and local search. Besides, when computation
time is limited due to an application reason, it delivers a better
solution than IBM ILOG CPLEX, a state-of-the-art optimization
solver, especially for large scale “hard” instances.

I. INTRODUCTION

THROUGHOUT the paper, we consider the partial Latin

square extension (PLSE) problem. Let n denote a natural

number. Suppose that we are given an n × n grid. A partial

Latin square (PLS) is a partial assignment of n symbols to

the grid so that the Latin square condition is satisfied. The

Latin square condition requires that, in each row and in each

column, each symbol should appear at most once. Given a

PLS, the PLSE problem asks to find such a PLS that is a

maximum extension of the given one in terms of the number

of the filled cells. Specifically, we are asked to assign symbols

additionally to as many empty cells as possible so that the

Latin square condition is satisfied. The PLSE problem is NP-

hard since its decision problem version is NP-complete [1].

The problem has various applications (e.g., scheduling, optical

routers [2]) and was first introduced by Kumar, Russel and

Sundaram [3], where they proposed several constant-factor

approximation algorithms.

In this paper, we propose a heuristic algorithm for the PLSE

problem. Assuming practical use, we aim to develop such

a heuristic algorithm that delivers better solutions for more

instances. We are interested just in empirical performance. We

do not make theoretical analysis on approximation ratio, as

previous studies for the PLSE problem do.

Let us explain the reason why we dare to propose such

a heuristic algorithm. Researchers from discrete optimiza-

tion or operations research may see that the problem can

This work is supported by JSPS KAKENHI Grant Number 25870661.

be formulated as a 0-1 integer programming (IP) problem.

The global optimal solution can be found within practical

time by the state-of-the-art optimization solvers (e.g., Gurobi

optimizer [6], IBM ILOG CPLEX [7]) only when n is

moderately small (e.g., no more than 30 in our experience).

When n is larger, the solvers may not find even a feasible

solution within practical time. For such large scale instances,

a heuristic algorithm that delivers a good solution quickly is

an alternative. For another application example, a heuristic

algorithm may assist the work of the solvers. Many modern

solvers admit us to input an initial solution. The solvers utilize

the input solution as the first incumbent solution in the branch-

and-bound tree. During the solution search, they may prune

the solution subspaces where there is no hope of finding a

better solution than the incumbent one, which may improve

the efficiency of the search. Then the solver that is given a

good initial solution is expected to find a better solution than

the solver that is given no initial solution (or a poor initial

solution) within the same time limit. An effective heuristic

algorithm may help us generate a good initial solution.

Our heuristic algorithm is based on the 1
2

-approximation

algorithm proposed in [3] that determines the assignment

of symbols by solving the n relevant maximum matching

problem instances iteratively. We try to improve its empirical

performance by extending the model and by giving a rea-

sonable scheme to decide the order in which the maximum

matching problem instances are solved.

There are two approximation algorithms that have better

approximation ratios than 1
2

. The best bound is 2
3
−ε, achieved

by Hajirasouliha, Jowhari, Kumar and Sundaram [4], where ε
is any positive constant. Their algorithm is based on local

search, and the constant ε is automatically determined by the

parameter on the neighborhood scale. The smaller ε we wish,

the longer the running time becomes since we need to set the

neighborhood scale large. For example, to beat the second best

bound 1− 1
e , achieved by Gomes, Regis and Shmoys [5], the

running time becomes O(n26), which is surely polynomial

but not practical. The second best algorithm [5] employs

the linear programming (LP) relaxation approach. The idea

is sophisticated but it is not easy to realize the mechanism

to improve the empirical performance. On the other hand,

the empirical performance of the maximum matching based

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 347–354

978-1-4673-4471-5/$25.00 c© 2013, IEEE 347

1
2
-approximation algorithm can be improved by a smaller

ingenuity. This is the highlight of the paper.

We show the empirical effectiveness of the proposed al-

gorithm through computational experiments. Specifically, the

proposed algorithm tends to deliver a better solution than

the original one and the local search based approximation

algorithm. Besides, when computation time is limited, as is

often the case in practice, the proposed algorithm tends to

deliver a better solution than IBM ILOG CPLEX for large

scale “hard” instances.

The paper is organized as follows. In Section II, we prepare

terminologies and notations. Then we present the proposed

heuristic algorithm in Section III. We report the results of

the computational experiments in Section IV, and then give

concluding remarks in Section V.

II. PRELIMINARIES

A. The PLSE Problem

First we introduce notations on the n × n grid. The grid

consists of n2 cells. Let us denote [n] = {1, 2, . . . , n}. For
any i, j ∈ [n], we denote the cell in the row i and in the

column j by (i, j). We denote the set of the n cells in the row

i by Ri, and the set of the n cells in the column j by Cj , i.e.,

Ri = {(i, 1), (i, 2), . . . , (i, n)} and

Cj = {(1, j), (2, j), . . . , (n, j)}.

We also denote the family of Ri’-s by R, and the family of

Cj ’-s by C, i.e.,

R = {R1, R2, . . . , Rn} and C = {C1, C2, . . . , Cn}.

Clearly we have
⋃

Ri∈R
Ri =

⋃

Cj∈C
Cj = [n]2.

