
Verifying data integration agents with
deduction-based models

Radosław Klimek∗, Łukasz Faber∗ and Marek Kisiel-Dorohinicki∗
∗AGH University of Science and Technology

al. A. Mickiewicza 30, 30-059 Krakow, Poland

E-mail: {rklimek,faber,doroh}@agh.edu.pl

Abstract—The paper shows how an agent-based system can
be subjected to formal verification using a deductive approach.
The particular system for gathering open source intelligence is
considered, which is build on a framework for data integra-
tion. Techniques allowing for automatic extraction of logical
specifications are described with emphasis on pattern-based and
rule-based approaches. An example illustrates how the proposed
method works in a scenario with iterated agent tasks combining
these two approaches.

I. INTRODUCTION

T
HE key concept in multi-agent systems (MAS) are intelli-

gent interactions (coordination, cooperation, negotiation).

Thus multi-agent systems are ideally suited to representing

problems that have multiple problem solving methods, multi-

ple perspectives and/or multiple problem solving entities [1].

Yet this variety of perspectives often makes the design and

implementation of software MAS a really difficult task.

Formal methods enable the precise formulation of important

artifacts and the elimination of ambiguity. There are two

well established approaches to formal reasoning and system

verification [2]. The first is based on the state exploration

(“model checking”) and the second is based on deductive

reasoning. Model checking is an operational rather than ana-

lytic approach [3]. On the other hand, deduction-based formal

verification is essential for sustainable verification leverage,

characterized by intuitiveness, a top-down way of thinking,

logic-based reasoning, coverage of infinite computations, etc.

Temporal logic is a well established formalism which allow to

describe properties of reactive systems. The semantic tableaux

method, which might be descriptively called “satisfiability

trees”, seems intuitive and may be considered as a goal-based

formal reasoning.

The contribution is based on an agent-based framework ded-

icated to acquiring and processing distributed, heterogeneous

data collected from the various Internet sources [4]. Data pro-

cessing in such a system is structuralized by means of dynamic

workflows based on agents’ interactions. Our goal is to provide

a formal description of these interactions to make sure the

system works properly. Since logical specifications are difficult

to specify manually, a method for an automatic extraction of

logical specifications, considered as a set of temporal logic

formulae, was proposed in [5], or for a building requirements

models during the software requirements elicitation in [6].

Here, a case of iterated agent tasks is considered and illustrated

by a more complex scenario in a slightly different application

area. The case includes both an active model and a state model

for agent systems.

In the first part of the paper essential logical background is

provided and the method of specification generation based on

workflow describing agents’ interactions is described. Then

the general structure of the framework for data integration

is presented. This constitutes a base for the discussion of

the scenario of the particular system, which shows how the

approach works in practice.

II. LOGICAL PRELIMINARIES

Logical background which is temporal logic, semantic

tableaux, and the deduction-based verification system are

discussed below. Temporal logic TL is a formal and logical

system for the specification and verification of software models

and systems [7]. It introduces symbolism (unary and dual

operators are ♦ for “sometime in the future” and � for “always

in the future”) for representing and reasoning about the truth

and falsity of formulas throughout the flow of time and taking

into consideration changes of their valuation. It allows to

describe both temporal relations between reached states and to

specify expected properties. The attention is focused on propo-

sitional linear-time temporal logic PLTL, i.e. the time structure

constitutes a linear and unbounded sequence. Each element in

the mentioned sequence corresponds to a propositional world,

i.e. atomic propositions AP are valued in every point of the

sequence. Temporal logic and their syntax and semantics are

discussed in many works, e.g. [8], [7]. Considerations in the

work are limited to the smallest temporal logic, e.g. [9], [10],

which is extension of a classical propositional calculus’ to

the axiom �(Ψ ⇒ Φ) ⇒ (�Ψ ⇒ �Φ) and the inference rule

|−Ψ =⇒ |−�Ψ. The minimal logic, also called the K logic, is

sufficient to define many system properties (liveness, safety),

The following formulas may be considered as examples of

this logic: action ⇒ ♦reaction, �(send ⇒ ♦ack), ♦live,

�¬(event), etc.

