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Abstract—In the article a new approach for control of a
pressure-constrained batch reactor and a new multi-step opti-
mization algorithm were presented. The considered batch reactor
was described by both differential and algebraic equations. State
constraints incorporate always difficulties into a mathematical
model of the reactor, so a new algorithm based on a multiple
shooting SQP-line search method was proposed and tested. The
multiple shooting method was used not only to ensure a stability
of the solution, but to divide a system into smaller subsystems,
so a large-scale problem is considered. The considerations were
made for a simultaneous approach, which allows to apply this
algorithm to a wide class of differential-algebraic systems. The
simulations were executed in Matlab environment using Wroclaw
Centre for Networking and Supercomputing.

Index Terms—optimal control, DAE systems, multiple shooting
method, state constraints.

I. INTRODUCTION

S
EARCHING for controls that will result in a desired
behavior of a system plays a key role in a process design

[1], [2], [11]. To describe the system often only algebraic
equations are enough. Especially, when changes in the state
variables are slow and algebraic equations accurately reflects
the behavior of the system. More complex processes are de-
scribed by differential equations. Suitable numerical methods
and optimization algorithms were proposed and implemented,
so it is a group of well-known problems . It seems, that
the most important feature of the differential systems is a
existence of a solution for all initial conditions. Difficulties
may, however, be caused by the instability of the equations
and selection of the appropriate numerical methods for the
equations [5].

Often, however, it happens that there are in the system
simultaneously both algebraic and differential relations. De-
scription with the system of equations, which can be easily
divided in part consisting solely of differential equations and
a group of algebraic equations is desirable for several reasons.
(1) During the construction of the mathematical model one
does not need to perform additional transformations to obtain
allowed equations. (2) The variables in a model are known
to have physical interpretation. When the equations are well
scaled, then no other transformations are needed. Additionally,
(3) one can explore the impact of different variables on the
behavior of the model. But the searching for the solution of

the initial value problem for differential-algebraic equations,
which does not exist for all possible values of parameters, was
always a challenge [3], [8], [9].

The main motivation of this paper is to present an algorithm,
which can treat the large-scale optimal control problem. Every
system with path constraints on state trajectory can be consid-
ered as an optimization problem with arbitrarily large number
of variables [2]. Even systems with simple path constraints,
but with large number of decision variables, may require a
huge computational effort. The aim of this paper is to present a
feasible-type algorithm that improves a feasible initial solution
of a large-scale problem in a reasonable time. These features
enable the use of this approach in the task of design and control
of chemical processes.

The pressure-constrained batch reactor is usually described
by the nonlinear differential-algebraic equations [6]. The con-
trol problem of the chemical reactor belongs to the group of
tasks, the size of which is not clearly defined. Especially if
the model takes into account constraints on the state variables.
The statement that the size of the task is infinitely large does
not help much in solving the problem. The practical approach
leads to the use of the existing finite-dimensional methods.

To solve the control problem of the chemical reactor with
the constraints on state variables, the new multi-step algorithm
was designed. Its particular advantage is the possibility to take
into account the large number of variables and to preserve the
feasibility of all iterates, which start from the feasible initial
conditions. The study was carried out on the large-scale task
of about 4 000 variables and 3 000 differential equations [4].
The algorithm combines the multiple shooting method and the
simultaneous approach.

The article is structured as follows. At the beginning the
optimal control problem of DAE system was formulated.
Then the simultaneous approach for the optimal control of
differential algebraic systems and its relationship with the
multiple shooting method is discussed. The Multi-step SQP-
line search algorithm using the multiple shooting method is
presented. The differential-algebraic model of the pressure
constrained batch reactor is described and solved by the
designed algorithm. Finally, the results of the large-scale
simulations, which were performed using Wroclaw Centre for
Networking and Supercomputing, were discussed.
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II. THE SIMULTANEOUS APPROACH FOR MULTIPLE

