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Abstract—Modern software is developed to work with multiple
software and hardware architectures, to cooperate with various
peer components and can be installed in many different configu-
rations. In order to test it, all possible working environments
needs to be created. This requires software and hardware
resources like servers, networks and software licenses and most
important: man-hours of qualified engineers that will have to
configure and maintain them. Because resources are usually
limited we have to choose a set of configurations with highest
impact on quality of software under test. In this paper we
present a method of measuring effectiveness of given software
environment for discovering defects in software by introducing
environment sensitivity measure. We also show how it can be
used in simple algorithm used to select best configurations by
using only a selected subset of them and progressively modifying
it thougout software development process.

I. INTRODUCTION AND PROBLEM DESCRIPTION

S
OFTWARE usually does not work alone. It must have
an environment that it works in. This environment can

be composed from many components like: servers, operating
systems, databases, remote services etc. Those components can
also have other components that they rely on. Eg. database
might need an operating system to work on. Those depen-
dencies create a Component Dependency Graph (CDG) that
describes an environment for Software under Test (SUT).
Example of such graph is given on Figure 1. This graph
shows only general structure of environment. Each component
may also have a set of properties like type, version number,
architecture type, permissions, locales etc.
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Fig. 1: Example of Component Dependency Graph (CDG)
that shows dependencies between resources. Tree A represents
environment for server application. Tree B is environment for
client application.

Lets take a simple use case: an application working on
two operating systems, with three database servers and two
application servers. It will give about 2 × 3 × 2=12 different
environments to test. If we add another variable: 32-bit or
64-bit architecture, it will double possible environment con-
figurations to at most 24. Adding new configurable element to
environment tends to increase the number of possible setups
exponentially. Not all configurations may be possible to create
(for example some middle-ware may not be available for all
operating systems), but it still is significant number of variants
to test. Problems of generating test environments and possible
solutions were mentioned in our other article [1].

There has been efforts to automate the process of creating
those environments based on semantic description of CDG
in [2] and [3]. Authors of those articles proposed to use
virtualization to construct environments and then use snapshots
to clone and then modify them to build other environments.
This technique and additional simplifications allowed to reduce
number of separate configurations from about 1200 to 160.
However this is still to many environments to be build and
maintained for everyday regressions tests or continuous builds.

In dissertation [4] same author came also to this conclusion
and proposed a manual way to select subset of configurations
based on testers’ preferences. Decision on which configura-
tions test software is in that case solely based on testers expert
knowledge, without support of any analytical tools. In our
research we tried to establish a method to measure how good
is given configuration for testing and an algorithm to choose
the best of them.

II. SELECTING BEST ENVIRONMENTS FOR TESTING

As shown above number of possible environments can be
quite high. This means that with limited resources we can only
choose subset of them. One of the most popular methods is
to use configurations that are most widely used by customers.
However when number of software users is high, diversity
of configurations may also be too high on and must also be
limited.

We have to define what means that one configuration is
better for testing purposes than the other and then create an
algorithm for choosing the best of them. In our research we
followed a common phenomena observed by testers: some of
the software environments are causing more problems than the
others - basically they fail more tests (or fail them more often).
If configuration A is more problematic than configuration B
that usually means that if we run tests on configuration A and
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they will pass, so they will pass also on configuration B (with
high probability). This means that we do not need to conducts
tests on configuration B so frequently as on configuration A.
Conclusion is that configuration A is better for testing than
configuration B, because it allows to detect more environment
related defects. In order to compare environments it is good to
have a numerical metric that will allow to evaluate effective-
ness of given configuration. It is also a requirement for many
optimizing algorithms (especially evolutionary) to provide a
fitness function to compare solutions.

A. Measure of environment sensitivity

In order to compare two environments for software testing
we need to establish metric that would tell which configuration
is better. Let a T be a set of n tests (test suite) consisting
single tests ti. Let Tk be a vector of test results executed in k
iteration. Test can be either 1 (pass) or 0 (fail).

Tk = (t1, t2, t3...tn), ti = 1 ∨ 0 (1)

Ej is an environment j. Testing function FT is a function
that assigns for each k iteration a vector of tests results Tk to
environment Cj .

FT (k,Ej) = (t1, t2, t3, ..., tn) (2)

We can describe Fn for single iteration k in more convenient
way as a matrix, where columns are tests and rows are
environments (lets note number of configurations as m). tji is
a result of test ti on environment Cj .

FT (k) =
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First step in calculating sensitivity is to remove those
tests that does not bring any information about environment
differences. We remove those columns that satisfy condition:

∃p ∈ [1,m]∀x ∈ [1, n]∀y ∈ [1, n] : txp = typ (4)

This means that removed are only those tests that passed or
failed in all configurations (remove columns of all 1 or all 0).

