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Institute of Computer Engineering, Control and Robotics

Wrocław University of Technology
Janiszewskiego 11/17, 50-372, Wrocław, Poland

Email: krystyn.styczen@pwr.wroc.pl

Abstract—The inexact Newton method is commonly known
from its ability to solve large-scale systems of nonlinear equations.
In the paper the classical inexact Newton method is presented
as a tool for solving differential-algebraic equations (dae) in
fully-implicit form F (ẏ, y, t) = 0. The appropriate statement of
dae using the backward Euler method makes the possiblity to
see the differential-algebraic system as a large-scale system of
nonlinear equations. Because a choice of the forcing terms in the
inexact Newton method significantly affects the convergence of
the algorithm, in the paper new variants of the inexact Newton
method were presented and tested. The simulations were executed
in Matlab environment using Wroclaw Centre for Networking
and Supercomputing.

Index Terms—differential-algebraic equations, systems of non-
linear equations, inexact Newton method.

I. INTRODUCTION

D IFFERENTIAL-algebraic equations (dae) play a key role
in control science and engineering [16], [17]. Describing

the system with equations that incorporate dynamics and con-
servation laws, creates new opportunities for the development
of the numerical methods and has a direct application in the
industry [2], [3]. Design and control of chemical reactors and
motor vehicle requires precise knowledge of the links between
the system and the signals flowing from the environment, as
well as between the internal elements of the system. Needs
arising from the control of the large complex installations
always outweight the modern computing capabilities, and are
becoming a cause for the progress of both the hardware as
well as the algorithms and the numerical methods.

The question raised in the article refers to the situation when
the considered system is described by differential-algebraic
equations in a general way possible. This approach has a
chance to wide and common use in industry. The presented
method is part of a widely used approach, which reduces
infinite dimensional task to the large-scale finite-dimensional
problem.

The paper is constructed as follows. In the next section the
backward differential formula (bdf) is presented as the tool
for solving dae systems. New aspects of the inexact Newton
method were presented in 3rd and 4th sections. The presented
algorithms were tested on the kinetic batch reactor model. The
results were presented in 5th section.

II. THE BACKWARD EULER METHOD

The codes for solving dae in the fully− implicit form are
based on a technique which was introduced by Gear [12]. The
backward differential formula is the first general technique for
the numerical solution of dae and have emerged as the most
popular. The idea of this technique is that the derivative dy(t)

dt
can be approximated by a linear combination of the solution
y(t) at the current mesh point and at several previous mesh
points ([14]).

Bdf was initially defined for the systems of differential equa-
tions coupled to algebraic equations. This method was soon
extended to apply to any fully-implicit system of differential-
algebraic equations

G
(dy(t)

dt
, y(t), z(t), t

)

= 0. (1)

The simplest method for solving differential-algebraic sys-
tems is the first order bdf, or the backward Euler method,
which consists of replacing the derivative in (1) by a backward
difference

F
(yn − yn−1

h
, yn, zn, tn

)

= 0. (2)

where h = tn − tn−1.
The resulting system of nonlinear equations for yn at each

step is then usually solved by the Newton method [4]. In this
way, the solution is advanced from time tn to time tn+1. It
is assumed, that y(t0) is known. Assume too, that t (time) is
the independent variable. In practical applications in chemical
enginnering, as the independent variable is used usually the
lenght of the reactor. If the time interval, in which the system
has to be considered, is known, it can be scaled to the interval
[0, 1].

III. THE INEXACT NEWTON METHOD

The methodology presented in the previous paragraph leads
to the following equation

F (x) = 0. (3)

This equation is very general and is often found in scientific
and engineering computing areas. We assume that the function
F is considered, where F : Rn → Rn is a nonlinear mapping
with the following properties
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(1) There exists an x∗ ∈ R with F (x∗) = 0.
(2) F is continously differentiable in a neighborhood of x∗.
(3) F ′(x∗) is nonsingular.
There are a lot of methods for solving this nonlinear

equation. One of the most popular and important is the Newton
method. The Newton’s method is attractive because it con-
verges rapidly (quadratically) from any sufficiently good initial
point. Its computational cost can be expensive, particularly,
when the size of the problem is very large, because in each
iteration step the Newton equations

F (xk) + F ′(xk)sk = 0 (4)

should be solved. Here xk denotes the current iterate, and
F ′(xk) is the Jacobian matrix of F (x) at point xk. The
solution sNk of the Newton equation is the Newton step. Once
the Newton step is obtained, the next iterate is given by

xk+1 = xk + sNk . (5)

In 1982 Dembo, Eisenstat and Steihaug proposed the inexact
Newton method, which is a generalization of the Newton
method [8]. The inexact Newton method is any method
which, given an initial guess x0, generates a sequence xk of
approximations to x∗ as in Algorithm 1.