Semantic tableaux is a decision procedure, based on for-

mula decomposition, for checking formula satisfiability. Even

though it is known in classical logic, it can also be applied in

temporal logic [11]. At each step of a well-defined procedure,

some logical connectives are removed and formulas are de-

composed. The method is a proof by contradiction, i.e. after

negation of the initial formula, finding a contradiction in all

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1029–1035

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1029

branches means that the inference tree is closed, and there are

no valuations that satisfy a formula. It leads to the statement

that the formula before the negation is true. The method

provides, through so-called open branches of the semantic tree,

information about the source of an error, if one is found. The

work [12] provides an example of the inference tree.

Modeler

(UML)

Generator

(rules)

Prover

Logical specifications

Analyzed

properties

Query

Yes/No

Answer

Generator

(patterns)

Agent models

(states)

Agent models

(activities)

Pattern

properties

P Logical specifications

Fig. 1. A deduction-based verification system for agent models

The outline architecture of the proposed deduction-based

system for agent models is presented in Fig. 1. There are

two generation components. The first one works using the

algorithm Γ1 (described in the next section) and is designed

for models expressed in activity diagrams using predefined

workflow patterns. The second one works using the algorithm

Γ2 (described in the next section) and is designed for models

expressed in state diagrams. The outputs of these generation

components are logical specifications understood as sets of

temporal logic formulas. The combined specification is treated

as a conjunction of all formulas p1, . . . , pn = L and every pi
is a specification formula generated during the extraction Γ1 or

Γ2. These formulas constitute a logical specification L. The Q

formula (query) is a desired system property for the analysed

software model.

Both the final specification of a system and the examined

properties constitute an input to the prover component, which

works using the semantic tableaux method. It enables the

automated reasoning. The input for this component is the

formula C(L) ⇒ Q, where C(L) means conjunction of all

extracted formulas, or, more precisely:

p1 ∧ . . . ∧ pn ⇒ Q (1)

After negation of formula (1), it is placed at the root of the

inference tree and decomposed using the semantic tableaux

method’s well-defined rules. The work [12] provides an ex-

ample of the inference tree.

The whole verification procedure can be summarised in the

following way:

1) Automatic generation of a logical specification based on

design patterns (Γ1);

2) Automatic generation of a logical specification based on

extraction rules (Γ2)

3) Introduction a property Q as a query for the considered

model;

4) The automatic inference using semantic tableaux for the

whole formula 1.

Steps 1 to 4, taken as a whole or individually, may be

processed many times, whenever models are changed (step 1

or step 2) or there is a need for a new reasoning due to the

revised system’s property (step 3).

III. LOGICAL SPECIFICATIONS

Two generation methods for extraction logical specifications

are considered in this section. The first one which is based

on predefined workflows is discussed in a more detailed way.

However, the rule-based approach is an interesting alternative

for generating logical specifications.

A. A pattern-based approach

Presentation of the approach needs to introduce some basic

notions and definitions. An elementary set of formulas over

atomic formulas ai,i=1,...,n is denoted pat(ai), or simply

pat(), as a set of temporal logic formulas {f1, ..., fm} such

that all formulas are syntactically correct. The examples of ele-

mentary sets are Pat1(a, b) = {a ⇒ ♦b,¬a ⇒ ¬b,�¬(a∧b)}
and Pat2(a, b, c) = {a ⇒ ¬♦b ∧ ♦c,�¬(b ∨ c)}. The logical

expression enables representing nested and complex structures

elementary sets. The logical expression WL is a structure

created using the following rules [13]:

• every elementary set pat(ai), where i > 0 and every ai
is an atomic formula, is a logical expression,

• every pat(Ai), where i > 0 and every Ai is either

– an atomic formula aj , where j > 0, or

– a set pat(aj), where j > 0 and aj is an atomic

formula, or

– a logical expression pat(Aj), where j > 0

is also a logical expression.

