

Abstract— Systems engineers use SysML as a vendor-

independent language to model Cyber-Physical Systems.

However, SysML does not provide an executable form to define

behavior but this is needed to detect critical issues as soon as

possible. Action Language for Foundational UML (Alf)

integrated with SysML can offer some degree of precision. In this

paper, we present an Alf specialization that introduces the

synchronous-reactive model of computation to SysML, through

definition of not explicitly constrained semantics: timing,

concurrency, and inter-object communication. The proposed

specialization is well-suited for safety-critical systems because it

is deterministic. We study one example already modeled in the

literature, to compare these approaches with our one. The initial

results show that the proposed specialization helps to couple

complexity, provides better composition, and enables

deterministic behavior definition.

I. INTRODUCTION

YBER-Physical Systems (CPSs) are an integration of

computational and physical processes [14]. The

difficulty in modeling cyber-physical systems comes from

the diversity of these systems. The most promising approach

to mitigate this problem is developing expressive and precise

modeling languages [8].

Accordingly, the Object Management Group (OMG) and

the International Council on Systems Engineering (INCOSE)

developed Systems Modeling Language (SysML) [20]; a

general-purpose modeling language for systems engineering

applications. SysML has demonstrated a capability for top-

down design refinement for large-scale systems [11];

therefore, SysML is expressive, but the lack of formal

foundations in the SysML results in imprecise models.

A major current focus in systems engineering is how to

introduce precision in the approaches based on SysML

through formal methods. This introduction can be a legal

requirement when dealing with safety-critical systems; e.g.,

the IEC 61508 (Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-

related Systems) defines formal methods as highly

 This work was supported by the Brazilian Coordination for

Enhancement of Higher Education Personnel (CAPES) and German

Academic Exchange Service (DAAD).

recommended technique for the highest safety integrity level;

moreover, DO-178C (Software Considerations in Airborne

Systems and Equipment Certification) addresses formal

methods as a complement to testing. There are languages

with a formal semantics such as Esterel [5] or the B-language

[7]; nonetheless, there are no modeling languages with

widespread use in systems engineering community that have

the attraction of SysML [10].

This paper focuses on the evaluation of a formal

foundation in SysML engineering approaches concerning

behavioural definitions. Behavior is defined using SysML,

and also using Unified Modeling Language (UML) [18],

mainly by Activity Diagrams, Sequence Diagrams, and State

Machine Diagrams, which do not have precise semantics

given by OMG; and, in general, are not executable.

Behavioural definition could evolve with the Semantics of

a Foundational Subset for Executable UML Models (fUML)

[19]; this specification defines a formal semantics for an

executable subset of UML. Moreover, OMG Action

Language for Foundational UML (Alf) is the textual

language for fUML [21].

On the contrary, there are research papers [4][22] stating

that fUML and Alf are not suitable for behavioural modeling

the safety-critical systems yet. The reasons can be classified

as follows: (1) nondeterminism in the execution model [4];

and, (2) current tools do not allow the use of model-checking

or theorem proving [22]. Hereafter, we will explore the

reason (1) in detail.

fUML standard execution model is based on a model of

computation (MoC), which is nondeterministic (we consider

this in Section III.A). On the other hand, there is one MoC

that can provide determinism, and can simplify the modeling

and verification tasks; it is called synchronous-reactive [14].

The synchronous-reactive MoC can provide determinism

using the fundamental model of time as a sequence of

discrete instants and parallel composition as a conjunction of

behaviors [3]. This MoC has been established as a

technology of choice for specifying, modeling, and verifying

real-time embedded applications [3], e.g. Esterel [5], Lustre

(as well as, Lustre-based commercial Scade tool) [3], Signal

[3], and Quartz [26] are languages also based on this MoC.

C

Towards the Applicability of Alf to Model Cyber-Physical Systems

Alessandro Gerlinger Romero
Brazilian National Institute for
Space Research, Avenida dos

Astrounautas, 1758, 12227-010,
São José dos Campos, São Paulo,

Brazil.
Email: romgerale@yahoo.com.br

Klaus Schneider
University of Kaiserslautern

Computer Science Department, Po
box 3049, 67653, Kaiserslautern,

Germany.
Email: klaus.schneider@cs.uni-

kl.de

Maurício Gonçalves Vieira
Ferreira

Brazilian National Institute for
Space Research, Avenida dos

Astrounautas, 1758, 12227-010,
São José dos Campos, São Paulo,

Brazil.
Email: mauricio@ccs.inpe.br

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1415–1422

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1415

The synchronous-reactive MoC means that most of the

statements are executed in zero time (at least in the idealized

model). Synchronous computations consist of a possibly

infinite sequence of atomic reactions that are triggered by a

global logical clock. In each reaction, all inputs are read and

all outputs are computed by all components in parallel. In the

synchronous-reactive MoC, the communication and

computation of values is done in zero time. Consumption of

time must be explicitly defined with special statements, as

e.g. the pause statement in Esterel [5] and Quartz [26].

