
 
 

 

 

Abstract— Systems engineers use SysML as a vendor-

independent language to model Cyber-Physical Systems. 

However, SysML does not provide an executable form to define 

behavior but this is needed to detect critical issues as soon as 

possible. Action Language for Foundational UML (Alf) 

integrated with SysML can offer some degree of precision. In this 

paper, we present an Alf specialization that introduces the 

synchronous-reactive model of computation to SysML, through 

definition of not explicitly constrained semantics: timing, 

concurrency, and inter-object communication. The proposed 

specialization is well-suited for safety-critical systems because it 

is deterministic. We study one example already modeled in the 

literature, to compare these approaches with our one. The initial 

results show that the proposed specialization helps to couple 

complexity, provides better composition, and enables 

deterministic behavior definition. 

I. INTRODUCTION 

YBER-Physical Systems (CPSs) are an integration of 

computational and physical processes [14]. The 

difficulty in modeling cyber-physical systems comes from 

the diversity of these systems. The most promising approach 

to mitigate this problem is developing expressive and precise 

modeling languages [8]. 

Accordingly, the Object Management Group (OMG) and 

the International Council on Systems Engineering (INCOSE) 

developed Systems Modeling Language (SysML) [20]; a 

general-purpose modeling language for systems engineering 

applications. SysML has demonstrated a capability for top-

down design refinement for large-scale systems [11]; 

therefore, SysML is expressive, but the lack of formal 

foundations in the SysML results in imprecise models. 

A major current focus in systems engineering is how to 

introduce precision in the approaches based on SysML 

through formal methods. This introduction can be a legal 

requirement when dealing with safety-critical systems; e.g., 

the IEC 61508 (Functional Safety of 

Electrical/Electronic/Programmable Electronic Safety-

related Systems) defines formal methods as highly 
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recommended technique for the highest safety integrity level; 

moreover, DO-178C (Software Considerations in Airborne 

Systems and Equipment Certification) addresses formal 

methods as a complement to testing. There are languages 

with a formal semantics such as Esterel [5] or the B-language 

[7]; nonetheless, there are no modeling languages with 

widespread use in systems engineering community that have 

the attraction of SysML [10]. 

This paper focuses on the evaluation of a formal 

foundation in SysML engineering approaches concerning 

behavioural definitions. Behavior is defined using SysML, 

and also using Unified Modeling Language (UML) [18], 

mainly by Activity Diagrams, Sequence Diagrams, and State 

Machine Diagrams, which do not have precise semantics 

given by OMG; and, in general, are not executable. 

Behavioural definition could evolve with the Semantics of 

a Foundational Subset for Executable UML Models (fUML) 

[19]; this specification defines a formal semantics for an 

executable subset of UML. Moreover, OMG Action 

Language for Foundational UML (Alf) is the textual 

language for fUML [21].  

On the contrary, there are research papers [4][22] stating 

that fUML and Alf are not suitable for behavioural modeling 

the safety-critical systems yet. The reasons can be classified 

as follows: (1) nondeterminism in the execution model [4]; 

and, (2) current tools do not allow the use of model-checking 

or theorem proving [22]. Hereafter, we will explore the 

reason (1) in detail. 

fUML standard execution model is based on a model of 

computation (MoC), which is nondeterministic (we consider 

this in Section III.A). On the other hand, there is one MoC 

that can provide determinism, and can simplify the modeling 

and verification tasks; it is called synchronous-reactive [14].  

The synchronous-reactive MoC can provide determinism 

using the fundamental model of time as a sequence of 

discrete instants and parallel composition as a conjunction of 

behaviors [3]. This MoC has been established as a 

technology of choice for specifying, modeling, and verifying 

real-time embedded applications [3], e.g. Esterel [5], Lustre 

(as well as, Lustre-based commercial Scade tool) [3], Signal 

[3], and Quartz [26] are languages also based on this MoC.  
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The synchronous-reactive MoC means that most of the 

statements are executed in zero time (at least in the idealized 

model). Synchronous computations consist of a possibly 

infinite sequence of atomic reactions that are triggered by a 

global logical clock. In each reaction, all inputs are read and 

all outputs are computed by all components in parallel. In the 

synchronous-reactive MoC, the communication and 

computation of values is done in zero time. Consumption of 

time must be explicitly defined with special statements, as 

e.g. the pause statement in Esterel [5] and Quartz [26]. 