The example of logical expression is

Seq(Flow(a, b, c), Switch(d, e, f)) which is intuitive,

in that it shows the sequence of a parallel split (flow) and

then conditional execution (switch) of some activities.

Workflow patterns constitute a kind of primitives and enable

the automation of the generation process for logical spec-

ifications. It leads to the mapping of workflow patterns to

logical specifications. The proposed approach is based on

the assumption that the entire activity diagrams are built

using only predefined workflow patterns. The assumption is

1030 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

not a restriction since it enables receiving correct and well-

composed systems. Activity diagrams of UML enable mod-

elling workflow activities. They support choice, concurrency

and iteration. The important goal of diagrams is to show how

an activity depends on others [14].

Sequence(a1,a2): /* ver. 13.04.2013

in={a1} / out={a2}

a1 => <>a2 / []~(a1 & a2)

SeqSeq(a1,a2,a3):

in={a1} / out={a3}

a1 => <> a2 / a2 => <> a3

[]~((a1 & a2) | (a2 & a3) | (a1 & a3))

Flow(a1,a2,a3):

in={a1} / out={a2,a3}

a1 => <>a2 & <>a3 / []~(a1 & (a2|a3))

Switch(a1,a2,a3):

in={a1} / out={a2,a3}

a1 & c(a1) => <>a2 / a1 & ~c(a2) => <>a3

[]~((a1 & a2) | (a1 & a3) | (a2 & a3))

Loop-While(a1,a2):

in={a1} / out={a1,a2}

a1 & c(a1) => <> a2 / a1 & ~c(a1) => ~<> a2

[]~(a1 & a2)

Fig. 2. Predefined set of pattern temporal properties

Logical properties of all design patterns are expressed in

temporal logic formulas. They are stored in the predefined

and fixed logical properties set P . An example of such a

predefined set P for the UML activity diagrams is shown in

Fig. 2. Most elements of the P set, i.e. two temporal logic

operators, classical logic operators, etc. are not in doubt. a1,

a2 and a3 are atomic formulas and constitute a kind of formal

arguments for a pattern. The slash allows to place more than

one formula in a single line. c(a) means that the logical

condition associated with the activity a has been evaluated

and is satisfied. The pattern SeqSeq means the concatenation

of sequences as a sequence of three arguments. Variables in

and out provide information about activities for a pattern

that are the first and the last to be executed, respectively.

They enable representing pattern to be considered as a whole.

All formulas describe both safety and liveness properties

for every pattern [15]. Summing up, the predefined set of

pattern temporal properties consists of the following elements

{Seq, SeqSeq, F low, Switch, LoopWhile} the meaning of

which seems intuitive, i.e. sequence, sequence of a sequence,

concurrency, choice and iteration.
Generating a logical specification is not a simple summation

of formula collections resulting from a logical expression. The

generation algorithm Γ1 sketch for obtaining a set of temporal

formulas is given below.

1) At the beginning, the logical specification is empty, i.e.

L := ∅;

2) Patterns are processed from the most nested pattern to

be located more towards the outside and from left to

right;

3) If the currently analysed pattern consists only of atomic

formulas, the logical specification is extended, by sum-

ming sets, by formulas linked to the type of pattern

analysed, i.e. L := L ∪ pat();
4) If any argument is a pattern itself, then the logical

disjunction of all elements that belong to in and out

sets, is substituted in a place of the pattern;

The algorithm is a modification of the similar one presented

in [13]. All patterns of the logical expression are processed

one by one and the algorithm always halts. All parentheses

are paired. The example of the algorithm is provided in the

section V-B.

A logical specification L1 consists of all formulas obtained

from a logical expression using the algorithm Γ1, i.e.

L1(WL) = {fi : i > 0 ∧ fi ∈ Γ1(WL, P)} (2)

where fi is a PLTL formula. The sketch of the generation

algorithm is presented below. The generation process has two

inputs. The first one is a logical expression and the second

one is a predefined set of logical properties. The output is a

set of logical formulas.