Comparing a system described in the synchronous-reactive

MoC against a system described following an asynchronous

MoC for dual redundant flight guidance system, Miller et. al.

[15] made the following observation: “the properties

themselves are more difficult to state, were weaker than

could be achieved in the synchronous case, and required

considerable complexity to be added to the model to ensure

that even the weakened properties were true”. Furthermore,
systems described by a synchronous-reactive MoC can be

desynchronized [3] in a concrete solution that is then

asynchronous, e.g. to generate Globally Asynchronous

Locally Synchronous architectures (GALS) [15].

In this paper, we explore the causes of nondeterminism in

fUML and Alf, and, present a deterministic specialization of

Alf for CPSs modeling based on the synchronous-reactive

MoC. This specialization removes deficiencies found by [2]

[4] in fUML and Alf, and can be an alternative to define

deterministic behaviors in SysML. The initial results show

that the proposed specialization does not add complexity to

the task of modeling CPSs using SysML, and enables a

deterministic definition of the behavior.

The remainder of this paper is organized as follows: in

Section II, related works are explored; in Section III, the

relationships between Alf and other OMG specifications are

explored; in Section IV, we present the initial approach; in

Section V, we discuss the initial approach; finally,

conclusions are shared in the last section.

II. RELATED WORKS

There is a large number of research papers about semantics

for models defined using UML, and consequently, SysML.

Hußmann [12] proposed the following classification for

approaches concerning structural semantics: (1) naive set-

theory, (2) meta-modeling, and (3) translation. This

classification can also be used for the works focused on

behavioural semantics.

Extending naive set-theory, Graves and Bijan [11]

proposed one approach where behavior defined using

SysML State Machine Diagrams is represented as a set of

axioms in type theory. Graves [10] stated that SysML uses

diagrams to model structure, and these diagrams can be

encoded as axiom sets in OWL (Web Ontology language).

The last work did not cover behavioural modeling, but it

suggested that behavioural modeling should follow the same

path of the structural modeling, i.e. behavior should be

encoded as sets of axioms.

Alf [21], and the foundational subset for executable UML

models (fUML) [19], combines the meta-modeling and an

extension of set-theory, because the semantics of behavior is

described operationally by fUML itself, and by a set of

axioms (we consider this in Section III).

A broad set of researches adheres to translation through

definition of a mapping between SysML and a formal

language. Bousse et. al. [7] proposed a transformation from

a subset of SysML into a subset of the B method; the

selected subset of SysML covers behavioural definitions

expressed by Alf. Afterwards, the resulting B method

representation is proved by a specialized tool. Pétin et. al.

[23] defined transformation from SysML requirements and

SysML behavior (defined by State Machine Diagrams and

Activity Diagrams, without use of fUML) into temporal logic

and timed automata, respectively. Henceforth, the UPPAAL

model checker is used to check safety requirements.

Abdelhalim et. al. [1] defined a method that receiving State

Machine Diagrams and Activity Diagrams (according to

fUML) applies a transformation to Communicating

Sequential Processes (CSP). Later, the method uses a model

checker to verify the resulting CSP representation. This

work focuses on maintaining the behavioural consistency

between State Machine Diagrams and Activity Diagrams.

Abdelhalim et. al. [2] refined their initial approach defining

a subset of CSP to be used because difficulties emerge when

non-trivial fUML inter-object communication mechanism is

formalized. This work identifies patterns that are correct

from the modeller’s point of view and the system

representation; however, when model checking the CSP

representation of this model is performed, a state space

explosion problem may occur. Perseil [22] suggested that a

subset of Alf should be translated to PlusCal, which has

precise semantics defined by a translation to TLA (Temporal

Logic of Actions); later, the model checker from TLA would

be used.

Some degree of semantics for models is a prerequisite for

verification. Taking into account verification, there are a

large number of research papers about the verification of

UML, and consequently SysML, behavioural models,

focusing on State Machine Diagrams, Sequence Diagrams

and Activity Diagrams; nonetheless, a way to check the

correctness of behavioural representations is still not agreed

[24]. Planas et. al. [24] presented a method to verify

correctness of behaviors defined using Alf through analysis

of all possible execution paths. This method uses as input an

UML model, and performs its checks directly on this model.

This work states that translating UML behavioural models

into other formalisms or languages could compromise

scalability of these proposed methods.

However, few researches addressed the problem of

nondeterminism, and its roots, in behavioural representations

using fUML, and Alf.

1416 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Benyahia et. al. [4] showed that fUML, and also Alf, is

not directly feasible to safety-critical systems because the

MoC defined in the fUML execution model is

nondeterministic. In spite of variation points provided by

fUML, this work recognized that they are not powerful

enough to change the MoC, and an alternative extension of

the core execution model was presented to accommodate

different MoCs.