Next we introduce notations on assignment of symbols to

the grid. For simplicity, we represent the n symbols by the

integers 1, 2, . . . , n in the set [n]. We represent an assignment

of symbols by an n×n array, denoted by L. For each cell (i, j),
we denote the assigned symbol by Li,j ∈ [n] ∪ {0}, where
Li,j = 0 indicates that (i, j) is empty. We define the domain

of L as Dom(L) = {(i, j) ∈ [n]2 | Li,j �= 0}. The cardinality

|Dom(L)| equals to the number of the cells that are assigned

symbols by L. For simplicity, we may write |Dom(L)| as |L|.
An assignment L is an extension of L′ if Dom(L) ⊇ Dom(L′)
and Li,j = L′

i,j holds for any (i, j) ∈ Dom(L′). When L is

an extension of L′, we write L � L′. We call L a partial

Latin square (PLS) if, in each row and in each column, every

symbol appears at most once. In particular, if all the cells are

assigned symbols (i.e., Dom(L) = [n]2), then we simply call

L a Latin square (LS). We call a PLS L extensible (resp.,

blocked) if there exists (resp., does not exist) a PLS L ′ � L
(L′ �= L). Two PLSs L and L′ are compatible if the following

two conditions hold:

(i) For each (i, j), at least one of Li,j = 0 and L′
i,j = 0

holds.

(ii) The assignment L⊕ L′ defined as follows is a PLS;

(L⊕ L′)i,j =

⎧

⎨

⎩

Li,j if Li,j �= 0 and L′
i,j = 0,

L′
i,j if Li,j = 0 and L′

i,j �= 0,
0 otherwise.

An assignment of symbols can be also represented by a

set of triples. Let T be a subset of [n]3. The membership

(i, j, k) ∈ T represents that the symbol k is assigned to (i, j).
In order to avoid duplicate assignments on the same cell, we

assume that, for any different triples (i, j, k) and (i ′, j′, k′) in
T , at least one of i �= i′ and j �= j ′ holds. To convert the triple

set representation into the array representation, we define the

array A(T) as follows;

A(T)i,j =

{

k if there is k ∈ [n] such that (i, j, k) ∈ T,
0 otherwise.

For (i, j, k), (i′, j′, k′) ∈ T , when at least two of i �= i′, j �= j′

and k �= k′ hold, we say that they are compatible. Then T is

a PLS if any two triples in T are compatible. Let us simplify

some notations. When L and A(T) are compatible, we may

say that L and T are compatible, and use the expression L⊕T
instead of L ⊕ A(T). When a singleton T = {(i, j, k)} is

compatible with L, we say that (i, j, k) (instead of {(i, j, k)})
is compatible with L.
We summarize the PLSE problem as follows.

The Partial Latin Square Extension (PLSE) Problem

Input: A PLS L0.

Output: A PLS L � L0 that attains the maximum

|L|.

A polynomial time algorithm for the PLSE problem is called

a ρ-approximation algorithm if, for any input PLS L0, it finds

L � L0 such that;

|L| − |L0|

|L∗| − |L0|
≥ ρ,

where L∗ denotes a global optimal solution. The bound ρ is

called the approximation ratio.

B. Graph, Maximum Matching, Independent Set

An undirected graph (or simply a graph) G = (V,E)
consists of a set V of nodes and a set E of unordered pairs of

nodes, where each element in E is called an edge. The degree

of a node v ∈ V is the number of the edges incident to v. A
graph is bipartite when V can be partitioned into two disjoint

nonempty sets, say V1 and V2, so that every edge joins a node

in V1 and a node in V2. When we emphasize that G should

be bipartite, we may write G = (V1 ∪ V2, E).
A matching E ′ is a subset of E such that no two edges

in E′ have a node in common. A maximum matching is such

a matching that attains the largest cardinality. In particular, a

maximum matching is called a perfect matching if it covers

all the nodes in the graph. The size of maximum matching is

called a matching number, and is denoted by ν(G). Suppose
that the graphG = (V,E) is bipartite. We can find a maximum

matching in O(
√

|V ||E|) time [8]. Note that maximum match-

ing is not necessarily unique. Any edge e in E is classified

into one of the following three classes with respect to how it

appears in the possible maximum matchings:

348 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Mandatory edge: e appears in every maximum matching.

Admissible edge: e appears in at least one (but not every)

maximum matching.

Forbidden edge: e appears in no maximum matching.

The sets of mandatory, admissible and forbidden edges in G
are denoted byME (G), AE (G) and FE (G), respectively. The
edge set E of a bipartite graphG can be decomposed into three

disjoint sets ME (G), AE (G) and FE (G) by the Dulmage-

Mendelsohn decomposition technique [9]. The computation

time is dominated by finding a maximum matching, and

thus the decomposition can be made in O(
√

|V ||E|) time.

The proposed algorithm repeatedly solves maximum matching

problems on bipartite graphs such that |V1| = |V2| = n.
We denote the upper bound on the computation time for one

bipartite graph by τn, i.e., τn = O(n5/2).
Let G = (V,E) be a general graph (not necessarily

bipartite). An independent set is a subset of V such that

any two nodes in the subset are not adjacent. A maximum

independent set is such an independent set that attains the

largest cardinality. The problem of finding a maximum inde-

pendent set is known as NP-hard [10]. The proposed algorithm

solves this problem for a certain purpose. To construct a

nearly maximal independent set, we employ the (∆ + 2)/3-
approximation algorithm [11], where ∆ denotes the maximum

degree in the graph. The algorithm is a greedy method such

that, starting from S = ∅, it inserts a node of the smallest

degree into S and removes the inserted node and all the

adjacent nodes (along with all the incident edges) from the

graph. The process is repeated until all nodes are removed

from the graph, and finally S is output. The computation time

is linear in the numbers of nodes and edges [11].