B. A rule-based approach

However, the rule-based approach for generating logical

specifications is an interesting alternative for the previous

one, i.e. presented in the section III-A. The approach seems

suitable for the UML state diagram when considering set

of states (nodes) and transitions (edges). The discussion is

limited to some basic situations which are defined in terms

of temporal logic formulas. Considering all transitions one by

one, a logical specification understood as a set of temporal

logic formulas is obtained using the following rules which

constitute the generation algorithm Γ2:

• R.1 (Sequence) – the state b is enabled when the state a

is reached and an event e occurred, i.e.:

{(a ∧ e) ⇒ ♦b,�¬(a ∧ b)};

• R.2 (Split) – when the state a is reached and an event e

occurred then single thread of control is splited into two

threads of control to enable parallel reaching the state b

and the state c, i.e.:

{(a ∧ e) ⇒ ♦b ∧ ♦c,�¬(a ∧ (b ∨ c))};

• R.3 (Synchronization) – when two states a and b are

reached in parallel and two events e1 and e2 occurred,

respectively, then threads of control are transformed and

synchronised into a single thread of control to enable

reaching the state c, i.e.:

{(a ∧ e1) ∧ (b ∧ e2) ⇒ ♦c,�¬((a ∨ b) ∧ c)}.

A logical specification L2 consists of all formulas obtained

using the algorithm Γ2, i.e.

L2 = {fi : i > 0 ∧ fi ∈ Γ2} (3)

where fi is a PLTL formula. The input for the generation

algorithm is a state diagram. The output is a set of logical

formulas.

RADOSŁAW KLIMEK, ŁUKASZ FABER, MAREK KISIEL-DOROHINICKI: VERIFYING DATA INTEGRATION AGENTS 1031

Creation of project data agent

Main thread

Data initialization

Creation of issue agent

Issue agent's thread Project data agent's thread

Creation of code scan agent

Code scan

Creation of user search agent

Data collection

Global data collection

i terative

Strategy lookup

Strategy execution

Merging data

i terative

Strategy lookup

Strategy execution

Merging data

[Needs code statistics?]

[Needs commiters data?]

no

yes

no

yes

Fig. 3. Activity diagram of the search scenario presented in the section V-A.

IV. AGENT-BASED FRAMEWORK FOR DATA INTEGRATION

The vast amount of information available in the global

network calls for complex systems able to perform various

analyses with respect to data coming from various, often

heterogeneous sources. The described framework provides the

data- and task-oriented workflow for collecting and integrating

data from a wide range of diverse services [4], [5]. Fig. 4

presents the layered structure of the framework:

• Presentation – the usage of different views is possible.

They communicate with the rest of the system and allows

the user to interact and control the act of the data

integration.

• Middleware – the logical processing of the data is per-

formed here. This part of the system uses the agent

paradigm to delegate different parts of the data integration

and processing to other parts of the system (or the

external software, frameworks, etc.) that are represented

also as agents.

• Services and data – wrapping of the various external

data sources (and data processing capabilities) takes place

here. Interfaces of the systems are adapted and described

1032 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Middleware

Services and data

View 1 View 2

C
o
m

m
o
n
 t

y
p
e
 s

y
s
te

m

Internet, Software, Database

User

Fig. 4. Layered structure of the implementation

in terms of the common type system.

• Common type system – the whole framework uses the

types described here to annotate the processed data, data

sources and external systems interfaces or façades.

Queries created by the user are put into the agent system

that performs two types of operations: the management of

data (by inspecting queries and delegating them to other

agents) and execution of demanded actions (including their

selection, configuration and fault recovery). The system can

divide processing into issues. An issue is a separate part of

data processing, usually centred around an instance of a query

object and all related (i.e. found) data.

The current implementation defines three possible func-

tional roles for agents.