Comparing a system described in the synchronous-reactive 

MoC against a system described following an asynchronous 

MoC for dual redundant flight guidance system, Miller et. al. 

[15] made the following observation: “the properties 

themselves are more difficult to state, were weaker than 

could be achieved in the synchronous case, and required 

considerable complexity to be added to the model to ensure 

that even the weakened properties were true”. Furthermore, 
systems described by a synchronous-reactive MoC can be 

desynchronized [3] in a concrete solution that is then 

asynchronous, e.g. to generate Globally Asynchronous 

Locally Synchronous architectures (GALS) [15].  

In this paper, we explore the causes of nondeterminism in 

fUML and Alf, and, present a deterministic specialization of 

Alf for CPSs modeling based on the synchronous-reactive 

MoC. This specialization removes deficiencies found by [2] 

[4] in fUML and Alf, and can be an alternative to define 

deterministic behaviors in SysML. The initial results show 

that the proposed specialization does not add complexity to 

the task of modeling CPSs using SysML, and enables a 

deterministic definition of the behavior. 

The remainder of this paper is organized as follows: in 

Section II, related works are explored; in Section III, the 

relationships between Alf and other OMG specifications are 

explored; in Section IV, we present the initial approach; in 

Section V, we discuss the initial approach; finally, 

conclusions are shared in the last section. 

II. RELATED WORKS 

There is a large number of research papers about semantics 

for models defined using UML, and consequently, SysML. 

Hußmann [12] proposed the following classification for 

approaches concerning structural semantics: (1) naive set-

theory, (2) meta-modeling, and (3) translation. This 

classification can also be used for the works focused on 

behavioural semantics.  

Extending naive set-theory, Graves and Bijan [11] 

proposed one approach where behavior defined using 

SysML State Machine Diagrams is represented as a set of 

axioms in type theory. Graves [10] stated that SysML uses 

diagrams to model structure, and these diagrams can be 

encoded as axiom sets in OWL (Web Ontology language). 

The last work did not cover behavioural modeling, but it 

suggested that behavioural modeling should follow the same 

path of the structural modeling, i.e. behavior should be 

encoded as sets of axioms. 

Alf [21], and the foundational subset for executable UML 

models (fUML) [19], combines the meta-modeling and an 

extension of set-theory, because the semantics of behavior is 

described operationally by fUML itself, and by a set of 

axioms (we consider this in Section III).  

A broad set of researches adheres to translation through 

definition of a mapping between SysML and a formal 

language. Bousse et. al. [7] proposed a transformation from 

a subset of SysML into a subset of the B method; the 

selected subset of SysML covers behavioural definitions 

expressed by Alf. Afterwards, the resulting B method 

representation is proved by a specialized tool. Pétin et. al. 

[23] defined transformation from SysML requirements and 

SysML behavior (defined by State Machine Diagrams and 

Activity Diagrams, without use of fUML) into temporal logic 

and timed automata, respectively. Henceforth, the UPPAAL 

model checker is used to check safety requirements. 

Abdelhalim et. al. [1] defined a method that receiving State 

Machine Diagrams and Activity Diagrams (according to 

fUML) applies a transformation to Communicating 

Sequential Processes (CSP). Later, the method uses a model 

checker to verify the resulting CSP representation.  This 

work focuses on maintaining the behavioural consistency 

between State Machine Diagrams and Activity Diagrams. 

Abdelhalim et. al. [2] refined their initial approach defining 

a subset of CSP to be used because difficulties emerge when 

non-trivial fUML inter-object communication mechanism is 

formalized. This work identifies patterns that are correct 

from the modeller’s point of view and the system 

representation; however, when model checking the CSP 

representation of this model is performed, a state space 

explosion problem may occur. Perseil [22] suggested that a 

subset of Alf should be translated to PlusCal, which has 

precise semantics defined by a translation to TLA (Temporal 

Logic of Actions); later, the model checker from TLA would 

be used. 