III. OMG SPECIFICATIONS AND MOCS

Execution and verification of models is the cornerstone of

any Model-Driven Development (MDD). One prominent

alternative for MDD is Model-Driven Architecture (MDA)

[17] established by OMG. MDA defines three levels of

abstraction: (1) Computational Independent Model (CIM) –

focuses on the environment of the mission and mission’s
requirements; (2) Platform Independent Model (PIM) –

defines requirements, structure and behavior for candidate

abstract solutions; (3) PSM (Platform Specification Model) –

describes concrete solutions.

An important OMG specification for PIM is Alf [21]. Alf

is a textual surface representation for UML modeling

elements. It is an action language that includes primitive

types (including real numbers), primitive actions (e.g.

assignments), and control flow mechanisms, among others. It

is object-oriented, and it is an imperative language (like C

and Java). Further, Alf has the expressivity of OCL (Object

Constraint Language) in the use and manipulation of

sequences of values, enabling an OCL-like syntax.

The execution semantics of Alf is given by mapping the

Alf concrete syntax to the abstract syntax of fUML [19].

fUML abstract syntax is a subset of UML with additional

constraints, so a well-formed model is one that meets all

constraints imposed on its syntactic elements by the UML

abstract syntax as well as all additional constraints imposed

on those elements by the fUML abstract syntax.

Moreover, the execution semantics of fUML is an

executable model written in fUML. However, instead of

using Activity Diagrams, activities are written as equivalent

code in Java; to support that, a mapping from Java to

Activity is defined for core elements of activities (Base UML

- bUML). The circularity is broken by the base semantics for

bUML, which is specified in first order logic based on

Process Specification Language (PSL). PSL (ISO 18629)

provides a way to disambiguate common flow modeling

constructs in terms of constraints on runtime sequences of

behavior execution; desired behavior is specified by

constraining which of the possible executions is allowed [6].

Fig. 1 shows relationships between these OMG

specifications. In the following, “fUML execution model”

refers to fUML and Alf.

SysML reuses a subset of UML 2 and provides additional

extensions to satisfy the necessities of systems engineering,

e.g. Requirement Diagrams [20]. SysML and Alf integrate

seamlessly because Alf can be used in context of models not

limited to the fUML subset [19].

Concerning the MoC provided by UML, one basic

premise from this modeling language is that all behaviors are

ultimately caused by actions executed by active objects [18],

which is an instance of an active class (executed

concurrently).

This establishes concurrent processes (active objects) but

does not define a specific MoC because all

BehavioralFeatures (e.g., Operations and Receptions) in

UML allow three types of concurrency: sequential, guarded,

and concurrent. Therefore, the semantics is unconstrained,

which supports heterogeneous MoCs; in fact, it is one of the

goals of the specification.

fUML constrains the concurrency for all

BehavioralFeatures to the sequential type; as a result, the

sole mechanism for asynchronous invocation in fUML is

sending signals (SendSignalAction) to other active objects

[19]. Further, the sending action is not blocking, i.e., an

object sends a signal and continues its execution; it does not

wait for a response, or an acknowledgment (nonblocking

write). In contrast, the reception action is blocking, i.e., one

computation running is blocked when it expects to receive a

determined signal (blocking read). Moreover, the received

signals are stored in an unbounded event pool for each active

object, which is a FIFO (first-in first-out) in the fUML

standard execution model (this is a variation point [19]).

Consequently, the fUML standard execution model is

characterized by concurrent processes (active objects)

communicating with each other through unidirectional

unbounded FIFO event pools, where writes to the event pool

are nonblocking, and reads are blocking.

These fUML’s characteristics are what the Kahn process
networks have [13]. However, fUML standard execution

model defines that signals coming from different active

objects should be stored in the same target event pool.

Allowing more than one process to write to an event pool

(channel), the resulting process network is neither

deterministic [13] nor a Kahn Process Network (in the strict

sense). Consequently, the resulting process network can be

described by active objects that receive (input) and emit

Fig. 1. Relationships between OMG specifications and MoCs.

ALESSANDRO GERLINGER ROMERO ET AL.: TOWARDS THE APPLICABILITY OF ALF TO MODEL CYBER-PHYSICAL SYSTEMS (FEDCSIS) 1417

(output) signals, and a set of firing rules (encoded in the

behavior) defining when an active object should be fired;

these characteristics are what the dataflow process networks

have [13].

Nondeterminism can be a powerful modeling tool, but it

should be used only when necessary [13]. Consequently,

deterministic languages that allow nondeterminism remove it

using precise techniques, e.g. the Quartz [26] compiler adds

new control events to remove nondeterminism allowed by

some statements.