SHOOTING OPTIMAL CONTROL OF

DIFFERENTIAL-ALGEBRAIC SYSTEMS

In the paper the following multiple shooting optimal control
problem of differential-algebraic systems is considered

min
p

φ(p) =

NT∑

l=1

Φ(zl(tl), y
l(tl), p

l), (1)

subject to

zl−1(tl−1) = zl0 = 0; l = 2, . . . , NT , (2)

zNT (tNT
)− zf = 0; zl(0) = zl0, (3)

plL ≤ pl ≤ plU , (4)

ylL ≤ yl(tl) ≤ ylU , (5)

zlL ≤ zl(tl) ≤ zlU ; l = 1, . . . , NT , (6)

with the DAE system

dzl(t)

dt
= f l(zl(t), yl(t), pl); zl(tl−1) = zl0, (7)

gl(zl(t), yl(t), pl) = 0; t ∈ [tl−1, tl]; l = 1, . . . , NT . (8)

In equations (1)-(8) z(t) denotes the differential state tra-
jectory and y(t) denotes the algebraic state trajectory. The
control profile is represented as a parametrized function with
coefficients that determine the optimal profil [12], [13]. The
decision variables on DAE equations appear only in the time
independent vector p. The assumption on the invertibility of
g(−, y(t),−) permits an implicit elimination of the algebraic
variables y(t) = y[z(t), p] [3]. While there are NT periods
in DAE equations, the time dependent bounds and other path
on the state variables are no longer considered. The algebraic
constraints and terms in the objective function are applied only
at the beginning of each period.

The mentioned optimal control problem of the reactor is an
example of wide range control problems of systems described
by differential-algebraic equations (eg. [11]). The instability
of this type of equation resulted in development of shooting
methods. The shooting method was adjusted for solving more
difficult systems and is usually known as the multiple shooting
method or the parallel shooting method. As a result of the
application of the shooting methods, tested systems exhibit
new properties, which could not be expected considering the
general formulation of the optimal control problem of DAE
systems. When the multiple shooting approach is used, the
time domain is partitioned into smaller time periods and
the DAE models are integrated separately in each element.
To provide the continuity of the states across elements, the
equality constraints are added to the nonlinear program. The
inequality constraints for states and controls are then imposed
directly at the grid points tl [1].

The aim of the simultaneous approach is searching for the
optimal control trajectory, the differential and algebraic state
trajectories in a special manner. A sketch of the sequential

Fig. 1. Sequential dynamic optimization strategy.

dynamic optimization strategy for the problem (1)-(8) is pre-
sented on Fig. 1. At l-iteration, the variables pl are specified by
NLP solver. In this situation, when the values of pl are known,
one can treat DAE system as an initial value problem and
integrate (2)-(4) forward in time for periods l = 1, . . . , NT .
For these purposes Backward Differentiation Formula was
used, which can solve index-1 DAEs. The Differential state
profile, the algebraic state profile and the control function
profile were obtained as results of this step. Next component
evaluates the gradient of the objective and constraint functions
with respect to pl. Because function and gradient information
are passed to the NLP solver, then the decision variables can
be updated [2].

III. DYNAMIC OPTIMIZATION OF THE

PRESSURE-CONSTRAINED BATCH REACTOR

The reactions taking place in the reactor are

A
k1−→ 2B, (9)

2B
k2−→ A, (10)

A+B
k3−→ D. (11)

The dynamic optimization problem is described as follows

min
F

J = CD(tf ), (12)

subject to

ĊA = −k1CA + k2CBCB +
F

V
− k3CACB , (13)

ĊB = k1CA − k2CBCB − k3CACB , (14)

ĊD = k3CACB , (15)

N = V (CA + CB + CD), (16)

PV = NRT, (17)

P ≤ 340000, (18)

0 ≤ F ≤ 8.5, (19)

[CA(0), CB(0), CD(0)] = [100, 0, 0]. (20)

The rate constants are k1 = 0.8 per h, k2 = 0.02 m3/(mol ·
h), k3 = 0.003 m3/(mol · h), the volume V = 1.0 m3, the
temperature T = 400 K. There is one path constraint on the
state variable P . The process duration is 2 hours.
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The task is to find the optimal flow rate profile, which is
treated as a control variable, to minimize the objective function
(12). There are some possibilities of parametrization of the
control variable. The most popular are piecewise constant,
piecewise linear with continuity, piecewise linear without
continuity, piecewise quadratic with continuity [12]. In [6] the
simultaneous approach with piecewise linear parametrization
with continuity was considered. It means, that for 11 time
intervals the size of NLP was originally 42, and 35 by model
decomposition method presented in this article. Because ”the
optimal control is highly nonlinear which makes this problem
difficult for general control parametrization methods” [6], the
new control algorithm for the simultaneous approach with
constant parametrization of the control variables was proposed
and tested. So, there are decision variables connected only with
the control function and the state variables.