III. A HEURISTIC ALGORITHM FOR THE PLSE PROBLEM

In this section, we propose a heuristic algorithm for the

PLSE problem. The algorithm runs like a typical heuristic

algorithm for a packing problem; we are given several con-

tainers (what we call compatibility graphs), each of which

is given its capacity (matching number). Then we are asked

to pack as many objects (matching edges) in the containers as

possible, where packing an object in a container may decrease

the capacities of other containers. To construct an approximate

solution, we repeat choosing a certain container and packing

the objects up to the capacity. The proposed algorithm is

inspired by the 1
2
-approximation algorithm that was given

in [3]. First we describe the 1
2
-approximation algorithm in

Section III-A. Then in Section III-B, we present the proposed

algorithm.

A. The Maximum Matching Based 1
2
-Approximation Algo-

rithm

The 1
2
-approximation algorithm works as follows; starting

from L = L0, we repeat choosing a PLS L′ that is compatible

with L and updating L ← L⊕L′ iteratively. For convenience,

when L is updated to L ⊕ L′, we say that L′ is added to

the PLS L. To decide L′, the algorithm utilizes a maximum

matching of what we call a compatibility graph. Given a PLS

Algorithm 1 The 1
2
-approximation algorithm given in [3]

1: L ← L0

2: for k = 1, 2, . . . , n do

3: M∗ ← a maximum matching of Gsymb,k
L

4: L ← L⊕ T (M∗)
5: end for

6: output L

L, the compatibility graph is constructed for any symbol k ∈
[n]. The compatibility graph for the symbol k is denoted by

Gsymb,k
L = (R ∪ C, Esymb,k

L), where R and C are the node

sets and Esymb,k
L is the edge set such that;

Esymb,k
L =

{

{Ri, Cj} ⊆ R ∪ C |

(i, j, k) is compatible with L
}

.

Let M ⊆ Esymb,k
L denote any matching of Gsymb,k

L . We define

the triple set T (M) as follows;

T (M) =
{

(i, j, k) | {Ri, Cj} ∈ M
}

.

Any two triples (i, j, k) and (i′, j′, k′) in T (M) satisfy i �= i′

and j �= j ′ since M is a matching of Gsymb,k
L . Thus T (M) is

a PLS. Each (i, j, k) ∈ T (M) is compatible with L from the

definition of Esymb,k
L . Then T (M) and L are compatible.

In the order k = 1, 2, . . . , n, the algorithm finds a maximum

matching M ∗ of Gsymb,k
L and adds T (M ∗) to L iteratively.

We show the algorithm in Algorithm 1. Naı̈vely implemented,

the algorithm runs in O(nτn) = O(n7/2) time.

B. The Proposed Algorithm

Let us describe our idea for how we improve the empirical

performance of the above approximation algorithm. We have

denoted the available symbols by integers 1, 2, . . . , n only

for convenience. Their numerical order does not have any

significant meaning, whereas the above algorithm chooses k in

that order. Thus there is room for developing a smart criterion

to choose a compatibility graph. (The approximation ratio is

still guaranteed even if we choose k arbitrarily; see the proof

in Section 5.2 of [3] for detail.)

Besides, the compatibility graphs for the symbols are not

the only “containers” in which we can “pack” the maximum

matching to increase the objective value. Motivated by the fact

that the dimensions of PLS in the triple set representation are

symmetric, we introduce the compatibility graph also for each

row and for each column. The compatibility graph for the row

i is denoted by Grow,i
L = (Ri ∪ [n], Erow,i

L), where Ri and [n]
denote the node sets and E row,i

L is the edge set such that;

Erow,i
L =

{

{(i, j), k} ⊆ Ri ∪ [n] |

(i, j, k) is compatible with L
}

.

Similarly, the compatibility graph for the column j is denoted

by Gcol,j
L = (Cj ∪ [n], Ecol,j

L), where Cj and [n] denote the

KAZUYA HARAGUCHI, MASAKI ISHIGAKI, AKIRA MARUOKA: A MAXIMUM MATCHING BASED HEURISTIC ALGORITHM 349

node sets and Ecol,j
L is the edge set such that;

Ecol,j
L =

{

{(i, j), k} ⊆ Cj ∪ [n] |

(i, j, k) is compatible with L
}

.

We show an example of the compatibility graphs in Fig. 1. Let

us denote any matching of Grow,i
L or Gcol,j

L by M . We define

the triple set T (M) as follows;

T (M) =
{

(i, j, k) | {(i, j), k} ∈ M
}

.

Analogously with the case of Gsymb,k
L , the triple set T (M) is

a PLS and compatible with L. Thus T (M) can be added to

L.
Finally, given a PLS L, we have 3n compatibility graphs.

Using all of them as containers, we expect to obtain a better

solution than the case when we use only the n compatibility

graphs for symbols. We denote the set of the n compatibility

graphs for symbols by G symb
L = {Gsymb,1

L , . . . , Gsymb,n
L },

the set of the n compatibility graphs for rows by G row
L =

{Grow,1
L , . . . , Grow,n

L } and the set of the n compatibility graphs

for columns by Gcol
L = {Gcol,1

L , . . . , Gcol,n
L }. We also denote

the union of these graph sets by GL = Gsymb
L ∪ Grow

L ∪ Gcol
L .