Despite the nondeterminism of fUML MoC, it is designed

to support a variety of different MoCs. This is pursued using

two techniques: (1) defining explicit variation points, which

are: event dispatching scheduling (used in the inter-object

communication), and polymorphic operation dispatching; (2)

leaving some semantics elements unconstrained that are:

timing, concurrency, and inter-object communication.

IV. THE INITIAL APPROACH

CPSs are often safety-critical systems [14]; hence executable

models describing them must be deterministic: given a state

x(ti) and an input w(ti) the system must generate the same

output u(ti) for each reaction in state x(tn)=x(ti) and input

w(tn)=w(ti).

The fUML specification states that there are a number of

cases in which the UML indicates that the execution

semantics in a certain area are nondeterministic [19]. In

order to understand these nondeterministic areas, the next

subsection discusses the roots of nondeterminism in the

fUML execution model.

A. fUML and Nondeterminism

In order to analyze fUML’s nondeterminism, behavior
should be classified, which is done by UML [18] as: (1)

intra-object behavior addresses the behavior occurring within

classes; (2) inter-object behavior, which deals with how

active classes communicate with each other.

The roots of nondeterminism in the fUML specification

can be grouped as follows: (1) structural features

manipulation – e.g. set one value to a property of an object;

(2) conditions – fUML conditional clauses, e.g. defined

using if or switch Alf statements; (3) token flow semantics –
defines intra-object behavior semantics, e.g. how are tokens

offered, and, consequently, in which sequence are nodes

executed; (4) ObjectActivation – a key class responsible to

bind inter-object behavior with intra-object behavior.

1) Structural feature manipulation

A property in a class, defined by a modeller, is a

StructuralFeature in the meta-model of UML. Actions that

write or remove values in a StructuralFeature can be

nondeterministic. The nondeterminism occurs when a target

property has multiplicity greater than 1, it is not ordered, and

it does not have the uniqueness property; i.e., the property is

a bag.

This nondeterminism can be a challenge for verification

but it compromises neither the given definition of

deterministic models nor the fUML MoC.

2) Conditions

Conditions are modeled in fUML using ConditionalNodes.

ConditionalNode has an association with Clauses; each

Clause can have an association with predecessor Clauses.

The fUML execution model states that sequential evaluation

is performed when the predecessor chain is defined.

Two statements in Alf map to ConditionalNodes in fUML:

if, and switch. The statement if is mapped using predecessor

clauses in fUML when the modeller uses the construct “if (

condition) else …”, so the sequence of evaluation of clauses

is deterministic; on the other hand, when the modeller uses

the construct “if (condition) or …” the sequence of

evaluation of clauses is nondeterministic. Finally, the

statement switch is mapped without use of predecessor

clauses in fUML so the evaluation of clauses is not

deterministic.

As a result, the modeller has two options to produce a

deterministic model, concerning conditions using Alf: (1)

define conditions that are mutually-exclusive (assured by the

modeller, or by an automated assistant); or, (2) use the Alf

construct “if (condition) else …”. A nondeterministic model

is defined otherwise.

This nondeterminism compromises the given definition of

a deterministic model, but it does not affect the fUML MoC.

3) Token flow semantics

fUML states that different execution traces for the same

inputs in an identical environment (including same state) are

allowed to be different [19].

For example, given two actions that are not directly or

indirectly ordered by their relationships, the order of

execution is determined neither by UML semantics nor by

fUML execution model, as recognized by [4]. Other

example, a ForkNode enables race conditions. Therefore,

nondeterminism is established in the intra-object behaviors.

Some basic nondeterminism (coming from UML), in the

token flow semantics, are removed by semantic mapping

from Alf to fUML, e.g., a naive modeller can, using fUML,

connect an OutputPin at two InputPins without using a

ForkNode (it copies tokens). However, that construction is

not possible in Alf, which generates a ForkNode for each

local name [21].

This nondeterminism (if these different traces lead to

different outputs or signals sent to other active objects)

compromises the given definition of deterministic models,

and can contribute to the nondeterminism in the fUML MoC.

4) ObjectActivation

ObjectActivation is the class defined in the execution model

to handle the active behavior of an active object. It is

responsible to bind inter-object behavior with intra-object

1418 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

behavior because it, together with EventAccepters, offers the

blocking read feature for fUML MoC.

Two associations of this class are important for analysis of

nondeterminism: (1) eventPool - the list, without upper

bound, of pending signals sent to the object handled by this

object activation; (2) waitingEventAccepters - the set of

event accepters waiting for signals to be received by the

object handled by this object activation.

For example, an execution sequence (ES) for two active

objects communication can be explained as follows: (1) an

active object (A) reaches an AcceptEventAction (statement

accept defined by Alf), this is a blocking read for a signal;

(2) the corresponding ObjectActivation object registers an

EventAccepter in the waitingEventAccepter; (3) another

active object sends a signal, that matches (A) receptions, and

the registered accept statement; (4) the ObjectActivation

object inserts this new signal at the end of eventPool; (5)

considering that eventPool had no previous signals, this

signal is removed from eventPool, dispatched to respective

accept statement, and EventAccepter is unregistered.