IV. THE MULTI-STEP SQP LINE SEARCH ALGORITHM

The designed algorithm belongs to a group of the Sequential
Quadratic Programming methods [10]. Its main part is as
follows.

The equality constrained problem is considered

min
p

f(p), (21)

subject to
c(p) = 0, (22)

where the objective function f : Rn → R and the vector of
equality constraints c : Rn → Rm are smooth functions. The
idea behind the SQP approach is to model (21)-(22) at the
current iterate pk by a quadratic programming subproblem.
Then the subproblem is minimized and the new iterate pk+1

is defined.
The Lagrangian function for this problem is

L(p, λ) = f(p)− λT c(p). (23)

The matrix A(p) were used to denote the Jacobian matrix
of the constraints

A(p) = [∇c1(p),∇c2(p), . . . ,∇cm(p)]T , (24)

where ci(p) is the ith component of the vector c(p).
The first order KKT conditions of the equality constrained

problem (21)-(22) can be written as the system on n + m
equations and the n+m unknowns p and λ,

[
∇f(p)−A(p)Tλ

c(p)

]
= 0. (25)

Any solution (p∗, λ∗) of the equality constrained problem
(21)-(22) for which A(p∗) has full row rank satisfies (25). The
nonlinear system (25) can be solved by the Newton method.

The Jacobian of (25) with respect to p and λ is given by
[
∇2

ppL(p, λ) −A(p)T

A(p) 0

]
= 0. (26)

The Newton step from the iterate (pk, λk) is given by
[

pk+1

λk+1

]
=

[
pk
λk

]
+

[
dk
dλ

]
, (27)

where dk and dλ solve the Newton-KKT system

[
∇2

ppL(p, λ) −A(p)T

A(p) 0

]
=

[
dk
dλ

]
+ (28)

+

[
−∇f(p) +A(p)Tλ

−c(p)

]
,

The Newton step is well defined when KKT matrix in (26) is
nonsingular. This is satisfied, when the following assumptions
hold [10]

Assumption 1: The Jacobian of the constraints A(p) has full
row rank.

Assumption 2: The matrix ∇2
ppL(p, λ) is positive definite on

the tangent space of the constraints, that is, dT∇2
ppL(p, λ)d >

0 for all d 6= 0 such that A(p)d = 0.

Suppose that at the iterate (pk, λk) the problem (21)-(22) is
modeled by the quadratic program

min
p

fk +∇fT
k p+

1

2
∇2

ppLkp, (29)

subject to

Ak(p) + ck = 0. (30)

If Assumptions 1 and 2 hold, then this problem has the
unique solution (dk, lk) that satisfies

∇2
ppLkdk +∇fk −AT

k lk = 0, (31)

Akdk + ck = 0. (32)

The vectors dk and lk can be identified with the solution of
the Newton equation (28).

ALGORITHM 1. Local SQP Algorithm for solving
the equality constrained problem
Choose an initial par (p0, λ0);

(if p0 is given, then λ0 is given by eq. (25))
Set k ← 0;
REPEAT UNTIL convergence test is satisfied

evaluate fk, ∇fk, ∇2
ppLk, ck, Ak;

solve (29)-(30) to obtain dk and lk;
set pk+1 ← pk + dk; λk+1 ← lk;

END (REPEAT)

On this basis, the new algorithm was designed.
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ALGORITHM 2. The line search SQP algorithm
choose parameters η ∈ (0, 0.5), τ ∈ (0, 1)
and an initial pair (p0, λ0);
evaluate f(p0), ∇f(p0), ci(p0),
A0 = [∇c1(p0),∇c2(p0), . . . ,∇cm(p0)]

T ;
if a quasi-Newton approximation is used, choose
an initial n× n symmetric positive definite Hessian
approximation B0, otherwise compute ∇2

ppL0;
WHILE convergence test is not satisfied DO

compute dk by solving (28), let λ be
the corresponding multiplier;
dλ ← λ̂− λk;
choose µk to satisfy eq. (33) with σ = 1;
set αk ← 1;
WHILE Φ1(p+ αkdk;µk) >

Φ1(pk;µk) + ηαkD1(f(pk;µk); dk) DO
reset αk ← τααk for some τα ∈ (0, τ ];