Some degree of semantics for models is a prerequisite for 

verification. Taking into account verification, there are a 

large number of research papers about the verification of 

UML, and consequently SysML, behavioural models, 

focusing on State Machine Diagrams, Sequence Diagrams 

and Activity Diagrams; nonetheless, a way to check the 

correctness of behavioural representations is still not agreed 

[24]. Planas et. al. [24] presented a method to verify 

correctness of behaviors defined using Alf through analysis 

of all possible execution paths. This method uses as input an 

UML model, and performs its checks directly on this model. 

This work states that translating UML behavioural models 

into other formalisms or languages could compromise 

scalability of these proposed methods.  

However, few researches addressed the problem of 

nondeterminism, and its roots, in behavioural representations 

using fUML, and Alf.  
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Benyahia et. al. [4] showed that fUML, and also Alf, is 

not directly feasible to safety-critical systems because the 

MoC defined in the fUML execution model is 

nondeterministic. In spite of variation points provided by 

fUML, this work recognized that they are not powerful 

enough to change the MoC, and an alternative extension of 

the core execution model was presented to accommodate 

different MoCs. 

III. OMG SPECIFICATIONS AND MOCS  

Execution and verification of models is the cornerstone of 

any Model-Driven Development (MDD).  One prominent 

alternative for MDD is Model-Driven Architecture (MDA) 

[17] established by OMG. MDA defines three levels of 

abstraction: (1) Computational Independent Model (CIM) – 

focuses on the environment of the mission and mission’s 
requirements; (2) Platform Independent Model (PIM) – 

defines requirements, structure and behavior for candidate 

abstract solutions; (3) PSM (Platform Specification Model) – 

describes concrete solutions.  

An important OMG specification for PIM is Alf [21]. Alf 

is a textual surface representation for UML modeling 

elements. It is an action language that includes primitive 

types (including real numbers), primitive actions (e.g. 

assignments), and control flow mechanisms, among others. It 

is object-oriented, and it is an imperative language (like C 

and Java). Further, Alf has the expressivity of OCL (Object 

Constraint Language) in the use and manipulation of 

sequences of values, enabling an OCL-like syntax. 

The execution semantics of Alf is given by mapping the 

Alf concrete syntax to the abstract syntax of fUML [19]. 

fUML abstract syntax is a subset of UML with additional 

constraints, so a well-formed model is one that meets all 

constraints imposed on its syntactic elements by the UML 

abstract syntax as well as all additional constraints imposed 

on those elements by the fUML abstract syntax. 

Moreover, the execution semantics of fUML is an 

executable model written in fUML. However, instead of 

using Activity Diagrams, activities are written as equivalent 

code in Java; to support that, a mapping from Java to 

Activity is defined for core elements of activities (Base UML 

- bUML). The circularity is broken by the base semantics for 

bUML, which is specified in first order logic based on 

Process Specification Language (PSL). PSL (ISO 18629) 

provides a way to disambiguate common flow modeling 

constructs in terms of constraints on runtime sequences of 

behavior execution; desired behavior is specified by 

constraining which of the possible executions is allowed [6].  

Fig. 1 shows relationships between these OMG 

specifications. In the following, “fUML execution model” 

refers to fUML and Alf. 

SysML reuses a subset of UML 2 and provides additional 

extensions to satisfy the necessities of systems engineering, 

e.g. Requirement Diagrams [20]. SysML and Alf integrate 

seamlessly because Alf can be used in context of models not 

limited to the fUML subset [19]. 

Concerning the MoC provided by UML, one basic 

premise from this modeling language is that all behaviors are 

ultimately caused by actions executed by active objects [18], 

which is an instance of an active class (executed 

concurrently).  