The step (5) is one of two explicit variation points from

fUML, called event dispatching scheduling. The standard

execution model provides the implementation described

above, where events are dispatched from the pool using a

first-in first-out (FIFO) rule.

The ObjectActivation is the key to understand how

nondeterminism in the fUML MoC and in the token flow

semantics is combined. Exploring the execution model of

fUML, Fig. 2 shows an Activity Diagram for an active class.

Further, Fig. 3 shows an Alf representation for the Activity

Diagram presented in Fig 2.

In Fig. 2, there are two concurrent AcceptEventAction

waiting for the same type of signal; they are designed to

execute two different tasks using received signals. The

ForkNode, together with the fact that the next two actions

wait for the same signal, defines a race condition, where the

output depends on the sequence of tokens offered.

Considering that a signal sent by another active object

arrived after the two EventAccepters were registered, and the

execution sequence (ES) presented above; during the event

dispatching phase (5), there are two registered

EventAccepters. In this case, the execution model chooses

nondeterministically one of these [19], dispatches the event

to it, and unregisters it.

This nondeterminism compromises the given definition of

a deterministic model, and contributes to the nondeterminism

in the fUML together with fUML MoC.

B. Proposed specialization of Alf and fUML

The initial approach is described as follows: given the

semantics defined by fUML, we specialize the explicitly

unconstrained elements with the purpose of deterministic

behavioural definitions using SysML and Alf. We chose to

discuss the semantics in an informal way, and to present

concrete additional Alf constructs for the specialization.

Fig. 2. fUML Activity diagram – nondeterministic.

These additional language constructs are defined using

Annotation. According to Alf abstract syntax [26],

annotation is a way to identify a modification to the behavior

of an annotated statement. The applied approach allows us

an early evaluation of the proposed specialization.

Therefore, a first concern is to introduce a synchronous-

reactive MoC on fUML and Alf. A second concern is to

specialize fUML and Alf, which means: do not change

syntax parsing of Alf, but change its semantics.

The next three subsections explore the introduction of the

synchronous-reactive MoC in Alf using unconstrained

elements, and the variation points. The fourth subsection

summarizes the proposal.

1) Timing

The behavioral semantics of UML only deals with discrete

behaviors [18]. Accordingly, the timing semantics proposed

divides the time scale in a discrete sequence of instants, each

instant corresponds to one macro step as defined in the next

subsection.

The annotation @delayed was introduced; it is the only

way to assign new values to an already assigned variable in

the current macro step. This annotation can be used in the

assignments and in the SendSignalActions.

2) Concurrency

Concurrency can be achieved in Alf using two

complementary techniques: (A) multiple active objects that,

in general, imply the necessity of inter-object

communication; or, (B) inside a given definition by the use

of the annotation @parallel [21].

The alternative proposed is a combination of concurrency

and synchrony (where computation and communication are

instantaneous) through introducing the synchronous-reactive

MoC to fUML and Alf. According to this MoC, a program

can be defined by so-called micro and macro steps. Each

macro step is divided into finitely many micro steps, which

are all executed in zero time and within the same variable

ALESSANDRO GERLINGER ROMERO ET AL.: TOWARDS THE APPLICABILITY OF ALF TO MODEL CYBER-PHYSICAL SYSTEMS (FEDCSIS) 1419

environment. As a consequence, the values of the variables

are uniquely defined for each macro step. Macro steps

correspond to reactions of reactive systems, while micro

steps correspond to atomic actions [26], e.g., assignments

using Alf.

The demarcation of macro steps was introduced by the

annotation @pausable; it is one of two ways to define

demarcation between two macro steps. The second way is

the use of the accept statement. This annotation is designed

to be used with loop constructs (while, for, do while) but it

can be also used with an empty statement of Alf. The

semantics is: after each execution of the loop body, it waits

for the next macro step. It follows that all concurrent

behaviors run in lockstep: they execute the actions inside the

loop in zero time, and synchronize before the next iteration.

The annotation @parallel can be used to define that all

the statements in the block are executed concurrently. The

block does not complete execution until all statements

complete their execution; i.e., there is an implicit join of the

concurrent executions of the statements [21].

Alf provides also an annotation called @isolated, it is

defined in [21]: no object accessed as part of the execution

of the statement or as the result of a synchronous invocation

from the statement may be modified by any action that is not

executed as part of the statement. Similar to this annotation,

Alf provides the isolation expression through character $.

Both options are not compatible with the synchronous-

reactive MoC, where variables are uniquely defined for each

macro step.

3) Inter-Object Communication and Event-Dispatching

Inter-object communication in Alf is performed by sending

signals to other active objects. A signal is a specification of

what can be carried; furthermore, a signal event represents

the receipt of a signal instance in an active object [21]. A

signal instance is identified by its contents.