Let us introduce the criterion by which we choose one of the

3n compatibility graphs. Recall that any edge corresponds to a

triple (i, j, k) ∈ [n]3. When Li,j = k, no edge corresponding

to (i, j, k) appears in any compatibility graph. For any com-

patibility graph GL ∈ GL, we denote by ρ(GL) the number of

node pairs that do not appear as edges due to L i,j = k. For

example, when GL is the compatibility graph Gsymb,k
L for the

symbol k, ρ(Gsymb,k
L) is defined as follows;

ρ(Gsymb,k
L) =

∣

∣

{

{Ri, Cj} ⊆ R ∪ C | Li,j = k
}∣

∣.

In other words, ρ(Gsymb,k
L) indicates the number of cells to

which L already assigns the symbol k. Analogously, ρ(G row,i
L)

and ρ(Gcol,j
L) indicate the numbers of cells in the row i and in

the column j to which L assigns certain symbols, respectively.

Now we define the criterion function f(GL) as follows.

f(GL) =

{

ν(GL) + ρ(GL) if ν(GL) > 0,
0 otherwise.

(1)

Basically, our heuristic algorithm runs as follows; starting

from L = L0, the algorithm chooses the compatibility graph

GL ∈ GL such that f(GL) is the largest. Finding a maximum

matching M ∗ of the chosen graph, the algorithm updates

the solution by L ← L ⊕ T (M ∗). The above operation is

repeated while L is extensible. The repetition is at most 3n
times; suppose that a compatibility graph Gs

L is chosen at a

certain step of the algorithm, where s denotes the superscript

of the compatibility graph. Let us denote the updated PLS

by L′ = L ⊕ T (M∗). For any extension L′′ � L′, there

is no edge in the compatibility graph Gs
L′′ . Then we have

ν(Gs
L′′) = 0 and f(Gs

L′′) = 0. Thus Gs
L′′ is never chosen in

the rest execution of the algorithm. Finally, when f(GL) = 0
holds for all the 3n GL’-s, L is blocked and the algorithm

halts.

The algorithm utilizes the function f in (1) as the criterion

to choose a compatibility graph. It may prefer a compatibility

graph GL such that more triples can be added (i.e., larger

ν(GL)) and/or more cells are already assigned symbols (i.e.,

larger ρ(GL)). The only matching number ν(GL) appears to

be a more natural criterion. However, it did not yield good

results in our preliminary experiments.

We summarize the heuristic algorithm in Algorithm 2. The

structure is as above stated, but in Line 3, we introduce

the subroutine named COLLECTME for further improvement.

The subroutine constructs a PLS that is compatible with L,
from the triples of mandatory edges over the 3n compatibility

graphs. Then it adds the PLS to L, before adding the triple

set of a maximum matching of a certain compatibility graph

to L.
Let us describe the motivation. Recall that a maximum

matching is not necessarily unique in a graph. For example,

given the PLS L in Fig. 1, there are 4 maximum matchings in

the compatibility graph Gsymb,1
L . We denote these 4 maximum

matchings by M ∗
1 , . . . ,M

∗
4 , where we define;

M∗
1 =

{

{R1, C4}, {R2, C1}, {R3, C2}, {R4, C3}
}

,

M∗
2 =

{

{R1, C2}, {R2, C1}, {R3, C4}, {R4, C3}
}

,

M∗
3 =

{

{R1, C2}, {R2, C3}, {R3, C4}, {R4, C1}
}

,

M∗
4 =

{

{R1, C4}, {R2, C3}, {R3, C2}, {R4, C1}
}

.

The greedy method would choose Gsymb,1
L for the container

since f(Gsymb,1
L) is the largest (which is 4) among all the

compatibility graphs. Then the maximum matching algorithm

finds arbitrary one M ∗
x (x = 1, . . . , 4) and T (M ∗

x) is added

to L. No matter which T (M ∗
x) is added, the symbol 1 is

assigned to exactly 4 cells. Then the symbols 2 and 3 are

assigned to the remaining empty cells, and the final solution

is obtained. How many cells are filled in the final solution

depends on which T (M ∗
x) is added. More precisely, when

either T (M ∗
1) or T (M

∗
2) is added, the final solution becomes

worse than the case when either T (M ∗
3) or T (M

∗
4) is added.

To analyze the reason, see Fig. 2 for the final solutions that

are obtained by extending L ⊕ T (M ∗
1), . . . , L ⊕ T (M∗

4).
For L ⊕ T (M∗

3), there is another final solution such that

the symbol 2 is assigned not to (4, 3) but to (4, 4), but it

does not matter since we discuss how many cells are filled.

We claim that the problem should come from the number

of the bold cells occupied by the symbol 1. The bold cells

in each grid correspond to the mandatory edges in G symb,2
L

and Gsymb,3
L , that is, {R3, C4}, {R4, C3} ∈ Esymb,2

L and

{R1, C4}, {R2, C1} ∈ Esymb,3
L ; see also these graphs in

Fig. 1. The matching number ν(Gsymb,k
L) gives an upper

bound on the number of cells that the symbol k is assignable.