• System agents provide a bootstrapping and basic func-

tionality. They create new issues, handle errors, monitor

the system.

• Issue Agents care about a single issue (i.e. user query)

and delegate initial tasks to specialised action agents. An

Issue Agent retrieves a query from the pool, inspects it

and then requests (with messages) a chosen data agent to

resolve a query specified in the task.

• Action (Data) Agents implement the actual executive

part of the search functionality. Upon receiving the task

from an issue agent they obtain appropriate strategies and

then executes them to answer the query.

However, they are not constrained only to strategies. They

can perform any action on data: merge, simplify, verify,

etc.

Issue Agents are identified by a runtime-generated issue

identifier that represents an issue hey are taking care of. The

Action Agents are described during creation (implementation)

with tasks they can perform (called “capabilities”) and data

types they can operate on.

V. DATA COLLECTION SCENARIO AND ITS FORMAL

ANALYSIS

We consider an act of gathering data about open-source

projects as one of the possible use-cases. This kind of data

can be easily mined from popular infrastructure-providing

websites like GitHub, SourceForge, etc. Moreover, it is usually

very well interlinked and it makes it possible to gather much

broader information about e.g., people working on the project,

organisations involved, etc.

A. Base Scenario

The scenario has three sample steps:

1) Gathering data about an open-source project from all

available sources.

The user inputs a query comprising of, for example, a

name of the project or the link to its website into the sys-

tem. The system performs a look-up of possible matches

and returns a match of a list of possible matches. In the

latter case, there may be a requirement to choose one

(the best) match. It can be done manually or delegated

to an agent that can rate each result and select the best

one.

2) Scanning of the source code of the project.

If possible, a user may expect the project’s code to be

scanned to obtain particular statistics. If expected, an

agent responsible for project data may create another

agent that can scan the code. Such an agent will perform

the scan and merge the results back into the data handled

by the project data agent.

3) Gathering information about commiters and authors.

It may be further required to gather data about com-

miters and authors. The project data agent would create

a user search agent that is able to collect users data from

project website and other related sources.

On the system level our scenario is implemented as follows:

• The types like Project, Commiter, Code are introduced.

• The action agents that performs operations on types are

implemented: Project Data Agent, Code Scan Agent, User

Search Agent.

• Strategies for each external service can be created: Project

Data Search and Code Scan for e.g., GitHub, SourceForge

and User Data Search for, e.g., LinkedIn or Facebook.

Fig. 3 shows the activity diagram of an actual execution of

the scenario. The user prepares a query that consists of the

initial data to operate on (e.g. a name of the project). The task

is placed into the system (Data Initialization action). Then,

available issue agents are notified about it or a new one is

created. The issue agent locates an implementation of a so-

called action agent that can handle the specified task (Project

Data Agent), instantiates it, and delegates the task execution

to this agent.

Project Data Agent inspects the query and calls relevant

strategies (to locate and gather project data). Then it may

choose to instantiate the Code Scan Agent in order to scan

the project’s code. The same goes for commiters data – the

RADOSŁAW KLIMEK, ŁUKASZ FABER, MAREK KISIEL-DOROHINICKI: VERIFYING DATA INTEGRATION AGENTS 1033

Project Data Agent can instantiate a specialised agent that will

look up personal data.

Data collection is performed in two phases: first, the data

from strategies is merged by a responsible agent (e.g., data

about projects by the Project Data Agent); second, all data

from an agent is inserted into the object provided by an agent

higher in the hierarchy (e.g., Project Data Agent provides a

Project object that has a field commiters that is filled by the

User Search Agent). The query execution is finished by putting

results to the pool presented to the user.

Waiting for query

Spawning data agent

Locating data agent In error

Collecting data

Waiting for data
destruct

results ready

spawned

query arrived

create

destruct

located

no appropriate agent

data collected / notify_ui()

no data / notify_ui()

user request

Fig. 5. State diagram of the Issue Agent in the search scenario presented in
the section V-A.