Signals are based on the paradigm of message passing;

furthermore, fUML provides a point-to-point (also known as

unicast) message pattern. A signal is sent to a receiver (an

active object) using a reference to it. In contrast, multicasting

is required in many safety-critical systems, e.g., fault-

tolerance by active redundancy [16]. Multicasting also

supports the non-intrusive observation of component

interactions by an independent object, and enables better

composition [16].

Fig. 3. Alf representation for fUML Activity diagram –

nondeterminitisc.

Multicasting is provided by the introduction of an active

class called MessageDispatcher; it provides a service for

multicast message exchange. Instances of this class work as

bus transferring instances of signals between previously

registered active objects, which generate events in the target

active object. Every signal handled by MessageDispatcher

has a specific identifiable sender, and zero or more receivers.

The set of receivers (active objects) is defined by

existence of the reception for the sent signal. All signals

generated in the current macro step are available

instantaneously in the synchronous-reactive MoC. Further,

signals not consumed during a macro step are lost. Delayed

SendSignalActions are available in the next macro step.

It is possible to receive signals individually or as a set.

Receiving a set of signals is important for those active

objects that need to process all signals sent in the current

macro step. However, individual signal receiving is

fundamental for those active objects that should only process

one signal sent to them. For this case (individual signal), the

annotation @nonblocking was introduced; it is the only way

to receive signals without blocking (nonblocking read).

In a macro step just one signal value (a signal is identified

by its contents) is allowed for a given signal type, and

MessageDispatcher; therefore, values of the signals for a

given MessageDispatcher are uniquely defined for each

macro step.

4) Summary

Table I summarizes the annotations available in the

specialization of Alf. All other annotations available in Alf

now are just comments, as well as, isolation expressions.

Considering that execution model of fUML has changed

to accommodate proposed specialization, the semantics of

Alf representation in Fig. 3 changes. As just one signal

value in a macro step is allowed for a given signal type, and

MessageDispatcher; the same signal instance is dispatched

for those two parallel accepts, and computation follows in

the same macro step concurrently.

The specialized semantics removes the nondeterminism

indicated in section “IV.A.4 Object Activation” as described
earlier. Also, it removes the nondeterminism indicated in

section “IV.A.3 Token flow semantics” because the ordering

of micro steps does not influence the semantics of a model.

However, the new semantics does not remove the

nondeterminism indicated in section “IV.A.2 Conditions”,

TABLE I.

ANNOTATIONS IN THE SPECIALIZED ALF

Annotation Informal semantics

@delayed Delayed assignment or SendSignalAction

@pausable Macro step demarcation

@parallel Computations on each block are carried out

concurrently

@nonblocking AcceptEventAction read nonblocking, makes

optional signals available

1420 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

which should be rejected by an interpreter for proposed

semantics (when conditions are not mutually-exclusive).

With the proposed specialization, Fig. 3 can be changed

without modification of the semantics: the two accepts

(ACC1 and ACC2) could be removed, and a new one

(ACC0) could be inserted before the concurrent block. This

is referential transparency, which means syntactically

identical expressions have the same semantics regardless of

their lexical position [13].

5) Example

We evaluate the example from [4] but a case study with well-

known CPS is [25]. Fig. 4 shows the Block Definition

Diagram (BDD) for it. A PingPongSystem is composed by

one Player1 and one Player2; both players are active classes.

These two active classes communicate by exchanging signals

Ping and Pong. The respective Alf representation for the

behavior of each player is presented using comments.

In a given macro step, Player1 sends a delayed Pong

(P11), and awaits for Ping (P12). In the next macro step,

Pong is received by Player2 (P21), who sends a delayed

Ping (P22). The game continues forever as showed in Fig. 5.

Fig. 5 shows the Internal Block Diagram (IBD) for the

system, and the Alf representation for the main behavior.

Player1 (S3) and Player2 (S2) are created passing an object

of MessageDispatcher (S3); later, an infinite loop annotated

with @pausable (S5), containing an empty statement, is used

to define the evolution of time.

In contrast to [4], which uses static Association between

the players, it is used Connectors that specify links between

instances playing the connected parts only [18] (decoupling

Player1 from Player2). The communication is provided by

the instance of MessageDispatcher. The Alf specialization

makes the example different concerning evolution of time,

signal events, and communication. Therefore, this model is

deterministic while [4] is nondeterministic.

V. DISCUSSION

Activity Diagrams are used frequently [1][4][2][23][24];

however, for significant activities, these diagrams quickly

become large, intractable to draw and hard to comprehend

[19].

Fig. 4. BDD for the PingPongSystem.

