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Abstract—In this paper it is proved that in fact the zero-bit
digital watermarking system based on local maxima embedding
in frequency area heuristically proposed recently is resistant to a
number of removal attacks. It is shown how the watermark can
survive after such conversions as shift cropping rescaling rotation
and jpeg transform. The theoretical base of each transformation
is given. Also it is shown how the image Fourier amplitude
spectrum is affected by the image distortions and how the
watermark can overcome those distortions and stay untouched.

I. INTRODUCTION

THE MAIN idea of the watermarking method offered in

[1] is an embedding of a zero-bit watermark (identifica-

tion key) into the positions of maxima of the local areas, which

are selected in the amplitude spectrum of the two dimensional

discrete Fourier transform (DFT), calculated from the original

image.

Now let us remember how this algorithm works step-

by-step. First we generate a binary key K , which can be

represented as the two dimensional matrix K(n,m) where the

number of columns N and rows M is equal to the width and

height of the image respectively. Then we calculate the DFT

of the image and get the amplitude spectrum. Next we change

the amplitude spectrum according to the rule: If K(n,m) = 1
we build the local area (n− a..n+ a,m− a..m+ a) with the

size (2a+1)x(2a+1) around this point, where a is a constant

value which determines local area size. Then maximum of

each local area is calculated. This maximum is multiplied by

β value (β > 1) and placed in the point K(n,m). Later we

combine this new amplitude spectrum with a phase untouched

before and perform the inverse DFT to get the watermarked

image.

During the extraction process we calculate the amplitude

again and using previously saved key K build the same local

areas and verify if the maximum of each area is situated in

the point K(n,m). Next we count all positive answers and

divide this value by the total number of local areas. Percepts of

watermark are recognised if this value exceeds some threshold.

If the watermarked image was untouched there would be no

errors and all key points would be recognised. If some attack

is applied to the watermark image, then some maxima can be

lost, but the watermark will still be detectable sometimes.

The current method of zero-bit WM embedding and extrac-

tion seems to be robust against such transforms of an image as

cyclic shifting, rotation, removal of rows and columns, noise

addition, JPEG transform and cropping, but these conclusions

have been based on simulation. In the next section we are

going to present the proof of this claim based on the properties

of DFT.

II. THE PROOF OF ROBUSTNESS OF THE PROPOSED

ZERO-BIT WM SYSTEM TO DIFFERENT ATTACKS

Now let us concentrate on the robustness of the algorithm

and answer two main questions. After what image distortions

a watermark can survive and why? The direct and inverse

Fourier transforms for 2D signal h(n,m)(Image in our case)

with N columns and M rows are as usually given by:

F (h) = ĥ(k, l) =

N−1∑

n=0

M−1∑

m=0

e−i(ωkn+ωlm)h(n,m) (1)

h(F ) =
1

NM

N−1∑

k=0

M−1∑

l=0

e−i(ωkn+ωlm)ĥ(k, l) (2)

Often it is convenient to express frequency in vector nota-

tion with ~k = (k, l)t, ~n = (n,m)t, ~ωkl = (ωk, ωl)
t and

~ωt~n = ωkn + ωlm. The vector form will help us when

we talk about DFT properties. In this section we will show

Fig. 1. Test amplitude spectrum
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how the proposed watermarking algorithm can stand against

different transformations. The set of transformations that are

usually performed to remove a watermark are described in

[5] and [4]. Now let us discuss each transformation one by

one. To show an effect of each transformation we generate a

test amplitude spectrum Fig. 1 where we have only one local

area with maximum in the center. Such model differs from

the real situation where there are many local maxima, but this

simplified model helps us to show how each transformation

affects on the behaviour of local maxima positions in each

local area.

A. Translation

Using the shift property of the Fourier transform

F [f(~x− ~x0)] = exp (−i)~ωt~x0)f̂(~ω) (3)

it is easy to see that only phase of the DFT is affected

by the translation of the image. The amplitude spectrum

where the watermark is embedded remains untouched. So that

transformation has no impact on a watermark detection.

B. Rotation

According to FFT property a rotation of the image causes

the rotation of the FFT amplitude.

F (x, y) → F (x cos θ + y sin θ, x sin θ + y cos θ) (4)

To overcome a rotation problem if the watermark is not found

initially the detection process is repeated after rotation of the

image on a small angle. Another solution can be used with a

normalisation algorithm described in [3] where the image is

converted to the domain invariant to rotation. In fact, the image

rotation on more than 10 degrees can be distinguished from the

original. So it is possible to reduce number of calculations and

image rotations. The last way to deal with rotation is to extend

the size of local areas and detect maxima not in one certain

point but in several points around the embedded maxima. That

will help especially in case of small rotation angles.