Occupying bold cells by the symbol 1 may diminish the

matching numbers of Gsymb,2
L and Gsymb,3

L . When T (M ∗
1) or

T (M∗
2) is added, 3 out of the 4 bold cells are occupied by the

symbol 1, while only 1 bold cell is occupied when T (M ∗
3) or

T (M∗
4) is added.

Based on the above, we consider that mandatory edges

should be treated with a greater care in order to approach a

350 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

2

2

3

3

4

4

4

R1

R2

R3

R4

C1

C2

C3

C4

R C
R1

R2

R3

R4

C1

C2

C3

C4

R C

L Gsymb,1
L for the symbol 1 Gsymb,2

L for the symbol 2

R1

R2

R3

R4

C1

C2

C3

C4

R C
R2 [n]

1

2

3

4

(3, 1)

(3, 2)

(3, 3)

(3, 4)

C3 [n]
1

2

3

4

(1, 4)

(2, 4)

(3, 4)

(4, 4)

Gsymb,3
L for the symbol 3 Grow,3

L for the row 3 Gcol,4
L for the column 4

Fig. 1. An example of compatibility graphs for a PLS L

Algorithm 2 The proposed heuristic algorithm for the PLSE

problem

1: L ← L0

2: while L is extensible do

3: L ← COLLECTME(L)
4: construct the set GL of the compatibility graphs for

the PLS L
5: GL ← a compatibility graph in GL such that f(GL)

in (1) is the largest

6: M∗ ← a maximum matching of GL

7: L ← L⊕ T (M∗)
8: end while

9: output L

better solution. Our idea is to add as many triples coming

from mandatory edges to L as possible. Let ME L denote

the set of all the mandatory edges over the 3n compatibility

graphs in GL. We would like to add all the triples in T (ME L)
if possible, but we cannot always do so since there are

incompatible triples in T (MEL) in general. Let us define the

graph HL = (T (MEL), FL) such that the triple set T (MEL)
is the node set and the edge set FL is defined as follows;

FL =
{

{(i, j, k), (i′, j′, k′)} ⊆ T (MEL) |

(i, j, k) and (i′, j′, k′) are incompatible
}

.

Clearly, any independent set of HL is a PLS and compatible

with L. This motivates us to solve the maximum independent

set problem on HL. Since the problem is NP-hard, we find

a nearly maximum solution by the greedy algorithm [11] that

we described in Section II-B.

We summarize the subroutine COLLECTME in Algorithm 3.

The subroutine repeats enumerating all mandatory edges over

the 3n compatibility graphs, computing a nearly maximum

independent set, and adding the independent set to L until

2

2

3

3

4

4

4

1

1

1

1

2

2

2

3

3

4

4

4

1

1

3

2

1

1

The final solution The final solution

from L⊕ T (M ∗
1) from L⊕ T (M ∗

2)
(12 cells) (13 cells)

2

2

3

3

4

4

4

1

1

1

1

3

3

2

2

2

3

3

4

4

4

1

1

1

1

3

2

2

The final solution The final solution

from L⊕ T (M ∗
3) from L⊕ T (M ∗

4)
(14 cells) (14 cells)

Fig. 2. The final solutions obtained by extending L⊕M∗

1
, . . . , L⊕M∗

4
:

the number of the filled cells is indicated in the parentheses

Algorithm 3 The subroutine COLLECTME

1: loop

2: construct the set GL of compatibility graphs

3: MEL ← the set of the mandatory edges over the 3n
compatibility graphs in GL

4: if MEL = ∅ then

5: break the loop

6: end if

7: construct the graph HL = (T (MEL), FL)
8: I ← an independent set in the graph HL

9: L ← L⊕ I
10: end loop

11: return L

there is no mandatory edge in any compatibility graph.

KAZUYA HARAGUCHI, MASAKI ISHIGAKI, AKIRA MARUOKA: A MAXIMUM MATCHING BASED HEURISTIC ALGORITHM 351

C. Computational Complexity

We claim that the proposed algorithm should run in

O(n11/2) time. The algorithm consists of the main routine in

Algorithm 2 and the subroutine COLLECTME in Algorithm 3.

In the main routine, the most time-consuming task is to find

maximum matchings of all the compatibility graphs. Since the

iteration times of the main routine is at most 3n, the running

time is 3n× 3n× τn = O(n9/2).
The iteration times of the subroutine amounts to O(n2) over

the whole execution of the algorithm since there are at most

3n2 mandatory edges; there are 3n compatibility graphs, and

in each graph, there are at most n mandatory edges. The

most time-consuming task is not the greedy algorithm for

the maximum independent set problem but to find maximum

matchings of all the compatibility graphs; one can see that the

former takes O(n3) time, whereas the latter takes O(n7/2)
time. Then the running time is O(n2)×O(n7/2) = O(n11/2).

IV. COMPUTATIONAL EXPERIMENTS

In this section, we present some experimental results to

show how the proposed algorithm is effective in practice.

Specifically, we show that the proposed algorithm tends to

deliver a good solution quickly in comparison with other ap-

proximation algorithms. We also show that, when computation

time is limited, the proposed algorithm tends to deliver a

better solution than IBM ILOG CPLEX [7], a state-of-the-art

optimization solver.

A. Experimental Settings

We describe how to generate problem instances. This issue

has been studied in the field of constraint programming.