Fig. 5 presents sample states of the Issue Agent that is

responsible for initiating search for data and forwarding data

to the user.

After creation and initialisation, an agent waits for a query

from the user. When the query arrives, the agent tries to locate

an implementation of a specialised data agent (in the scenario

described earlier — Project Data Agent). If such an agent

cannot be found it results in a fatal error as it is usually caused

by a wrong configuration.

If the data agent is found it is instantiated by the Issue

Agent and the query is forwarded to it. Then, the Issue Agent

waits for either results from the data agent or request from the

UI to get that data. It puts the data, if available, into the user

pool and notifies the UI about it. If no data has been found,

it generates an error for the UI.

B. Formal analysis and verification

Let us consider the activity diagram shown in Fig. 3.

Diagram activities represent propositions which are used for

modelling behaviour. Firstly, letters of the Latin alphabet

are substituted in a place of propositions. Replacing atomic

activities by Latin letters is a technical matter and is suit-

able only for the work because of its limited size. (In the

real world, the original names of activities are used.) The

following substitutions are made: a – DataInitialisation, b

– CreationIssueAgent, c – CreationProjectDataAgent, d –

ProjectDataLookup, e – NeedsCodeStatistics, f – Creation-

CodeScanAgent, g – CodeScan, h – NeedsCommitersData,

i – CreationUserSearchAgent, j – UserSearchLookup, k –

DataCollection, and l – GlobalDataCollection. (To simplify

considerations, a single proposition instead of a loop is used.)

The logical expression WL for the activity diagram is

SeqSeq(SeqSeq(a, b, c), SeqSeq(d, Switch(e,

Seq(f, g), N1), Switch(h, Seq(i, j), N2)), Seq(k, l)) (4)

Activity diagrams constitute one of two inputs for the deduc-

tion system shown in Fig. 1. Two activities N1 and N2 are

introduced since the diagram in Fig. 3 contains two switches

without activity (null activity). A logical specification L1 for

the logical expression WL is built using the algorithm Γ1

presented in the section III-A. The logical specification is

L1 = {f ⇒ ♦g,�¬(f ∧ g), i ⇒ ♦j,�¬(i ∧ j),

e ∧ c(e) ⇒ ♦(f ∨ g), e ∧ ¬c(e) ⇒ ♦N1,

�¬((e ∧ (f ∨ g)) ∨ (e ∧N1) ∨ ((f ∨ g) ∧N1)),

h ∧ c(h) ⇒ ♦(i ∨ j), h ∧ ¬c(h) ⇒ ♦N2,

�¬((h ∧ (i ∨ j)) ∨ (h ∧N2) ∨ ((i ∨ j) ∧N2)),

d ⇒ ♦e, e ⇒ ♦(j ∨N2),

�¬((d ∧ e) ∨ (e ∧ (j ∨N2)) ∨ (d ∧ (j ∨N2))),

a ⇒ ♦b, b ⇒ ♦c,�¬((a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c)),

k ⇒ ♦l,�¬(k ∧ l), (a ∨ c) ⇒ ♦(d ∨ i ∨ j),

(d ∨ i ∨ j) ⇒ ♦(k ∨ l),

�¬(((a ∨ c) ∧ (d ∨ i ∨ j)) ∨ ((d ∨ i ∨ j) ∧ (k ∨ l)) ∨

((a ∨ c) ∧ (k ∨ l)))} (5)

Formula 5 represents the output of the generator component

in Fig. 1.

Let us consider the state diagram shown in Fig. 5. Firstly,

letters of the Latin alphabet are substituted in a place of states.

The following substitutions are made: m – WaitingQuery, n

– LocatingDataAgent, o – InError, p – SpawningDataAgent,

q – WatingData, r – CollectingData, and s – Stop. Next,

the following substitutions for events are made: e′a – Quer-

yArrived, e′b – Located, e′c – NoAgent, e′d – Spawned, e′e

– Destruct, e′f – UserRequest, e′g – DataCollected, e′h –

NoData, and e′i – ResultsReady. State diagrams constitute

one of two inputs for the deduction system shown in Fig. 1.