This establishes concurrent processes (active objects) but 

does not define a specific MoC because all 

BehavioralFeatures (e.g., Operations and Receptions) in 

UML allow three types of concurrency: sequential, guarded, 

and concurrent. Therefore, the semantics is unconstrained, 

which supports heterogeneous MoCs; in fact, it is one of the 

goals of the specification. 

fUML constrains the concurrency for all 

BehavioralFeatures to the sequential type; as a result, the 

sole mechanism for asynchronous invocation in fUML is 

sending signals (SendSignalAction) to other active objects 

[19].  Further, the sending action is not blocking, i.e., an 

object sends a signal and continues its execution; it does not 

wait for a response, or an acknowledgment (nonblocking 

write). In contrast, the reception action is blocking, i.e., one 

computation running is blocked when it expects to receive a 

determined signal (blocking read). Moreover, the received 

signals are stored in an unbounded event pool for each active 

object, which is a FIFO (first-in first-out) in the fUML 

standard execution model (this is a variation point [19]). 

Consequently, the fUML standard execution model is 

characterized by concurrent processes (active objects) 

communicating with each other through unidirectional 

unbounded FIFO event pools, where writes to the event pool 

are nonblocking, and reads are blocking. 

These fUML’s characteristics are what the Kahn process 
networks have [13]. However, fUML standard execution 

model defines that signals coming from different active 

objects should be stored in the same target event pool. 

Allowing more than one process to write to an event pool 

(channel), the resulting process network is neither 

deterministic [13] nor a Kahn Process Network (in the strict 

sense). Consequently, the resulting process network can be 

described by active objects that receive (input) and emit 

 
Fig.  1. Relationships between OMG specifications and MoCs. 
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(output) signals, and a set of firing rules (encoded in the 

behavior) defining when an active object should be fired; 

these characteristics are what the dataflow process networks 

have [13].  

Nondeterminism can be a powerful modeling tool, but it 

should be used only when necessary [13]. Consequently, 

deterministic languages that allow nondeterminism remove it 

using precise techniques, e.g. the Quartz [26] compiler adds 

new control events to remove nondeterminism allowed by 

some statements. 

Despite the nondeterminism of fUML MoC, it is designed 

to support a variety of different MoCs. This is pursued using 

two techniques:  (1) defining explicit variation points, which 

are: event dispatching scheduling (used in the inter-object 

communication), and polymorphic operation dispatching; (2) 

leaving some semantics elements unconstrained that are: 

timing, concurrency, and inter-object communication. 

IV. THE INITIAL APPROACH 

CPSs are often safety-critical systems [14]; hence executable 

models describing them must be deterministic: given a state 

x(ti) and an input w(ti) the system must generate the same 

output u(ti) for each reaction in state x(tn)=x(ti) and input 

w(tn)=w(ti).  

The fUML specification states that there are a number of 

cases in which the UML indicates that the execution 

semantics in a certain area are nondeterministic [19]. In 

order to understand these nondeterministic areas, the next 

subsection discusses the roots of nondeterminism in the 

fUML execution model. 

A. fUML and Nondeterminism 

In order to analyze fUML’s nondeterminism, behavior 
should be classified, which is done by UML [18] as: (1) 

intra-object behavior addresses the behavior occurring within 

classes; (2) inter-object behavior, which deals with how 

active classes communicate with each other.  

The roots of nondeterminism in the fUML specification 

can be grouped as follows: (1) structural features 

manipulation – e.g. set one value to a property of an object; 

(2) conditions – fUML conditional clauses, e.g. defined 

using if or switch Alf statements; (3) token flow semantics –
defines intra-object behavior semantics, e.g. how are tokens 

offered, and, consequently, in which sequence are nodes 

executed; (4) ObjectActivation – a key class responsible to 

bind inter-object behavior with intra-object behavior. 

1) Structural feature manipulation 

A property in a class, defined by a modeller, is a 

StructuralFeature in the meta-model of UML. Actions that 

write or remove values in a StructuralFeature can be 

nondeterministic. The nondeterminism occurs when a target 

property has multiplicity greater than 1, it is not ordered, and 

it does not have the uniqueness property; i.e., the property is 

a bag. 

This nondeterminism can be a challenge for verification 

but it compromises neither the given definition of 

deterministic models nor the fUML MoC. 

2) Conditions 

Conditions are modeled in fUML using ConditionalNodes. 

ConditionalNode has an association with Clauses; each 

Clause can have an association with predecessor Clauses. 