Then for each row vector we calculate how many times
given test failed and normalize it by number of tests in vector
(after removing some of them in first step).

Sens(Cj) =

n
∑

x=1

(1− tjx)

n
(5)

Sens(Cj) ∈ [0, 1] (6)

Sensitivity value close to 0 means that given environment is
not good for finding defects because all tests here pass. When
sensitivity is 1 means that configuration is a good candidate
for finding software errors because all tests fail on it whereas
on at least one other configuration they pass. Of course, if
all tests fail on given configuration we have to check if the
problem is not with tests itself - for example there is a defect
in testing code.

B. Properties of environment sensitivity

Let’s define environment domination: environment A dom-
inates environment B if:

∃x : tAx < tBx ∧ ∀y 6= x : tAy ≤ tBy (7)

In other word: there is at least one test that failed on config-
uration A but passed on configuration B. This would mean
that configuration A found a defect that was not discovered
by configuration B.

Environment sensitivity has this property that:

A dominates B ⇒ Sens(CA) > Sens(CB) (8)

This property is result of environment sensitivity definition.
Let sum inequalities in second part of domination definition:

n
∑

k=1∧k 6=i

tAk ≤

n
∑

k=1∧k 6=i

tBk (9)

If we add tAi < tBi, weak inequality will become strong
inequality:

n
∑

k=1

tAk <

n
∑

k=1

tBk (10)

Note that sensivity calculation requires removing tests that in
every configuration failed or passed. This will also convert
weak inequality into strong one. If we multiply both sides by
−1 and add n:

n−

n
∑

k=1

tAk > n−

n
∑

k=1

tBk (11)

Because n =
n
∑

k=1

1 then we can rewrite equation as:
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Now divide both sides by n:

n
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k=1

(1− tAk)

n
>

n
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n
(14)

And now using environment sensitivity definition:

Sens(CA) > Sens(CB) (15)

Introduction of environment domination allows to us to use
existing multi-criteria optimization techniques to find Pareto-
efficient solutions. This proof can also be used to quickly
compare results of tests run on two configurations without
calculating sensitivity itself. Of course it will only introduce
order to the set of configurations but would not give any idea
how much they differ.
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C. Algorithm to generate configurations

Algorithm that will generate and evaluate environments
must have several important properties:

1) Works on discrete solution spaces.
2) An ability to search unknown solution space (we have no

additional information about local optima) .
3) Iterative schema of work, similar to iterative test execu-

tion.

Generating new environment and maintaining it is a costly
operation. This means that algorithm must work with small
data sets - typically 8-12 configurations. Tests should be run
frequently, every code change or at least daily. This means
that we may have enough iterations until we reach optimal
solution. However we have to remember that each iteration
means adding new configuration and this is a costly operation.

Algorithm 1 Simple algorithm for selecting most sensitive
environments.

E ⇐ GenerateAvailableEnvironments() {initial config-
uration pool}
P ⇐ RandomSubset(E, n) {P represents current working
set}
P ′ ⇐ ∅ {P ′ represents next set}
repeat

P ′′ ⇐ P ′ {P ′′ is set from previous iteration}
E ⇐ E − P

R ⇐ RunTests(P )
S ⇐ CalculateSensivity(R)
S ⇐ SortBySensivity(S)
P ′ ⇐ ∅
for i = 0 to k do

P ′ ⇐ P ′ ∪ S[i]
end for

P ⇐ P ′ ∪RandomSubset(E, n− k)
until E not empty and P ′ 6= P ′′

GenerateAvailableEnvironments() creates a set of all
possible environments we want to execute tests on. Function
RandomSubset(X,n) generates a random subset from set
X of size n. Summarizing algorithm above: in each iteration
we run test suite on n selected environments (working set).
Using test results we calculate sensitivity for each of them.
After that we select k best of them. From initial pool of
environments we choose random ones to fill up working set so
it will have n configurations again. Procedure is repeated until
all configurations are used (initial pool is empty) or in next
two consecutive iterations k best configurations is the same.

This algorithm tends to go though different solutions until it
converge to optimal one. For environment compatibility testing
this means that before we reach optimal set of configurations
we will test much more of them and there is a possibility that
we will find even more software defects, than using optimal
set from the beginning.

III. EXPERIMENTS

A. Direct application of environment sensitivity measure

To verify properties of environment sensitivity an experi-
ment was conducted. We used a simple configuration with one
operating system and a web browser installed on it. Operating
systems used were Linux, Windows and Mac OS X. Browsers
under test were Internet Explorer, Firefox, Chrome, Safari,
Opera. Each browser was available in several different versions
(depending on browser type). System used for experiment was
built using small web server (Jetty) that was running a static
web page. This web page was based on a popular HTML5
compatibility test site (www.html5test.com) and server both
as test suite and application under test. Existing scripts were
modified to send test results to data collection servlet running
on the same web server (originally they were displayed on the
screen). Schematic diagram of system used for experiment is
shown on Figure 2.