A logical specification L2 is built using the algorithm Γ2

presented in the section III-B. The logical specification is

L2 = {(m ∧ e′a) ⇒ ♦n,�¬(m ∧ n), (n ∧ e′b) ⇒ ♦p,

�¬(n ∧ p), (n ∧ e′c) ⇒ ♦o,�¬(n ∧ o),

(o ∧ e′e) ⇒ ♦s,�¬(o ∧ s), (p ∧ e′d) ⇒ ♦q,

1034 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

�¬(p ∧ q), (q ∧ e′e) ⇒ ♦s,�¬(q ∧ s),

(q ∧ e′i) ⇒ ♦r,�¬(q ∧ r), (q ∧ e′f) ⇒ ♦r,

(r ∧ e′h) ⇒ ♦q, (r ∧ e′g) ⇒ ♦q} (6)

Formula 6 represents the output of the generator component

in Fig. 1.

Logical specifications which are built in the above way,

i.e. using the proposed algorithms, can be verified formally.

Formal verification is the act of proving correctness properties

of a system. When the semantic tableaux method is used, then

the whole reasoning process can be summarised as a process of

the verification whether an entailment F1, ...Fn |= G it suffice

to prove that {F1, ..., Fn,¬G} is unsatisfiable. The liveness

property of a system means that the computational process

achieves its goals, i.e. something good eventually happens.

The safety property of a system means that the computational

process avoids undesirable situations, i.e. something bad never

happens. The liveness property for the above model can be

b ⇒ ♦l (7)

which means that if creation of issue agent is satisfied

then sometime global data collection is reached, formally

CreationIssueAgent ⇒ ♦GlobalDataCollection. When

considering property expressed by formula 7 then the whole

formula to be analysed using semantic tableaux, providing a

combined input for the prover component in Fig. 1, is

C(L1) ∧ C(L2) ⇒ (b ⇒ ♦l) (8)

where C(Lx) means logical conjunctions of all formulas

which belong to Lx, c.f. formula 5 and 6. Presentation of a

full inference tree exceeds the size of the work. All branches

of the semantic tree are closed, i.e. formula 7, is satisfied in

the considered model. The method is easy to scale-up, i.e.

extending and summing up logical specifications for other

activity diagrams and state diagrams. Then, it is possible to

examine logical relationships (liveness, safety) for different

activities and states coming from different activity and state

diagrams.

VI. CONCLUSIONS

The discussed agent-based data integration framework is

based on AgE platform [16], which allows to introduce a clear

separation of concerns and makes it possible to rapidly build

topic-related versions of the system with little configuration.

The framework is completely independent of the data it

processes and all scenario-related components are provided by

the user during the configuration. That is why the proposed

verification approach seems to be particularly important to

ensure proper configuration of the system.

Future work may include the implementation of the logical

specification generation module and the temporal logic prover.

Important results might be a CASE software for both the

workflow modelling and the deduction-based formal verifica-

tion. Considering graph transformations [17] is encouraging

for models involving distributed representation of knowledge

and their efficient implementation. The example of such an

implementation is discussed in [18].

ACKNOWLEDGMENT

This work was supported by the AGH UST internal grant

no. 11.11.120.859.

REFERENCES

[1] N. R. Jennings, K. Sycara, and M. Wooldridge, “A roadmap of agent
research and development,” Journal of Autonomous Agents and Multi-

Agent Systems, vol. 1, no. 1, pp. 7–38, 1998.
[2] E. Clarke, J. Wing, and et al., “Formal methods: State of the art and

future directions,” ACM Computing Surveys, vol. 28 (4), pp. 626–643,
1996.