State Machine Diagrams are another commonly used form

of diagrams, especially suited for modeling state-based

behavior [1][2][4][11][23][24]. However, UML, fUML,

SysML, and Alf do not define precise semantics for state

machines [9]. This is ratified by the Alf specification itself,

which states that a normative semantic integration of state

machines with Alf will be formalized later [21]. Indeed,

environments of synchronous languages offer tools to

visualize the resulting automata [3], e.g. Fig. 3 can be

automatically transformed in a State Machine Diagram.

Transformation from SysML to other languages or

formalism could bring some serious problems [12], and

could compromise scalability [24]. However, we consider

the certification process [22] more challenging because it is

needed to assess the original model, and the translated model

(or even the transformation itself). Nevertheless, these

transformations are powerful, and can provide feedback for

the fUML specification MoC. For example, [2] defines a

pattern suitable of optimization called “fUML-Opti-Rule(2):

Detecting unacknowledged signals” - an unacknowledged

signal is one that has been sent from an active object to

another active object, and then it (source object) continues

sending further signals without waiting for an

acknowledgment signal. This pattern is detected through

model checking executed over a CSP representation, which

is the result of a transformation of a fUML model [2]. Based

on this feedback, the modeller should evaluate

acknowledging those signals to reduce the state space of the

corresponding CSP model. Although, this is a rendezvous

that is common in CSP MoC; considering this case, fUML

MoC needs more design effort than CSP MoC.

Concerning [10][11] which propose to encode SysML

structure as a set of axioms, fUML and PSL [6] are well

suited, hence axioms about structure and behavior can be

combined and evaluated together.

The evaluation presented corroborates [4] concerning two

points about fUML (and also Alf) as it is: (1) the execution

model is nondeterministic; (2) it is not suitable for safety-

critical systems. Nonetheless, Alf should be specialized to

allow safety-critical systems modeling [22].

Fig. 5. IBD for the PingPongSystem (graphical view of flows).

ALESSANDRO GERLINGER ROMERO ET AL.: TOWARDS THE APPLICABILITY OF ALF TO MODEL CYBER-PHYSICAL SYSTEMS (FEDCSIS) 1421

The proposed specialization of Alf adheres the idea of

introducing synchronous-reactive MoC during early stages of

a system development [3]. The major drawback of this MoC

is that the computer interpretation of the models is difficult

[3]; further, polymorphism, reclassification, and dynamicity

(actions: create, and destroy) can be even more challenging

[3].

fUML states that every specialization must be defined

using bUML; in fact, the initial approach presented here

provides a complete description from the viewpoint of the

modeller. It defines the semantics for three additional

constructs for Alf that together with MessageDispatcher can

transform Alf in a synchronous action language; however,

the changes needed in the fUML execution model to support

it must be defined.

VI. CONCLUSION

This paper shows the results of the proposed specialization

of Alf, according to the synchronous-reactive MoC. It helps

to couple complexity, provides better composition, and

enables deterministic behavior definitions.

CPS is about the intersection of the computation, control

and communication [14]. The initial approach focuses on the

discrete computational and communicational aspects of

CPSs. It can be composed with discrete control. A case study

with a well-known CPS [25] shows that the initial approach

can bring solid mathematical foundation from synchronous-

reactive MoCs [3] to SysML executable models. We

consider this as an intermediary step, located before a formal

verification of executable discrete SysML models.

In summary, we believe that specializing well-known

vendor-independent specifications (Alf and SysML) can

provide an understandable and compact set of languages for

modeling, analyzing and verifying of CPSs. Moreover, such

a set of languages can enable formal verification for discrete

parts of CPSs.

REFERENCES

[1] Abdelhalim, I.; Schneider, S.; Treharne, H. (2011). Towards a
practical approach to check UML/fUML models consistency using
CSP. In Proc. ICFEM 2011 Proceeding of the 13th International

Conference on Formal methods and software engineering, 2011, pg.
33-48.

[2] Abdelhalim, I.; Schneider, S.; Treharne, H. (2012). An Optimization
Approach for Effective Formalized fUML Model Checking. In Proc.
SEFM2012 Proceeding of the 10th International Conference on
Software Engineering and Formal methods, 2012, pg. 248-262.

[3] Benveniste, A. ; Caspi, P.; Edwards, S.; Halbwachs, N.; Guernic, P.;
Simone, R. (2003). The synchronous languages twelve years later.
Proceedings of the IEEE, 2003, pg. 64–83.

[4] Benyahia, A.;Cuccuru, A.; Taha, S.; Terrier, F.; Boulanger, F.;
Gérard, S. (2010). Extending the Standard Execution Model of UML
for Real-Time Systems. In Proc. DIPES/BICC, 2010, pg. 43-54.

[5] Berry, G. (2000). The Esterel v5 Language Primer: version:5.91.
France. Available at:
<http://francois.touchard.perso.esil.univmed.fr/3/esterel/primer.pdf>.
Access date: 14.Apr.2013.

[6] Bock, C.; Gruninger, M. (2005). PSL: A semantic domain for flow
models. In Software & Systems Modeling, May 2005, Volume 4,

Issue 2, pp 209-231, 2005. Springer.