In our experiments, we generate PLSE instances based on

the QCP (quasigroup completion problem) framework that

was discussed in [12]. An instance is characterized by two

parameters. One is a natural number n, the side length of

the grid, and the other is p (0 ≤ p ≤ 1), which is the

ratio of the number of pre-assigned cells over n2. The QCP

framework starts with the empty n × n grid and assigns a

random symbol to a random empty cell so that the resulting

assignment is PLS. The assignment is repeated until ⌊pn2⌋
cells are assigned symbols. In the context of the decision

problem, when the pre-assigned ratio p is small (resp., large),

an instance is more (resp., less) likely to be satisfiable since

there are less (resp., more) constraints. Many papers have

reported the easy-hard-easy phase transition with respect to

p (e.g., [13]); the instances are less computationally tractable

when p is intermediate, e.g., 0.4 ≤ p ≤ 0.7.
We refer to the proposed algorithm as OURS. For com-

parison, we will consider the algorithm that does not call

the subroutine COLLECTME. We refer to this version of

the algorithm to OURS-NOSUB. We also use 4 methods:

MATCHING, LS, CPMATH and CPCP. The point is that

MATCHING and LS are approximation algorithms that do

not necessarily provide a global optimal solution, whereas

CPMATH and CPCP are such softwares that retain exact

algorithms.

a) MATCHING: The 1
2
-approximation algorithm [3] that

forms the basis of the proposed algorithm and was explained

in Section III-A.

b) LS: The 2
3
− ε approximation algorithm [4] based on

local search that achieves the best approximation ratio among

those studied so far. Let T0 denote the triple set representation

of the given PLS L0. Suppose that a non-negative number r
is given. For any set T ⊆ [n]3 of triples such that T � T0,

we denote the neighborhood of T by Nr(T) that is defined as

follows;

Nr(T) = {T ′ = (T \ S) ∪ S′ | S ⊆ T \ T0, |S| ≤ r,

S′ ⊆ [n]3, |S′| = |S|+ 1, T ′ is a PLS}.

We call r the radius of neighborhood. LS starts with T = T0

and iterates choosing a solution T ′ ∈ Nr(T) and updating

T ← T ′ until no solution exists in the neighborhood, i.e.,

Nr(T) = ∅. The larger r is, the better the approximation

ratio is, but at the same time, the more the computation time

may become. Although r ≥ 7 defeats the second best bound

1− 1
e given in [5], the time bound becomes O(n26) in naı̈ve

implementation (r = 7), which is not practical. We use r ≤ 4
since any larger r was too time consuming in our preliminary

experiments.

c) CPMATH: IBM ILOG CPLEX Optimizer (version

12.4) that solves the PLSE problem by means of mathematical

programming. The PLSE problem can be formulated as a 0-

1 integer programming problem. See [3] for the formulation.

We set the time limit parameter to 6.0×102 seconds, i.e., if the
computation time exceeds 6.0× 102 seconds, the computation

is terminated and the best solution found so far is output. We

set all the other parameters to default values.

d) CPCP: IBM ILOG CPLEX CP Optimizer (version

12.4) that solves the PLSE problem by means of constraint

programing. We formulate the PLSE problem as a constraint

optimization problem as follows.

maximize |L|

subject to ∀i ∈ [n], all-different except 0(Li,1, . . . , Li,n),

∀j ∈ [n], all-different except 0(L1,j , . . . , Ln,j),

∀(i, j) ∈ [n]2, (L0)i,j �= 0 ⇒ Li,j = (L0)i,j ,

∀(i, j) ∈ [n]2, Li,j ∈ [n] ∪ {0}.

In the above formulation, the all-different except 0 con-

straint [14] is a special case of the typical all-different con-

straint, requiring that the variables should take all-different

values except the variables assigned 0. We set the level of de-

fault inference (DefaultInferenceLevel) and the level

of all-different inference (AllDiffInferenceLevel) to

extended, i.e., the most sophisticated constraint propagation

technique is used. We set the time limit parameter to 6.0×102

seconds. We set all the remaining parameters to default values.

All the experiments are conducted by our PC that carries

2.80 GHz CPU and 4GB main memory.

352 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

TABLE I
THE NUMBER OF WINS, TIES AND LOSTS OF OURS AGAINST

OURS-NOSUB AND MATCHING OVER THE 1000 INSTANCES

the pre-assigned ratio p

0.2 0.4 0.6 0.8

n = 10 vs. OURS-NOSUB (win) 34 273 136 17
(tie) 957 577 376 976
(lost) 9 150 488 7

vs. MATCHING (win) 744 966 633 190
(tie) 247 24 217 804
(lost) 9 10 150 6

n = 80 vs. OURS-NOSUB (win) 809 915 913 809
(tie) 73 23 20 31
(lost) 118 62 67 160

vs. MATCHING (win) 998 1000 1000 999
(tie) 1 0 0 1
(lost) 1 0 0 0

B. Results

First, we compare OURS with OURS-NOSUB and

MATCHING. We generate 1000 instances for each pair (n, p)
such that n ∈ {10, 20, . . . , 80} and p ∈ {0.1, 0.2, . . . , 0.9}.
We solve all the generated instances by each algorithm and

compare the algorithms in terms of |L|. We show the typical

results in Table I. The table shows the numbers of wins,

ties and losts of OURS against the other algorithms over the

1000 instances. When n is small (i.e., n = 10), OURS is

competitive with OURS-NOSUB in general, except that it is

rather worse for p = 0.6. OURS outperforms MATCHING

for smaller p, and for larger p, they are rather competitive.