C. Noise Addition

Let us define a set of n points x1, x2, x3, ...xn with constant

amplitude A and a point x0 with amplitude βA(β > 1).
At all points we add zero mean i.i.d Gaussian noise. The

probability that the maximum stay in the previous position

after the addition of noise is the following:

P = Pr (x̃0 ≥ x1, x̃0 ≥ x2...x̃0 ≥ xn) =? (5)

where

x̃0 = βA+ n0, x̃i = A+ ni

i = 1, 2..n..ni ∈ i.i.dN(0, σ2)
It is easy to see that:

P =

∫ +∞

−∞

ω0(y)
n∏

i=1

(Pτ (xi) ≤ y)dy (6)

where

Pr{x̃ ≤ y} =
1√
2πσ2

∫ y

−∞

e−
t−A2

2σ2 dt, (7)

ω0(y) =
1√

2π, σ2
e−

(y−βA)2

2σ2 (8)

Substituting (7) and (8) in (6) we get:

P =
1√

2π, σ2

∫ +∞

−∞

e−
(y−βy)2

2σ2 · (
∫ y

−∞

e−
(t−A)2

2σ2 )ndy, (9)

It is easy to find the lower bound of that probability using the

equation:

P ≥
n∏

i=1

Pτ{x̃0 ≥ x̃i} = (Pτ{x̃0 ≥ x̃i})n (10)

where (Pτ{x̃0 ≥ x̃i})n = (Pτ{x̃0 − x̃i} ≥ 0)n

(Pτ{x̃0 − x̃i} ≥ 0)n = (
1√
2πσ2

∫ +∞

−∞

e−
t−A(β−1)

2σ2 dt)n (11)

But unfortunately it is the most interesting for us to find

the upper bound of that probability, because we want to know

when the local maximum changes its position. Taking into

account that a calculation by (9) is very tedious procedure, we

can try to solve it by simulation. Fig. 2 shows the effect of

noise addition and Table I demonstrates the results of correct

maxima recognition for A = 100, β = 1.5, σ = 0.097927.In

the similar manner we can calculate the results for other

embedding parameters.

We can see from Table I that maxima are recognised

whenever signal-to-noise ratio β2

σ2 is greater than 0.49808

(σ < 2.1254).

Fig. 2. Amplitude spectrum after noise addition for A = 100, β = 1.5,
σ = 0.097927

524 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013



TABLE I
THE RESULTS OF CORRECT MAXIMUM RECOGNITION AFTER NOISE

ADDITION PERFORMED BY SIMULATION

Variance Detected

0.097927 Y

0.19737 Y

0.26537 Y

0.38688 Y

0.56174 Y

0.56124 Y

0.72913 Y

0.72439 Y

0.9224 Y

0.98988 Y

1.2446 Y

1.292 Y

1.3197 Y

1.5344 Y

1.6075 Y

1.8164 Y

2.1254 N

1.8201 N

2.1679 N

2.259 Y

2.225 N

2.4485 N

2.5048 N

D. Cropping

During the cropping process some parts of the image are

removed, and as the result some frequency components can

be changed. Let’s analyse this process in more details.

We can present cropping of the image as a multiplication

of window by raster image. That is represented in one dimen-

sional form (for the simulation) as one local area of the image

amplitude Fig. 4 where cropping is given by the rectangular

window function. According to the convolution theorem of the

Fourier transform [2] the Fourier transform of the product of

the two functions is equal to the convolution of their individual

transforms.

So we get:

f(n,m)h(n,m) → F (n′, k′) ∗ ∗H (n′, k′) (12)

where f(n,m) - raster image,

h(n,m) - the window of cropping. So now we can look on

those functions separately.

In the frequency domain window function (in the 1-D case)

is defined as follows:

h(t) =
sin ωt

2
ωt
2

(13)

The frequency ω is defined by the size of the window. Let’s

calculate the convolution between h(t) and the test function

with one local area (rectangular impulse with the maxima in

the center) as follows:

Fig. 3. Local area of the amplitude spectrum

y(t) = g(t) ∗ h(t) (14)

y(t) = FT [Iw(x, y)Rect(cx(x− x0), cy(y − y0))] (15)

where cx, cy, x0, y0 - cropping parameters.

y(t) =
1

cxcy
I ′w(u, v) ∗ e−i2π(cxx0+cyy0)e

−iπ( u
cx

+ v
cy

)

× sinc
πu

cx
sinc

πv

cy
(16)

where sinc(x) = sin(x)
x

if x 6= 0, sinc(x) = 1 if x = 0.

Now we can represent I ′w(u, v) as the sum of amplitude of

the original image and key K(u, v) multiplied by β′, where

β′ is the max value of local area multiplied by a constant β.

y(t) = [K(u, v)β′ + I(u, v)]∗

∗ e−i2π(cxx0+cyy0)

cxcy
e
−iπ( u

cx
+ v

cy
)
sincπu

cx
sincπv

cy
(17)

To make the equation more simple we will denote the expres-

sion e−i2π(cxx0+cyy0)

cxcy
e
−iπ( u

cx
+ v

cy
)
sincπu

cx
sincπv

cy
as E and use

the distributivity property.

y(t) = [K(u, v)β′] ∗ E + [I(u, v)] ∗ E (18)

The key K(u, v) can have only two values 0 and 1.