ALGORITHM 1. The inexact Newton method
1. Given x0 ∈ Rn

2. For k = 0, 1, 2, · · · until xk convergence
2.1 Choose some ηk ∈ [0, 1)
2.2 Inexactly solve the Newton equations

and obtain a step sk, such that
‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖. (⋆)

2.3 Let xk+1 = xk + sk.

In the Algorithm 1, ηk is the forcing term in the k-th
iteration, sk is the inexact Newton step and (⋆) is the inexact
Newton condition.

In each iteration step of the inexact Neton method a real
number ηk ∈ [0, 1) should be chosen. Then the inexact
Newton step sk is obtained by solving the Newton equation
approximately with an iteration solver for systems of nonlinear
equation. Since F (xk) + F ′(xk)sk is both residual of the
Newton equations and the local linear model of F (x) at xk,
the inexact Newton condition (⋆) reflects both the reduction
in the norm of the local linear model and certain accuarcy
in solving the Newton equations. Thus the role of forcing
terms is control the degree of accuracy of solving the Newton
equations. In particular, if ηk = 0 for all k, then the inexact
Newton method is reduced into the Newton method.

The inexact Newton method, like the Newton method, is
locally convergent.

Theorem 1 ([8]): Assume that F : Rn → Rn is continously
differentiable, x∗ ∈ Rn such that F ′(x∗) is nonsingular. Let
0 < ηmax < β < 1 be the given constants. If the forcing terms
ηk in the inexact Newton method satisfy ηk ≤ ηmax < β < 1
for all k, then there exists ε > 0, such that for any x0 ∈

Nε(x
∗) ≡ {x : ‖x − x∗‖ < ε}, the sequence {xk} generated

by the inexact Newton method converges to x∗, and

‖xk+1 − x∗‖∗ ≤ β‖xk − x∗‖∗, (6)

where ‖y‖∗ = ‖F ′(x∗)y‖.
If the forcing terms {ηk} in the inexact Newton method are

uniformly strict less than 1, then by Theorem 1, the method is
locally convergent. The following result states the convergence
rate of the inexact Newton method.

Theorem 2 ([8]): Assume that F : Rn → Rn is continously
differentiable, x∗ ∈ Rn such that F ′(x∗) is nonsingular. If
the sequence {xk} generated by the inexact Newton method
converges to x∗, then

(1) xk converges to x∗ superlinearly when ηk → 0;
(2) xk converges to x∗ quadratically if ηk = O(‖F (xk)‖)

and F ′(x) is Lipschitz continuous at x∗.
Theorem 2 indicates, that the convergence rate of the inexact

Newton method is determined by the choice of the forcing
terms.

IV. A CHOICE OF FORCING TERMS

In the literature, researchers proposed some strategies to
determine a good sequence of forcing terms. Here, four
representatives strategies were selected.

(1) The choice of Dembo and Steihaug [9]:

ηk = min
{ 1

k + 2
, ‖F (xk)‖

}

. (7)

The two strategies given by Eisenstat and Walker are more
popular [11]. Among this two strategies, choice (2a) reflects
the agreement between F (x) and its local linear model at the
previous step. Choice (2b) reflects the reduction rate of ‖F (x)‖
from xk−1 to xk.

For computational purposes of preventing the forcing terms
from becoming quickly too small, some safeguards were
added. The following strategies were obtained.

(2a) Given η0 ∈ [0, 1), choose

ηk =

{

ξk, η
(1+

√
5)/2

k−1 ≤ 0.1,

max{ξk, η
(1+

√
5)/2

k−1 }, η
(1+

√
5)/2

k−1 > 0.1,
(8)

where

ξk =
‖F (xk)− F (xk−1)− F ′(xk−1)sk−1‖

‖F (xk−1)‖
, (9)

k = 1, 2, . . . , or

ξk =
| ‖F (xk)‖ − ‖F (xk−1) + F ′(xk−1)sk−1‖ |

‖F (xk−1)‖
, (10)

k = 1, 2, . . . .
(2b) Given γ ∈ (0, 1], ω ∈ (1, 2], η0 ∈ [0, 1), choose

ηk =

{

ξk, γ(ηk−1)
ω ≤ 0.1,

max{ξk, γ(ηk−1)
ω}, γ(ηk−1)