When n is larger, OURS is more likely to outperform the

rest two algorithms. In particular, when n = 80, OURS wins

over OURS-NOSUB in more than 80% of the instances and

wins over MATCHING in almost all the instances. Based on

these, we claim that the subroutine COLLECTME should play

a significant role in improving the solution especially when

n is large. We also claim that OURS should be superior to

MATCHING, the original approximation algorithm. Let us

discuss the computation time. MATCHING takes less than 1

seconds in all the instances from n = 10 to 80. Given the side

length n, OURS takes more computation time for the instances

that are generated by smaller pre-assigned ratio p. For every
n = 10, 20, . . . , 80, the average computation time for p = 0.1
is twice to three times of that for p = 0.9 approximately. For

example, when n = 10 (resp., 80), the average computation

time for p = 0.1 is 7.7 × 10−3 (resp., 2.0 × 101) seconds,

whereas that for p = 0.9 is 4.1 × 10−3 (resp., 7.5 × 100)
seconds. We consider the reason as follows; when p is smaller,

there are more edges in the compatibility graphs in the earlier

steps of the algorithm. Then it should take more time to

compute a maximum matching since the algorithm runs in

O(
√

|V ||E|) time, which is proportional to the number of

edges, while |V | = 2n holds for any compatibility graph.

The current implementation of OURS is rather naı̈ve, and we

believe that it is possible to improve the computation time to

some extent by devising the data structure. This is left for

future work.

Next, we compare OURS with LS. This time we generate

TABLE II
THE NUMBER OF WINS, TIES AND LOSTS OF OURS AGAINST 10 LS’-S

OVER THE 100 INSTANCES

vs. LS the pre-assigned ratio p

0.2 0.3 0.4 0.5 0.6 0.7 0.8

n = 10 (win) 570 815 839 412 145 32 0
r = 4 (tie) 413 176 116 218 281 689 962

(lost) 17 9 45 370 574 279 38

n = 20 (win) 920 975 994 999 796 157 88
r = 3 (tie) 61 16 4 1 76 143 508

(lost) 19 9 2 0 128 700 404

n = 30 (win) 1000 1000 1000 1000 1000 774 283
r = 2 (tie) 0 0 0 0 0 69 173

(lost) 0 0 0 0 0 157 544

100 instances for given n and p. We solve each instance by

OURS once, whereas we solve it by LS 10 times; in our

implementation, LS proceeds to a solution randomly chosen

from the neighborhood. Changing the seed of pseudo random

numbers, we solve the instance by executing LS 10 times. We

examine the 100 × 10 = 1000 cases to count the number of

wins, ties and losts of OURS. We show the results in Table II,

along with the values of the radius r. We describe the reason

why we set r to the indicated values. The computation time

of LS is affected by r significantly. LS is just a heuristic, and

its computation time should be shorter than the time needed

for the optimization solvers (i.e., CPMATH or CPCP) to find

global optimum solutions. We set the radius r based on this

philosophy. For example, when n = 30 and p = 0.2, the
solvers find global optimum solutions in only 1.0×101 seconds

for any instance. However, when r = 3, LS takes at least

3.0 × 102 seconds until it outputs a local optimal solution,

which we infer from our preliminary experiments. Thus we

set r = 2 even though the average computation time is still

2.4 × 101 seconds. Note that OURS is much faster than LS;

it takes less than 1 second to solve any instance. As expected

from Table II, OURS should outperform LS in this perspective

for n ≥ 30 and p ≤ 0.7. Note that this range includes “hard”

instances in the context of the phase-transition.

Finally, we compare OURS with CPMATH and CPCP.

When n gets larger, the solvers are less likely to find global

optimum solutions in practical time. To illustrate this, in

Table III, we show the number of instances such that the

solvers can find global optimum solutions in 6.0×102 seconds.

In this experiment, we generate 100 instances for each (n, p).
It is shown that, when p is smaller (resp., larger), CPCP

finds global optimal solutions in more (resp., less) instances

than CPMATH. When p is intermediate (p = 0.6 and 0.7 in

particular), the solvers hardly find global optimum solutions.

When the solvers cannot find a global optimum solution within

the time limit, they output the best solution among those

searched. In such cases, OURS yields better solutions than

the solvers although the computation time is much shorter.

We illustrate this for n = 60 in Fig. 3. The figure shows

the average of |L| (vertical axis) with respect to the change

of p (horizontal axis). OURS+CPCP represents CPCP that

is given an incumbent solution generated by OURS. In the

KAZUYA HARAGUCHI, MASAKI ISHIGAKI, AKIRA MARUOKA: A MAXIMUM MATCHING BASED HEURISTIC ALGORITHM 353

TABLE III
THE NUMBER OF INSTANCES THAT THE OPTIMIZATION SOLVERS CAN FIND

A GLOBAL OPTIMAL SOLUTION WITHIN 6.0× 10
2 SECONDS

the pre-assigned ratio p

0.2 0.3 0.4 0.5 0.6 0.7 0.8

n = 40 CPMATH 0 1 3 71 7 0 100
CPCP 100 100 99 89 3 0 0

n = 50 CPMATH 0 0 0 0 0 0 100
CPCP 99 94 72 18 0 0 0

n = 60 CPMATH 0 0 0 0 0 0 11
CPCP 92 66 25 1 0 0 0

 3300

 3350

 3400

 3450

 3500

 3550

 3600

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|L|

p

OURS
OURS+CPCP

CPCP
CPMATH

Fig. 3. The averaged objective value |L| with respect to the change of p

(n = 60)

solution search, CPCP retains the incumbent solution to prune

solution subspaces such that there is no hope of finding a better

solution. Giving a good incumbent solution may improve the

efficiency of the search, or equivalently, it may result a better

solution than the default CPCP within the same time limit.