END (WHILE)
set pk+1 ← pk + αkdk and λk+1 ← λk + αλdλ;
IF a quasi-Newton approximation is used THEN

set sk ← αkdk;
set ŷk ← ∇pL(pk+1, λk+1)−∇pL(pk, λk+1);
obtain Bk+1 by updating Bk using
a quasi-Newton formula

Bk+1 = Bk + (ŷk−Bksk)(ŷk−Bksk)
T

(ŷk−Bksk)T sk

END (IF)
END (WHILE)

The strategy for choosing µ in the Algorithm 2 considers
the effect of the step on a model of the merit function, so µ
has to satisfy the inequality

µ ≥
∇fT

k dk + σ
2 d

T
k∇

2
ppLkdk

(1− ρ)‖ck‖1
. (33)

If the value of µ from the previous iteration of the SQP
method satisfies eq. (33), it is left unchanged. Otherwise,
µ is increased, so that satisfies this inequality with some
margin. The constant σ is used to handle the case in which
Hessian ∇2

ppLk is not positive definite. We define σ = 1 if
dTk∇

2
ppLkdk > 0, and σ = 1 otherwise.

The l1 merit function for the problem (21)-(22) takes the
form

Φ1(p;µ) = f(p) + µ‖ck‖1. (34)

The directional derivative of Φ1 in the direction dk satisfies

D(Φ1(pk;µ); dk) = ∇f
T
k dk − µ‖ck‖1. (35)

ALGORITHM 3. The SQP-line search algorithm
for solving the equality constrained problem
BEGIN

define a vector of decision variables p̃
and its initial conditions;

choose from vector p̃ a subvector p,
which describes a subsystem
S = f(p)

solve problem (36) using Algorithm 2;
update values of vector p̃ using results

from the previous step;
END

As one can see, the Algorithm 2 can be thought as an inner
loop in Algorithm 3. The last question is, what is the rate of
convergence of the considered algorithm.

Assumption 3: The point p∗ is a local solution of the
problem (21)-(22) at which the following conditions hold.

a) The functions f and c are twice differentiable in a neigh-
borhood of p∗ with Lipschitz continuous second derivatives.

b) The linear independence constraint qualification holds at
p∗.

c)The second order sufficient conditions hold at (p∗, λ∗).
Now one can call the theorem, which justifies the correct-

ness of the presented algorithm.
Theorem ([10]): Suppose, that Assumption 3 holds and that

the iterates pk generated by Algorithm 1 with guasi-Newton
approximate Hessian Bk, converge to p∗. Then pk converges
superlinearly if and only if the Hessian approximation satisfies

lim
k→∞

‖(Bk −∇
2
ppL∗)(pk+1 − pk)‖

‖pk+1 − pk‖
= 0. (36)

Lemma 4: Algorithm 3 generates a sequence of the feasible
solutions with decreasing values of the goal function. In this
bounded sequence one can distinguish a subsequence, which
is superlinearly convergent to the locally optimal solution p∗.

V. NUMERICAL RESULTS

Simulations were executed on the large-scale model of the
pressure-constrained batch reactor.

When the model was divided into 1 000 submodels, then
for solving the KKT system more than 24 hours was needed.
So, the reactor was divided into 100 parts and the solution
was obtained in 12 hours. At this step the vector of decision
variables was stated as follows

p = [u1 · · ·u100, CA0,2 · · ·CA0,100, (37)

CB0,2 · · ·CB0,100, CD0,2 · · ·CD0,100].
Solution of this model was used as the initial conditions in

the further work.
The question is, how to choose the vector of decision

variables, to obtain in a reasonable time a possibly greatest
improvement of the solution.

Then the reactor was divide into 1 000 parts. There are
3 997 decision variables in the system (1 000 piecewise
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TABLE I
RESULTS OF THE SIMULATIONS IN CASE 1.

Size of subvector p Number of iterations d̄

10 37 8.6448e− 004

20 17 8.4317e− 004

50 6 9.3396e− 004

100 3 9.3396e− 004

TABLE II
RESULTS OF THE SIMULATIONS IN CASE 2.