If K(u, v) = 0 then y(t) = I(u, v) ∗ E
else y(t) = β′ ∗ E + I(u, v) ∗ E
If we want the maxima to survive the value of the amplitude

in where K(u, v) = 1 should be greater than the other points.

β′ ∗ E + [I(u, v)] ∗ E > [I(u, v)] ∗ E (19)

β′ ∗ e−i2π(cxx0+cyy0)

cxcy
e
−iπ( u

cx
+ v

cy
)
sinc

πu

cx
sinc

πv

cy
> 0 (20)

Let us substitute the cropping parameters and see when the

maximum would be recognised. Table II shows the results of

calculation for the different size of the window function. We
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Fig. 4. Cropped area of an image

TABLE II
RESULTS OF MAXIMA RECOGNITION AFTER CROPPING BY WINDOW WITH

COORDINATES x0 , x0 +
1

cx
, y0 , y0 +

1

cy
AND TOTAL IMAGE SIZE 100X100

x0 x0 +
1

cx
y0 y0 +

1

cy
Detected

1 99 1 99 Y

2 98 2 98 Y

3 97 3 97 Y

4 96 4 96 Y

5 95 5 95 Y

6 94 6 94 Y

7 93 7 93 Y

8 92 8 92 Y

9 91 9 91 Y

10 90 10 90 Y

11 89 11 89 Y

12 88 12 88 Y

13 87 13 87 Y

14 86 14 86 Y

15 85 15 85 Y

16 84 16 84 Y

17 83 17 83 Y

18 82 18 82 Y

19 81 19 81 Y

20 80 20 80 N

21 79 21 79 N

22 78 22 78 N

23 77 23 77 N

24 76 24 76 N

25 75 25 75 N

26 74 26 74 N

27 73 27 73 N

28 72 28 72 N

29 71 29 71 N

30 70 30 70 N

gradually reduce the size of the window Fig. 4 and check how

the detection process is performed. We can see that the maxima

can be still detected after removing a half of an image.

E. Resize

Resizing the image results in inverse resizing of an ampli-

tude spectrum. Resize can be represented as a multiplication

of the coordinates on a corresponding constant value. If we

look on the similarity theorem:

f(an, bm) → 1

|ab|F
(
n′

a
,
m′

b

)
(21)

we can see that the resize in spatial domain causes frequency

shift in the spectra. In combination with the resize maxima

remains on the same distance from the center. So the maxima

in the amplitude spectra will not change their positions.

F. Jpeg transform

Fig. 5. Image after JPEG transform and the amplitude spectrum

Converting an image using JPEG algorithm produce specific

kind of distortions. Many watermarking algorithms can not

stand against such transform. The proposed algorithm can

survive after JPEG transform performed with up to 30 present

quality factor. This value may vary from image to image

depending on image type and especially image size. Looking

on the amplitude of the image after such transform we can see

that some extra maxima appeared Fig. 5 right image. But all

the values of those additional maxims are as the result much

smaller than original ones. As long as we are searching for the

max values those additional maxima give small effect on the

extraction. We can see it only when additional maxima appear

in the neighbour local areas with the smaller main maxima.

Another effect of the JPEG transform is a removal of the high

frequencies. After such transform most of the high frequencies

are erased including the embedded maxima. The total number

of maxima in the real system is about 350 for 100x100 pixel

image. But the number of survived maxima is enough to detect

the watermark.

The results of the experiments presented in Table III show

that the probability of false detection appears equal to 0. The

probability of successful detection of a WM is equal or close

to 1 also after the cyclic shift on 50% on a vertical and a

horizontal, and removal of 10% of the rows and columns.

In the Table III the recognised maxima number ratio to

their total number of embedded maxima are presented. Total

number of the embedded and extracted maxima is a mean

value of the number of maxima, calculated as a result of 100
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TABLE III
EXPERIMENTAL RESULTS

With embedding of a WM
Characteristic (1) (2) (3) (4) (5) (6)
Detected maxima
number

25 295 209 252 240 231

Detected maxima % 8 100 72 85 81 78
Probability of suc-
cessful WM extrac-
tion

0 1 1 0.92 0.93 0.97

(1): No embedding
(2): Without distortions
(3): Cyclic shift of 50% on a vertical and a horizontal axis
(4): Noise adding 5%
(5): Removal of 10% of rows and columns
(6): Cropping 20% of the image

images testing. For all experiments the parameters a = 2,

β = 1.5 have been selected.
The probability of successful data extraction is sometimes

less than 1, but it remains still acceptable, for the thing

after adding a noise (5% of the image brightness range).

However, the commercial value of the images after such strong

conversions is low, and it is very unlikely to be applied to the

images by pirates.

III. CONCLUSION

So in this paper we tried to explain why the watermarking

system can survive after image distortions. We showed that in

spite of the fact, that image distortions affect on the amplitude

spectra the most part of local maxima survives and therefore

zero-bit watermark can be recognised with great probability.
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