The fUML execution model states that sequential evaluation 

is performed when the predecessor chain is defined. 

Two statements in Alf map to ConditionalNodes in fUML: 

if, and switch. The statement if is mapped using predecessor 

clauses in fUML when the modeller uses the construct “if ( 

condition ) else …”, so the sequence of evaluation of clauses 

is deterministic; on the other hand, when the modeller uses 

the construct “if ( condition ) or …” the sequence of 

evaluation of clauses is nondeterministic. Finally, the 

statement switch is mapped without use of predecessor 

clauses in fUML so the evaluation of clauses is not 

deterministic. 

As a result, the modeller has two options to produce a 

deterministic model, concerning conditions using Alf: (1) 

define conditions that are mutually-exclusive (assured by the 

modeller, or by an automated assistant); or, (2) use the Alf 

construct “if ( condition ) else …”. A nondeterministic model 

is defined otherwise.  

This nondeterminism compromises the given definition of 

a deterministic model, but it does not affect the fUML MoC. 

3) Token flow semantics 

fUML states that different execution traces for the same 

inputs in an identical environment (including same state) are 

allowed to be different [19].  

For example, given two actions that are not directly or 

indirectly ordered by their relationships, the order of 

execution is determined neither by UML semantics nor by 

fUML execution model, as recognized by [4]. Other 

example, a ForkNode enables race conditions. Therefore, 

nondeterminism is established in the intra-object behaviors. 

Some basic nondeterminism (coming from UML), in the 

token flow semantics, are removed by semantic mapping 

from Alf to fUML, e.g., a naive modeller can, using fUML, 

connect an OutputPin at two InputPins without using a 

ForkNode (it copies tokens). However, that construction is 

not possible in Alf, which generates a ForkNode for each 

local name [21]. 

This nondeterminism (if these different traces lead to 

different outputs or signals sent to other active objects) 

compromises the given definition of deterministic models, 

and can contribute to the nondeterminism in the fUML MoC. 

4) ObjectActivation 

ObjectActivation is the class defined in the execution model 

to handle the active behavior of an active object. It is 

responsible to bind inter-object behavior with intra-object 
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behavior because it, together with EventAccepters, offers the 

blocking read feature for fUML MoC. 

Two associations of this class are important for analysis of 

nondeterminism: (1) eventPool - the list, without upper 

bound, of pending signals sent to the object handled by this 

object activation; (2) waitingEventAccepters - the set of 

event accepters waiting for signals to be received by the 

object handled by this object activation.  

For example, an execution sequence (ES) for two active 

objects communication can be explained as follows: (1) an 

active object (A) reaches an AcceptEventAction (statement 

accept defined by Alf), this is a blocking read for a signal; 

(2) the corresponding ObjectActivation object registers an 

EventAccepter in the waitingEventAccepter; (3) another 

active object sends a signal, that matches (A) receptions, and 

the registered accept statement; (4) the ObjectActivation 

object inserts this new signal at the end of eventPool; (5) 

considering that eventPool had no previous signals, this 

signal is removed from eventPool, dispatched to respective 

accept statement, and EventAccepter is unregistered.  

The step (5) is one of two explicit variation points from 

fUML, called event dispatching scheduling. The standard 

execution model provides the implementation described 

above, where events are dispatched from the pool using a 

first-in first-out (FIFO) rule.  

The ObjectActivation is the key to understand how 

nondeterminism in the fUML MoC and in the token flow 

semantics is combined. Exploring the execution model of 

fUML, Fig. 2 shows an Activity Diagram for an active class. 

Further, Fig. 3 shows an Alf representation for the Activity 

Diagram presented in Fig 2. 

In Fig. 2, there are two concurrent AcceptEventAction 

waiting for the same type of signal; they are designed to 

execute two different tasks using received signals. The 

ForkNode, together with the fact that the next two actions 

wait for the same signal, defines a race condition, where the 

output depends on the sequence of tokens offered. 

Considering that a signal sent by another active object 

arrived after the two EventAccepters were registered, and the 

execution sequence (ES) presented above; during the event 

dispatching phase (5), there are two registered 

EventAccepters. In this case, the execution model chooses 

nondeterministically one of these [19], dispatches the event 

to it, and unregisters it.  