[3] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[4] E. Nawarecki, G. Dobrowolski, A. Byrski, and M. Kisiel-Dorohinicki,
“Agent-based integration of data acquired from heterogeneous sources,”
in Proc. of 5th Int. Conf. on Complex, Intelligent and Software Intensive

Systems - CISIS 2011, 2011.
[5] R. Klimek, Ł. Faber, and M. Kisiel-Dorohinicki, “Deduction-based

modelling and verification of agent-based systems for data integration,”
in Proceedings of 3rd International Conference on Man-Machine In-

teractions (ICMMI 2013), 22–25 October 2013, The Beskids, Poland

[paper accepted], ser. Advances in Intelligent Systems and Computing,
T. Czachórski, A. Gruca, and S. Kozielski, Eds. Springer Verlag, 2013.

[6] R. Klimek, “From extraction of logical specifications to deduction-based
formal verification of requirements models,” in Proceedings of 11th

International Conference on Software Engineering and Formal Methods

(SEFM 2013), 25–27 September 2013, Madrid, Spain, ser. Lecture Notes
in Computer Science, R. Hierons, M. Merayo, and M. Bravetti, Eds.,
vol. 8137. Springer Verlag, 2013, pp. 61–75.

[7] F. Wolter and M. Wooldridge, “Temporal and dynamic logic,” Journal of

Indian Council of Philosophical Research, vol. XXVII(1), pp. 249–276,
2011.

[8] E. Emerson, Handbook of Theoretical Computer Science. Elsevier, MIT
Press, 1990, vol. B, ch. Temporal and Modal Logic, pp. 995–1072.

[9] B. F. Chellas, Modal Logic. Cambridge University Press, 1980.
[10] J. van Benthem, Handbook of Logic in Artificial Intelligence and Logic

Programming, ser. 4. Clarendon Press, 1993–95, ch. Temporal Logic,
pp. 241–350.

[11] M. d’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, Handbook of

Tableau Methods. Kluwer Academic Publishers, 1999.
[12] R. Klimek, “Temporal preference models and their deduction-based

analysis for pervasive applications,” in Proceedings of 3rd International

Conference on Pervasive and Embedded Computing and Communica-

tion Systems (PECCS 2013), 19–21 February, 2013, Barcelona, Spain,
C. Benavente-Peces and J. Filipe, Eds. SciTePress, 2013, pp. 131–134.

[13] ——, Advanced Methods and Technologies for Agent and Multi-Agent

Systems, ser. Frontiers of Artificial Intelligence and Applications. IOS
Press, 2013, vol. 252, ch. A Deduction-based System for Formal
Verification of Agent-ready Web Services, pp. 203–212. [Online].
Available: http://ebooks.iospress.nl/publication/32843

[14] T. Pender, UML Bible. John Wiley & Sons, 2003.
[15] B. Alpern and F. B. Schneider, “Defining liveness,” Information Pro-

cessing Letters, vol. 21 (4), pp. 181–185, 1985.
[16] L. Faber, K. Piętak, A. Byrski, and M. Kisiel-Dorohinicki, “Agent-based

simulation in age framework,” in Advances in Intelligent Modelling

and Simulation, ser. Studies in Computational Intelligence, A. Byrski,
Z. Oplatková, M. Carvalho, and M. Kisiel-Dorohinicki, Eds. Springer
Berlin Heidelberg, 2012, vol. 416, pp. 55–83. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-28888-3_3

[17] L. Kotulski, “Supporting software agents by the graph transformation
systems,” in International Conference on Computational Science, ser.
Lecture Notes in Computer Science, V. N. Alexandrov and et al., Eds.,
vol. 3993. Springer, 2006, pp. 887–890.

[18] I. Wojnicki, L. Kotulski, and S. Ernst, “On scalable, event-oriented
control for lighting systems,” Frontiers in Artificial Intelligence and

Applications: Advanced Methods and Technologies for Agent and Multi-

Agent Systems, vol. 252, pp. 40–49, 2013.

RADOSŁAW KLIMEK, ŁUKASZ FABER, MAREK KISIEL-DOROHINICKI: VERIFYING DATA INTEGRATION AGENTS 1035