ω > 0.1,
(11)

where

ξk = γ

(

‖F (xk)‖

‖F (xk−1)‖

)ω

, (12)
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k = 1, 2, . . . .
(3) Choice of H.-B. An et al. [1]. Assume, that xk is the

current iterate and sk is the step from xk. The actual reduction
Aredk(sk) and predicted reduction Predk(sk) of F (x) at xk

with step sk are definned as follows

Aredk(sk) = ‖F (xk)‖ − ‖F (xk + sk)‖, (13)

Predk(sk) = ‖F (xk)‖ − ‖F (xk) + F ′(xk)sk‖. (14)

Furthermore, let

rk =
Aredk(sk)

Predk(sk)
. (15)

In this approach, rk is used to adjust the forcing term ηk.
Considering the value of rk, one can distinguish four situation,
which can have a place in computations.

(a) If rk ≈ 1, the the local linear model and nonlinear
model will agree well on their scale and ‖F (x)‖ usually will
be reduced.

(b) If rk nears 0, but rk > 0, then the local linear model
and nonlinear model disagree and ‖F (x)‖ can be reduced very
little.

(c) If rk < 0, then the local linear model and nonlinear
model disagree and ‖F (x)‖ will be enlarged.

(d) If rk ≫ 1, then the local linear model and nonlinear
model also disagree, but ‖F (x)‖ will be reduced greatly.

The acceptable situations are, when rk ≈ 1 or rk ≫ 1,
because in this cases the local linear model and nonlinear
model agree well or at least leads to a great reduction point.

According to the property of rk, one can choose forcing
terms as follows.

ηk =















1− 2p1, rk−1 < p1,

ηk−1, p1 ≤ rk−1 < p2,

0.8ηk−1, p2 ≤ rk−1 < p3,

0.5ηk−1 rk−1 ≥ p3,

(16)

where 0 < p1 < p2 < p3 < 1 are prescribed at first and
p1 ∈ (0, 1

2 ). Assume, that η0 is given.
The choice of forcing terms proposed in [1] is to determine

ηk by the magnitude of rk−1.
It is worth to note, that the current forcing term ηk is

determined by the previous value rk−1 and ηk determines the
value rk through solving the Newton equations approximately.

V. NUMERICAL RESULTS

As an example the kinetic batch reactor was choosed.
This example is known from the literature [2], [6], [7] The
concentrations are modeled by the system of differential and
algebraic equations. The desired product AB is formed in the
reaction

HA+ 2BM → AM +MBMH. (17)

For the formulation given here the differential and algebraic
variables are denoted by yj and zj respectively (Table 1).

The kinetic model is stated in terms of six differential mass
balance equations

ẏ1 = −k2y2(t)z8(t), (18)

TABLE I
BATCH REACTOR DYNAMIC VARIABLES.

y1 Differential State [HA] + [A−]
y2 Differential State [BM ]
y3 Differential State [HABM ] + [ABM−]
y4 Differential State [AB]
y5 Differential State [MBMH] + [MBM−]
y6 Differential State [M−]
z7 Algebraic State [H+]
z8 Algebraic State [A−]
z9 Algebraic State [ABM−]
z10 Algebraic State [MBM−]

ẏ2 = −k1y2(t)y6(t) + k−1z10(t)− k2y2(t)z8(t), (19)

ẏ3 = k2y2(t)z8(t) + k3y4(t)y6(t)− k−3z9(t), (20)

ẏ4 = −k3y4(t)y6(t) + k−3z9(t), (21)

ẏ5 = k1y2(t)y6(t) + k−1z10(t), (22)

ẏ6 = −k1y2(t)y6(t)− k3y4(t)y6(t) + k−1z10(t) + k−3z9(t),
(23)

an electroneutrality condition

z7(t) = −0.0131 + y6(t) + z8(t) + z9(t) + z10(t) (24)

and three equlibirum conditions

z8(t) =
K2y1(t)

K2 + z7(t)
, (25)

z9(t) =
K3y3(t)

K3 + z7(t)
, (26)

z10(t) =
K1y5(t)

K1 + z7(t)
. (27)

with initial conditions y1(0) = 1.5776, y2(0) = 8.32,
yj(0) = 0.0, j = 3, 4, 5, y6(0) = 0.0131, z7(0) = 0.5(−K2 +
√

K2
2 + 4K2y1(0)), z8(0) = z7(0), zj(0) = 0.0, j = 9, 10.

The following values of rate and equlibirum constants
were used k1 = 21.893(hr−1 · Kg · gmole−1), k−1 =
2.14E09(hr−1), k2 = 32.318(hr−1 · Kg · gmole−1), k3 =
21.893(hr−1 ·Kg · gmole−1), k−3 = 1.07E09(hr−1),K1 =
7.65E − 18(gmole · Kg−1),K2 = 4.03E − 11(gmole ·
Kg−1),K3 = 5.32E − 18(gmole ·Kg−1).