When the test page was loaded it executed 242 true/false
tests and sent results using JSON format back to server where
they were stored in file along with information about browser
and operating system type. The same page was run on each
environment and test results were sent using separate script
back to server that stored them for further analysis. Different
configurations were provided by web browser compatibility
testing cloud service (browsershots.org). We collected results
for 46 different configurations. Expected number of environ-
ments should be higher, because some of the configurations
has been not executed at all by the cloud (which is a defect in
cloud service). However number of collected data is enough
for analysis. In real life testing setups there are usually no
more than several environments in constant use.

Sensitivity measure by definition is calculated relatively
to other environments in tested configuration set. In most
cases there is not enough resources (computing power, time,
machines) to perform tests (and calculate sensitivity) for
every environment in given configuration space. We wanted
to check how much sensitivity measure will differ when it
is calculated for small subset of configuration space against
full configuration space. From all 46 environments we chosen
randomly subsets of 5, 8 and 10 environments and calculated
sensitivity for each configuration in it. We observed that
sensitivity measure does not change more than 12 percent
when it is calculated for a reasonable subset of initial test
results (see Table I). If we use more than 8 environments
it seems that average difference is less than 10 percent. We
suppose that this behavior of measure is possible because
the way environment reacts to tests is not dependent on
other environments. This makes this sensitivity measure good
candidate for fitness function in evolutionary programming.

B. Sensitivity measure as a fitness function

As stated before sensitivity measure can be used as fitness
function so the next step was to check if proposed algorithm
allows to quickly find best environments. Populations of sizes
8, 10 and 12 were tested. Each time algorithm was run 1000
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Fig. 2: Architecture of the system used for environment compatibility experiment.

TABLE I: Standard deviation of environment sensitivity cal-
culated from random subsets from initial data.

5 environments 8 environments 10 environments

100 random subsets 0.077 0.045 0.04

1000 random subsets 0.10 0.075 0.06

10000 random subsets 0.12 0.09 0.08

TABLE II: Averaged results after 1000 execution of envi-
ronment selection algorithm. Difference is calculated against
sensitivity calculated for all configurations together.

Population size Max difference Max iterations

n = 8, k = 4 15% 4.32 iterations

n = 10, k = 5 4.5% 4.09 iterations

n = 12, k = 6 3.8% 3.3 iterations

times and results were averaged. They are presented in Table
II. For population size of 10 algorithm delivered a stable set
of environments in less than 5 iterations.

In Table III we can see browsers selected by algorithm in
more than 10% of cases along with their average sensitivity.
Columns Operating system, Browser type and Browser Version
define environment. Frequency shows percentage of times
given configuration was chosen in top k results in 1000 runs
of algorithm (eg. 75% means that is was chosen in 750 times).
Average sensitivity is arithmetic mean of sensitivity value
calculated for environment in all runs. If we compare this table
with sensitivity calculated for all environments in Appendix A
Table IV they basically match each other.

C. Strategies for selecting environments for tests

Results also proved common sense that better to test on
older versions of software because newer versions have lot
of compatibility problems already fixed. This can be seen
on Figure 3 and 4 where sensitivity of environment is pre-
sented versus browser version. We had to normalize version
numbering to [0, 1] because of different numbering schemes
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Fig. 3: Sensitivity of environment by browser version for
Mozilla Firefox. Version numbers were normalized to be from
0 (oldest) to 1 (latest). You can see sudden improvement in
HTML5 compatibility after third consecutive version.

used by browser vendors. We can consider several strategies
to reduce number of environments used for tests. Simplest one
is to establish a cut off point below that every environment is
discarded. On Figure 3 we see that good cut off point will
be sensitivity with value 0.5 because it clearly separates set.
However other good strategy will be to discard those some
environments that have similar sensitivity value. From Figure
3 and Table IV we see that Firefox from version 6 to 15
have sensitivity between 0.3 and 0.4. This means that we can
choose one or several of them based on own preference (or
random choice) because they behave more or less similarly
during tests.

Other important aspect is that environment sensitivity can
provide an order of tests. If we start with environments with
highest sensitivity and some tests will fail, we can stop, fix
defect and start over again. In our test case, testing complicated
web pages on latest browser versions will likely be successful,
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TABLE III: Average sensitivity for environments using proposed algorithm (averaged after 1000 runs) for configuration set of
size 10. Frequency show how many times given environment was chosen by algorithm in top k best. Only those configurations
with frequency more than 10% are shown.