[7] Bousse, E.; Mentré, D. Combemale, B.; Baudry, B.; Katsuragi, T.
(2012). Aligning SysML with the B Method to Provide V&V for

Systems Engineering. Proc. Of 12th Model-Driven Engineering,
Verification, and Validation 2012.

[8] Cartwright, R.; Kelly, K.; Koushanfar, F.; Taha, W. (2006). Model-
Centric Cyber-Physical Computing. In proceedings … NSF
Workshop on Cyber-Physical Systems, 2006, Austin, Texas: USA.

[9] Fecher, H.; Schönborn, J.; Kyas, M.; Roever, W. (2005). 29 New
Unclarities in the Semantics of UML 2.0 State Machines. In
Proceedings of the Int. Conf. on Formal Engineering Methods, LNCS
3785, Berlin/Heidelberg, Germany, Springer-Verlag, 2005, pg. 52-65.

[10] Graves, H. (2012). Integrating Reasoning with SysML. In Proc. of
22th Annual INCOSE International Symposium. Rome, Italy, July,
2012.

[11] Graves, H.; Bijan, Y. (2011). Using formal methods with SysML in
aerospace design and engineering. Journal Annals of Mathematics
and Artifical Intelligence. Volume 63, Issue1, September, 2011. pg
53-102.

[12] Hußmann, H. (2002). Loose semantics for UML, OCL, in:

Proceedings 6th World Conference on Integrated Design and Process
Technology, IDPT 2002, June, Society for Design and Process
Science, 2002.

[13] Lee, E.; Parks, T. (1995). Dataflow process networks. Proceedings of
the IEEE, vol. 83, no. 5, May, 1995. pg. 773-801.

[14] Lee, E.; Seshia, S. (2011). Introduction to Embedded Systems - A
Cyber-Physical Systems Approach. http://leeseshia.org/, 2011. ISBN
978-0-557-70857-4.

[15] Miller, P.; Whalen, M.; Obrien, D.; Heimdahl, M.; Joshi, A. (2005).
A methodology for the design and verification of globally
asynchronous/locally synchronous architectures. NASA Contractor
Report NASA/CR-2005-213912.

[16] Obermaisser, R.; Kopetz, H. (2009). Genesys – A candidate for an
ARTEMIS Cross-Domain Reference Architecture for Embedded
Systems. 2009. Available at: <http://www.genesys-
platform.eu/genesys_book.pdf> Access date: 17.May.2011.

[17] Object Management Group (OMG). (2003). Model-Driven

Architecture. USA: OMG, 2003. Available at:
<http://www.omg.org/mda>. Acesso em: 17 may. 2009.

[18] Object Management Group (OMG). (2011). Unified Modeling
Language Superstructure: Version: 2.4.1. USA: OMG, 2011.
Available at: <http://www.omg.org/spec/UML/2.4.1/>. Access date:
14.Apr.2013.

[19] Object Management Group (OMG). (2012). Semantics of a
Foundational Subset for Executable UML Models: Version 1.1 RTF
Beta. USA: OMG, 2012. Available at:
<http://www.omg.org/spec/FUML/>. Access date: 24.Apr.2013.

[20] Object Management Group (OMG). (2012). Systems Modeling
Language: Version: 1.3. USA: OMG, 2012. Available at: <
http://www.omgsysml.org/>. Access date: 24.Apr.2013.

[21] Object Management Group (OMG). (2013). Concrete Syntax for
UML Action Language (Action Language for Foundational UML -
ALF): Version: 1.0.1 - Beta. USA: OMG, 2013. Available at:
<http://www.omg.org/spec/ALF/>. Access date: 27.Apr.2013.

[22] Perseil, I. (2011). ALF Formal. Journal Innovations in Systems and

Software Engineering, Volume 7, Issue4, December, 2011. pg. 325-
326.

[23] Pétin, J.; Evrot, D.; Morel, G.; Lamy, P. (2010). Combining SysML
and formal models for safety requirements verification. In 22nd
International Conference on Software & Systems Engineering and
their Applications, France, 2010.

[24] Planas, E.; Cabot, J.; Gomez, C. (2011). Lightweight Verification of
Executable Models. In Proc. ER 2011 Proceedings of the 30th
International Conference on Conceptual Modeling, 2011. pg. 467–
475.

[25] Romero, A. G.; Schneider, K.; Ferreira, M. G. V. (2013).
Synchronous Specialization of Alf for Cyber-Physical Systems. In
First Open EIT ICT Labs Workshop on Cyber-Physical Systems
Engineering, 2013, Trento, Italy.

[26] Schneider, K. (2009). The synchronous programming language
Quartz. Internal Report 375, Department of Computer Science,
University of Kaiserslautern, Kaiserslautern, Germany, December

2009.

1422 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