The equations were considered in the time domain t ∈
[0, 2.5]. Then the equations were discretized into equidistant
points with distnace 0.025. It resulted in 600 differential and
400 algebriac state variables. Then, 1000 equality constraints
from the backward Euler method were imposed. The Jacobian
matrix was obtained analitically and stored as the 1000×1000
sparse matrix.

This large-scale system of the linear equations was solved
using GMRES algorithm [15]. The inexact Newton backtrack-
ing method [10] was used with four presented approaches for
adjusting the forcing terms.

The results in Table 2 indicate, that the considered problem
is difficult to solve. Iterations quickly converge to the locally
optimal solution. The parameter rk gives an answer, what
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TABLE II
RESULTS FOR CHOICE OF H.-B. AN ET al. [1].

iter η3 ‖F3(xk)‖ rk
1 0.4375 5.8635e3 1.4670
2 0.4297 4.0018e3 1.7745
3 0.4287 2.7828e3 2.1213
4 0.4286 2.0803e3 3.4620
5 0.4286 1.4856e3 2.2609
6 0.4286 1.2529e3 1.5051
7 0.5000 1.1420e3 5.3385e-4
8 0.5000 1.1420e3 NaN
9 0.5000 1.1420e3 NaN
10 0.5000 1.1420e3 NaN

TABLE III
RESULTS FOR OTHER SEQUENCES OF FORCING TERMS.

iter η1 ‖F1(xk)‖ η2a η2b ‖F2a,2b(xk)‖
1 0.3333 5.8635e3 0.5000 0.5000 5.8635e3
2 0.2500 4.0018e3 0.8057 0.4677 4.0018e3
3 0.2000 2.7828e3 0.9226 0.4655 2.7828e3
4 0.1667 2.0803e3 0.9689 0.4654 2.0803e3
5 0.1429 1.4856e3 0.9874 0.4654 1.4856e3
6 0.1250 1.2529e3 0.9949 0.4654 1.2529e3
7 0.1111 1.2143e3 0.9979 0.4773 1.1420e3
8 0.1000 1.1986e3 1.0000 0.5000 1.1420e3
9 0.0909 1.1972e3 1.0000 0.5000 1.1420e3
10 0.0833 1.1966e3 1.0000 0.5000 1.1420e3

is the relation between linear model and the whole system.
The linear model agrees with the nonlinear model only at the
beginning of the solution process. It is worth to note, that only
the approach presented in [1] idicates, that after 7 iterations
some difficulties can occur.

The simulations were executed with the parameters: γ =
0.5, ω = 1.5 for proposition 2b and p1 = 0.25, p2 = 0.6,
p3 = 0.8 for the choice proposed in [1].

There are results for forcing terms adjusted in other manners
in Table 3. The forcing terms adjusted as presented in [9] were
decreased monotonically, but there is no information about
agreement between F (x) and its local linear model.

The forcing terms, adjusted as presented in [11], did not
decrease monotonically to 0. Its main drawback is, that either
the agreement between F (x) and its local linear model at the
previous step or the reduction rate of ‖F (x)‖ are reflected in
adapatation of forcing terms.

The simulations were executed in Matlab environment using
Wroclaw Centre for Networking and Supercomputing.

As one can see, the results presented in the Table 2 and 3
are not the optimal solutions. If the initial guess for the inexact
Newton method is close enough to the desired solution, then
the convergence is very fast provided that the forcing terms
are sufficiently small. But a good initial guess is generally
very diffcult to obtain, especially for nonlinear equations
that have unbalanced nonlinearities. Then the step length
is often determined by the components with the strongest
nonlinearities [5]. The nonlinearities are ”unbalanded” when
the step length is determined by a subset of the overall degrees
of freedom.

VI. CONCLUSION

In the paper the new apsects of the inexact Newton method
for solving differential-algebraic equations were presented,
then the dae systems in the fully implicit form were consid-
ered. The methods for the choice of forcing terms for the
inexact Newton method were presented and tested on the
difficult and highly nonlinear kinetic batch reactor.

The authors would like to indicate, that the choice of
forcing terms, which reflects both the agreement between F (x)
and its local linear model and the reduction rate of ‖F (x)‖
are especially usefull for solving the large scale differential-
algebraic equations. As the next step, the new preconditioned
Jacobian-free optimization algorithm, which could solve the
large-scale optimization tasks, will be studied and adjusted for
new challenges in solving the optimal control problems [13].
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