Size of subvector p Number of iterations d̄

10 130 7.5896e− 004

20 82 7.6063e− 004

50 40 7.6116e− 004

100 19 7.6136e− 004

constant control functions and 2 997 variables treated as initial
conditions for differential state trajectories).

p̃ = [u1 · · ·u1000, CA0,2 · · ·CA0,1000, (38)

CB0,2 · · ·CB0,1000, CD0,2 · · ·CD0,1000].
The simulations were executed for 4 different possible

number of variables in the subvector p̃: 10, 20, 50 and 100.
As decision variables only control function, especially in the
initial phases of the process, were considered. This enables
increase the accuracy of the calculation, when the reactions
proceed quickly. The initial average discontinuity in the state
variables was d̄ = 1.1e− 3 and CD(tf ) = 10.7240 mol/m3.
The final value of CD(tf ) is about 8.7% better then result
presented in [6].

In the simulations two different stop criteria in Algorithm
2 were used. In the implementation convergence is declared
when TolFun < ǫ1 and TolCon < ǫ2. TolFun denotes
termination tolerance on the function value, and TolCon
denotes tolerance on the constraint violation.

1) Case 1: In the first case the local optimization processes
were performed more precisely. So, TolFun < 1e − 6 and
TolCon < 1e− 6.

2) Case 2: In the second case stop criterion in local
optimization were no so rigorous: TolFun < 1e − 3 and
TolCon < 1e− 3.

The main stop criterion was the performance time. When
computing time exceeded 12 hours, then optimization process
was stopped.

In both cases the augmented objective function was consid-
ered

f(p) = CD(tf ) + ρ

NT∑

l=1

(zl+1
0 − ẑl)

2, (39)

where penalty parameter ρ = 106.
Equation (39) shows the balance in the quest to minimize

the concentration of component D and to meet the continuity
constraints in differential-algebraic equations.

Fig. 2. Differential state trajectories. Results for size of subvector p=10. Stop
criteria like in case 2.

Fig. 3. The optimal pressure trajectory.

Results presented in the Table 1 and Table 2 show, that the
inexact algorithm with the weak stop criteria, can obtain a
better improvement of the initial solution.

As it was mentioned, in the considered problem two oppo-
site tasks were considered. The minimization of the component
D stands in opposition to fulfilment the constraints. As a
result, the final concentration was improved and the obtained
solution meets the constraints with high accuracy, so this
method can be applied in real-life chemical processes.

The solutions obtained for size of the subvector p = 10
and stop criteria like in case 2 were presented on the figures
2-4. There are the differential state trajectories in the figure
2, the optimal pressure trajectory in the fig. 3 and the optimal
flowrate profile in the fig. 4

VI. CONCLUSION

In the article the task of control of the pressure-constrained
batch reactor was considered. The complex model of the
reactor was designed using the simultaneous approach. The
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Fig. 4. Control variable - the optimal flowrate profile.

new SQP-line search algorithm was designed and tested. The
algorithm, which takes in each iteration only a few number
of decision variables into account, can do new iterations and
improve the initial solution. But in both approaches a large
number of variables were considered.

Because in the pure form, SQP algorithm is convergent to
the locally solution, line search was used as a globalization
approach to construct a sequence of feasible solutions with
decreasing values of the objective function.

This type of algorithms can be successfully applied to the
large systems, when Jacobian and Hessian matrices are dense
and structure of these matrices can not be effectively used.

As the conclusion we want to pay attention to need for
solver for the large-scale optimization and optimal control
problems. Second order information, which can be approxi-
mated using BFGS method, can be unavailable when Jacobian
matrix is difficult to calculate. This situation one can be met
very often, when simultaneous approach is used. Multistep
algorithms, which need feasible initial conditions, can improve
the solution in considerable short time. At the end we want to
emphasize the need for Jacobian-free optimization algorithm,
which could solve the large-scale optimization tasks [7].

VII. NOMENCLATURE

C concentration (mol/m3)
d̄ average discontinuity in the state variables
F flowrate (mol/hr)
f objective function in optimization problem
g function of algebraic constraints

k1, k2, k3 rate constants
NT number of shots
n,m dimensions of the space
p vector of decision variables
S function describing subproblem
t time (hr)
z state variables
y algebraic variables
L Lagrangian function
R real numbers

Greek symbols
Φ function describing optimization problem
φ function describing system
λ Lagrangian multipliers
ρ penalty parameter
ǫ tolerance

Superscripts
T transposition of the matrix

Subscripts
A,B,D components of the reaction

L lower bound
U upper bound
l number of a shot
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