Operating system Browser type Browser version Frequency Average sensitivity

LINUX FIREFOX 2.0.0.17 77% 0.960

LINUX KONQUEROR 4.8 77% 0.889

MAC OS X CAMINO2 2.1.2 76% 0.802

LINUX FIREFOX 1.5.0.12 76% 0.983

WINDOWS FIREFOX 2.0.0.12 74% 0.963

MAC OS X SAFARI 4.0.5 50% 0.766

WINDOWS CHROME 3.0.182.2 31% 0.777

WINDOWS CHROME 4.0.223.11 24% 0.609

WINDOWS OPERA 10.00 16% 0.388

LINUX FIREFOX 7.0.1 12% 0.323

LINUX FIREFOX 6.0.1 10% 0.326

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 

E
n

v
ir

o
n

m
e

n
t 

se
n

si
v

it
y

 

Normalized browser version 
Oldest Newest 

Fig. 4: Sensitivity of environment by browser version for
Chrome. Version numbers were normalized to be from 0
(oldest) to 1 (latest). You can see improvement in HTML5
compatibility in latest versions. However it is not as steep as
in Firefox browser.

because they are more HTML5 compatible. So better strategy
will be to test on older versions and if they pass tests, then
check on latest versions.

IV. CONCLUSIONS AND FUTURE WORK

It seems that introduced environment sensitivity measure is
a good way of measuring usefulness of environment for testing
purposes. It provides analytical way to compare configurations
and allows to use existing optimization techniques. For more
complicated environments (that have several nodes in their
CDG) we plan to use evolutionary algorithms. For presented
browser testing case, cross-over and mutation operations were
not feasible because they produced configurations that were
not available in testing cloud. Introduction of environment
domination (in Pareto sense) will allow to use existing meth-
ods used in multi-criteria optimization. Automated tests are

usually run frequently in order to find out regression defects
introduced during development. This causes tests to repeatedly
oscillate between pass and fail states. We are now extend-
ing sensitivity model by introducing time line to take those
changes into consideration and utilize historical information
for more precise results.

We are also investigating possibility of using machine
learning to correlate changes in application code base with
historical test results to predict the best configuration and
tests order to test on. This way when a new change is being
introduced to software we can decide in which environment it
should be tested in first place.

In our research we are planning to used multi-agent systems
(See [5] and [6]) that will automatically deploy environments
and optimize them for most efficient testing in terms of quality
and resource consumption. Sensitivity is a useful measure to
be used in algorithms that detect unusual behaviors like those
mentioned in [7] and [8].

We are also considering introducing second measure based
on probability that will cooperate with environment sensitivity
that will allow us to better describe environment behavior and
compare them in more than one category.
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APPENDIX

In this section we present a table with sensitivity values
calculated for different versions of popular browsers running
on various operating systems. Sensitivity was calculated at
once based on all test results from all available configurations..
In production it is usually not possible to keep so many testing
environments, so only a small subset of them is used for daily
testing and more of them are added when needed (for example
before product release). You can compare results from this
table with values from Table III.

TABLE IV: Sensitivity values calculated for all configurations
(only non-zero values are shown). In this case sensitivity was
calculated for all environments at once.

System Browser Browser version Sensitivity

LINUX FIREFOX 1.5.0.12 1.000

LINUX FIREFOX 2.0.0.17 0.971

WINDOWS FIREFOX 2.0.0.12 0.971

LINUX KONQUEROR 4.8 0.902

MAC OS X CAMINO2 2.1.2 0.821

MAC OS X SAFARI 4 0.202

WINDOWS CHROME 3.0.182.2 0.798

WINDOWS CHROME 4.0.223.11 0.659

WINDOWS OPERA 10.00 0.445

LINUX FIREFOX 7.0.1 0.405

LINUX FIREFOX 6.0.1 0.405

MAC OS X FIREFOX 11.0 0.364

MAC OS X FIREFOX 12.0 0.364

MAC OS X FIREFOX 13.0.1 0.364

MAC OS X FIREFOX 14.0.1 0.364

MAC OS X FIREFOX 15.0.1 0.358

WINDOWS FIREFOX 11.0 0.358

WINDOWS FIREFOX 16.0 0.341

LINUX SAFARI 5.0 0.312

WINDOWS CHROME 5.0.375.125 0.306

WINDOWS CHROME 6.0.453.1 0.243

LINUX CHROME 6.0.472.63 0.214

MAC OS X SAFARI 6.0.1 0.208

WINDOWS CHROME 7.0.517.44 0.173

LINUX CHROME 20.0.1132.47 0.075

LINUX CHROME 22.0.1229.94 0.052

MAC OS X CHROME 22.0.1229.94 0.046

WINDOWS SAFARI 5.0 0.046

WINDOWS OPERA 11.64 0.017
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