This nondeterminism compromises the given definition of 

a deterministic model, and contributes to the nondeterminism 

in the fUML together with fUML MoC. 

B. Proposed specialization of Alf and fUML 

The initial approach is described as follows: given the 

semantics defined by fUML, we specialize the explicitly 

unconstrained elements with the purpose of deterministic 

behavioural definitions using SysML and Alf.  We chose to 

discuss the semantics in an informal way, and to present 

concrete additional Alf constructs for the specialization. 

 

Fig.  2. fUML Activity diagram – nondeterministic. 

 

These additional language constructs are defined using 

Annotation.  According to Alf abstract syntax [26], 

annotation is a way to identify a modification to the behavior 

of an annotated statement. The applied approach allows us 

an early evaluation of the proposed specialization. 

Therefore, a first concern is to introduce a synchronous-

reactive MoC on fUML and Alf. A second concern is to 

specialize fUML and Alf, which means: do not change 

syntax parsing of Alf, but change its semantics.  

The next three subsections explore the introduction of the 

synchronous-reactive MoC in Alf using unconstrained 

elements, and the variation points. The fourth subsection 

summarizes the proposal.  

1) Timing 

The behavioral semantics of UML only deals with discrete 

behaviors [18]. Accordingly, the timing semantics proposed 

divides the time scale in a discrete sequence of instants, each 

instant corresponds to one macro step as defined in the next 

subsection. 

The annotation @delayed was introduced; it is the only 

way to assign new values to an already assigned variable in 

the current macro step. This annotation can be used in the 

assignments and in the SendSignalActions.  

2) Concurrency 

Concurrency can be achieved in Alf using two 

complementary techniques: (A) multiple active objects that, 

in general, imply the necessity of inter-object 

communication; or, (B) inside a given definition by the use 

of the annotation @parallel [21].  

The alternative proposed is a combination of concurrency 

and synchrony (where computation and communication are 

instantaneous) through introducing the synchronous-reactive 

MoC to fUML and Alf. According to this MoC, a program 

can be defined by so-called micro and macro steps. Each 

macro step is divided into finitely many micro steps, which 

are all executed in zero time and within the same variable 
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environment. As a consequence, the values of the variables 

are uniquely defined for each macro step. Macro steps 

correspond to reactions of reactive systems, while micro 

steps correspond to atomic actions [26], e.g., assignments 

using Alf. 

The demarcation of macro steps was introduced by the 

annotation @pausable; it is one of two ways to define 

demarcation between two macro steps. The second way is 

the use of the accept statement. This annotation is designed 

to be used with loop constructs (while, for, do while) but it 

can be also used with an empty statement of Alf. The 

semantics is: after each execution of the loop body, it waits 

for the next macro step. It follows that all concurrent 

behaviors run in lockstep: they execute the actions inside the 

loop in zero time, and synchronize before the next iteration.  

The annotation @parallel can be used to define that all 

the statements in the block are executed concurrently. The 

block does not complete execution until all statements 

complete their execution; i.e., there is an implicit join of the 

concurrent executions of the statements [21]. 

Alf provides also an annotation called @isolated, it is 

defined in [21]: no object accessed as part of the execution 

of the statement or as the result of a synchronous invocation 

from the statement may be modified by any action that is not 

executed as part of the statement. Similar to this annotation, 

Alf provides the isolation expression through character $. 

Both options are not compatible with the synchronous-

reactive MoC, where variables are uniquely defined for each 

macro step. 

3) Inter-Object Communication and Event-Dispatching 

Inter-object communication in Alf is performed by sending 

signals to other active objects. A signal is a specification of 

what can be carried; furthermore, a signal event represents 

the receipt of a signal instance in an active object [21]. A 

signal instance is identified by its contents.  

Signals are based on the paradigm of message passing; 

furthermore, fUML provides a point-to-point (also known as 

unicast) message pattern. A signal is sent to a receiver (an 

active object) using a reference to it. In contrast, multicasting 

is required in many safety-critical systems, e.g., fault-

tolerance by active redundancy [16]. Multicasting also 

supports the non-intrusive observation of component 

interactions by an independent object, and enables better 

composition [16]. 