When p ≤ 0.2, OURS and OURS+CPCP are competitive

with CPCP and are much better than CPMATH. In this case,

CPCP finds a global optimal solution within the time limit

in almost all instances (see Table III), and thus OURS is

also expected to do so. Surprisingly, when 0.3 ≤ p ≤ 0.7
(i.e., “hard” instances), OURS is better than the solvers,

and OURS+CPCP is even better. Note that OURS solves an

instance with n = 60 within only 6.0×100 seconds on average,
while the solvers take at most 6.0 × 102 seconds. We claim

that these results should show the empirical effectiveness of

the proposed algorithm.

V. CONCLUDING REMARKS

In this paper, we proposed a heuristic algorithm for

the PLSE problem by extending the 1
2
-approximation algo-

rithm [3] that utilizes the notion of maximum matching. We

showed how the proposed algorithm is effective in practice

through computational experiments.

This paper just shows the possibilities of our approach

for the PLSE problem. We believe that the algorithm can

be improved further by analyzing its behavior for various

instances and the structures of compatibility graphs carefully.

It is an alternative to apply metaheuristic techniques such

as genetic algorithm and simulated annealing (SA). In fact,

SA was applied to sudoku problem [15] that asks to find

a PLS that is a maximum extension of a given PLS and

that satisfies additional constraints. Different from SA, there

is no adjustable parameter in the proposed algorithm whose

tuning is often exhaustive. Being rather simple, the proposed

algorithm delivers a good solution quickly. We can say that

the proposed algorithm is a 1
3
-approximation algorithm since

it delivers a blocked PLS and any blocked PLS is a 1
3
-factor

solution [3]. It is interesting and challenging future work

to analyze a nontrivial approximation ratio of the proposed

algorithm.

The decision problem version of the PLSE problem has

been studied in the field of constraint programming intensively.

The problem is whether there is a Latin square that is an

extension of a given PLS L0. The answer is yes only when

there is a perfect matching for every compatibility graph GL0
.

Any forbidden edge can be ignored in the solution search and

the typical constraint programming technique eliminates all

of the forbidden edges [16]. Our algorithm is different from

this in that ours does not utilize forbidden edges but utilizes

mandatory edges.

We have considered a heuristic algorithm for the PLSE

problem, assuming practical use. We hope that other re-

searchers take interest in this problem and work on it in the

nearest future.

REFERENCES

[1] C. J. Colbourn, “The complexity of completing partial Latin squares,”
Discrete Applied Mathematics, vol. 8, 1984, pp. 25–30.

[2] R. A. Barry and P. A. Humblet, “Latin routers, design and implemen-
tation,” IEEE/OSA Journal of Lightwave Technology, vol. 11-5, 1993,
pp. 891–899.

[3] R. Kumar, A. Russel, and R. Sundaram, “Approximating Latin square
extensions,” Algorithmica, vol. 24-2, 1999, pp. 128–138.

[4] I. Hajirasouliha, H. Jowhari, R.Kumar, and R. Sundaram, “On complet-
ing Latin squares,” In Proceedings of STACS 2007, Lecture Notes in
Computer Science vol. 4393, 2007, pp. 524–535.

[5] C. P. Gomes, R. G. Regis, and D. B. Shmoys, “An improved ap-
proximation algorithm for the partial Latin square extension problem,”
Operations Research Letters, vol. 32-5, 2004, pp. 479–484.

[6] Gurobi Optimizer, http://www.gurobi.com/
[7] IBM ILOG CPLEX, http://www-01.ibm.com/software/commerce/

optimization/cplex-optimizer/
[8] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum

matchings in bipartite graphs,” SIAM Journal on Computing, vol. 2-4,
1973, pp. 225–231.

[9] R. Cymer, “Dulmage-Mendelsohn canonical decomposition as a generic
pruning technique,” Constraints, vol. 17, 2012, pp. 234–272.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman and Company, New
York and Oxford; 1979.

[11] M. M. Halldórsson and J. Radhakrishnan, “Greed is good: approximating
independent sets in sparse and bounded-degree graphs,” Algorithmica,
vol. 18, 1997, pp. 145–163.

[12] R. Barták, “On generators of random quasigroup problems,” In Proceed-

ings of CSCLP 2005, 2006, pp. 164–178.
[13] C. P. Gomes and D. Shmoys, “Completing quasigroups or Latin squares:

a structured graph coloring problem,” In Proceedings of Computational

Symposium on Graph Coloring and Generalizations, 2002.
[14] N. Beldiceanu, M. Carlsson and, J. X. Rampson, “Global constraint cata-

log,” Technical Report Swedish Institute of Computer Science, T2005-08,
2006.

[15] R. Lewis, “Metaheuristics can solve sudoku puzzles,” Journal of Heuris-
tics, vol. 13-4, 2007, pp. 387–401.

[16] J. C. Régin, “A filtering algorithm for constraints of difference in
CSPs,” In Proceedings of the twelfth national conference on artificial

intelligence, 1994, pp. 362–367.

354 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