 

Fig.  3. Alf representation for fUML Activity diagram – 

nondeterminitisc. 

Multicasting is provided by the introduction of an active 

class called MessageDispatcher; it provides a service for 

multicast message exchange. Instances of this class work as 

bus transferring instances of signals between previously 

registered active objects, which generate events in the target 

active object. Every signal handled by MessageDispatcher 

has a specific identifiable sender, and zero or more receivers.  

The set of receivers (active objects) is defined by 

existence of the reception for the sent signal. All signals 

generated in the current macro step are available 

instantaneously in the synchronous-reactive MoC. Further, 

signals not consumed during a macro step are lost. Delayed 

SendSignalActions are available in the next macro step. 

It is possible to receive signals individually or as a set. 

Receiving a set of signals is important for those active 

objects that need to process all signals sent in the current 

macro step. However, individual signal receiving is 

fundamental for those active objects that should only process 

one signal sent to them. For this case (individual signal), the 

annotation @nonblocking was introduced; it is the only way 

to receive signals without blocking (nonblocking read). 

In a macro step just one signal value (a signal is identified 

by its contents) is allowed for a given signal type, and 

MessageDispatcher; therefore, values of the signals for a 

given MessageDispatcher are uniquely defined for each 

macro step. 

4) Summary 

Table I summarizes the annotations available in the 

specialization of Alf. All other annotations available in Alf 

now are just comments, as well as, isolation expressions.  

Considering that execution model of fUML has changed 

to accommodate proposed specialization, the semantics of 

Alf representation in Fig. 3 changes.  As just one signal 

value in a macro step is allowed for a given signal type, and 

MessageDispatcher; the same signal instance is dispatched 

for those two parallel accepts, and computation follows in 

the same macro step concurrently.  

The specialized semantics removes the nondeterminism 

indicated in section “IV.A.4 Object Activation” as described 
earlier. Also, it removes the nondeterminism indicated in 

section “IV.A.3 Token flow semantics” because the ordering 

of micro steps does not influence the semantics of a model. 

However, the new semantics does not remove the 

nondeterminism indicated in section “IV.A.2 Conditions”, 

TABLE I. 

ANNOTATIONS IN THE SPECIALIZED ALF 

Annotation Informal semantics 

@delayed Delayed assignment or SendSignalAction 

@pausable Macro step demarcation 

@parallel Computations on each block are carried out 

concurrently 

@nonblocking AcceptEventAction read nonblocking,  makes 

optional signals available 
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which should be rejected by an interpreter for proposed 

semantics (when conditions are not mutually-exclusive). 

With the proposed specialization, Fig. 3 can be changed 

without modification of the semantics: the two accepts 

(ACC1 and ACC2) could be removed, and a new one 

(ACC0) could be inserted before the concurrent block. This 

is referential transparency, which means syntactically 

identical expressions have the same semantics regardless of 

their lexical position [13].  

5) Example 

We evaluate the example from [4] but a case study with well-

known CPS is [25]. Fig. 4 shows the Block Definition 

Diagram (BDD) for it. A PingPongSystem is composed by 

one Player1 and one Player2; both players are active classes.  

These two active classes communicate by exchanging signals 

Ping and Pong. The respective Alf representation for the 

behavior of each player is presented using comments.  

In a given macro step, Player1 sends a delayed Pong 

(P11), and awaits for Ping (P12). In the next macro step, 

Pong is received by Player2 (P21), who sends a delayed 

Ping (P22). The game continues forever as showed in Fig. 5. 

Fig. 5 shows the Internal Block Diagram (IBD) for the 

system, and the Alf representation for the main behavior. 

Player1  (S3) and Player2 (S2) are created passing an object 

of MessageDispatcher (S3); later, an infinite loop annotated 

with @pausable (S5), containing an empty statement, is used 

to define the evolution of time. 

In contrast to [4], which uses static Association between 

the players, it is used Connectors that specify links between 

instances playing the connected parts only [18] (decoupling 

Player1 from Player2). The communication is provided by 

the instance of MessageDispatcher. The Alf specialization 

makes the example different concerning evolution of time, 

signal events, and communication. Therefore, this model is 

deterministic while [4] is nondeterministic. 

V. DISCUSSION 

Activity Diagrams are used frequently [1][4][2][23][24]; 

however, for significant activities, these diagrams quickly 

become large, intractable to draw and hard to comprehend 

[19]. 

Fig.  4. BDD for the PingPongSystem. 

State Machine Diagrams are another commonly used form 

of diagrams, especially suited for modeling state-based 

behavior [1][2][4][11][23][24]. However, UML, fUML, 

SysML, and Alf do not define precise semantics for state 

machines [9]. This is ratified by the Alf specification itself, 

which states that a normative semantic integration of state 

machines with Alf will be formalized later [21]. Indeed, 

environments of synchronous languages offer tools to 

visualize the resulting automata [3], e.g. Fig. 3 can be 

automatically transformed in a State Machine Diagram.  

Transformation from SysML to other languages or 

formalism could bring some serious problems [12], and 

could compromise scalability [24]. However, we consider 

the certification process [22] more challenging because it is 

needed to assess the original model, and the translated model 

(or even the transformation itself). Nevertheless, these 

transformations are powerful, and can provide feedback for 

the fUML specification MoC. For example, [2] defines a 

pattern suitable of optimization called “fUML-Opti-Rule(2): 

Detecting unacknowledged signals” - an unacknowledged 

signal is one that has been sent from an active object to 

another active object, and then it (source object) continues 

sending further signals without waiting for an 

acknowledgment signal. This pattern is detected through 

model checking executed over a CSP representation, which 

is the result of a transformation of a fUML model [2]. Based 

on this feedback, the modeller should evaluate 

acknowledging those signals to reduce the state space of the 

corresponding CSP model. Although, this is a rendezvous 

that is common in CSP MoC; considering this case, fUML 

MoC needs more design effort than CSP MoC. 

Concerning [10][11] which propose to encode SysML 

structure as a set of axioms, fUML and PSL [6] are well 

suited, hence axioms about structure and behavior can be 

combined and evaluated together. 

The evaluation presented corroborates [4] concerning two 

points about fUML (and also Alf) as it is: (1) the execution 

model is nondeterministic; (2) it is not suitable for safety-

critical systems. Nonetheless, Alf should be specialized to 

allow safety-critical systems modeling [22]. 

 

Fig.  5. IBD for the PingPongSystem (graphical view of flows). 
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The proposed specialization of Alf adheres the idea of 

introducing synchronous-reactive MoC during early stages of 

a system development [3]. The major drawback of this MoC 

is that the computer interpretation of the models is difficult 

[3]; further, polymorphism, reclassification, and dynamicity 

(actions: create, and destroy) can be even more challenging 

[3]. 

fUML states that every specialization must be defined 

using bUML; in fact, the initial approach presented here 

provides a complete description from the viewpoint of the 

modeller. It defines the semantics for three additional 

constructs for Alf that together with MessageDispatcher can 

transform Alf in a synchronous action language; however, 

the changes needed in the fUML execution model to support 

it must be defined. 

VI. CONCLUSION 

This paper shows the results of  the proposed specialization 

of Alf, according to the synchronous-reactive MoC. It helps 

to couple complexity, provides better composition, and 

enables deterministic behavior definitions.  

CPS is about the intersection of the computation, control 

and communication [14]. The initial approach focuses on the 

discrete computational and communicational aspects of 

CPSs. It can be composed with discrete control. A case study 

with a well-known CPS [25] shows that the initial approach 

can bring solid mathematical foundation from synchronous-

reactive MoCs [3] to SysML executable models. We 

consider this as an intermediary step, located before a formal 

verification of executable discrete SysML models. 

In summary, we believe that specializing well-known 

vendor-independent specifications (Alf and SysML) can 

provide an understandable and compact set of languages for 

modeling, analyzing and verifying of CPSs. Moreover, such 

a set of languages can enable formal verification for discrete 

parts of CPSs.  
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