
pLERO: Language for Grammar Refactoring
Patterns

Ján Kollár, Ivan Halupka, Sergej Chodarev and Emília Pietriková
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic

E-mail: {jan.kollar, ivan.halupka, sergej.chodarev, emilia.pietrikova}@tuke.sk

Abstract—Grammar-dependent software development and
grammarware engineering have recently received considerable
attention. As a significant cornerstone of grammarware engineer-
ing, grammar refactoring is, nevertheless, still weakly understood
and practiced. In this paper, we address this issue by introducing
pLERO, formal specification language for preserving knowledge
of grammar engineers, complementing mARTINICA, the univer-
sal approach for automated refactoring of context-free grammars.
With respect to other approaches, advantage of mARTINICA lies
in refactoring on the basis of user-defined refactoring task, rather
than of a fixed objective of the refactoring process. To understand
the unified refactoring process, this paper also provides a brief
insight into grammar refactoring operators, providing universal
refactoring transformations for specific context-free grammars.
To preserve knowledge considering refactoring process, we pro-
pose formalism based on patterns, seen as well-proven way of
knowledge preservation in variety of domains, such as software
architectures.

I. INTRODUCTION

A
UTOMATED grammar refactoring is the field where

two or more equivalent context-free grammars may have

different forms. Although two equivalent grammars generate

the same language, they do not necessarily share other specific

properties measurable by grammar metrics [1]. The form in

which a context-free grammar is written may have a strong

impact on many aspects of its future application. For instance,

it may affect general performance of a parser [2], or it may

influence, and in many cases limit, the choice of parser

generator [2].

Since there is a close relation between the form in which a

grammar is expressed and the purpose for which it is designed,

different grammars become domain-specific formalizations if

generating the same language. Thus, the ability to transform a

grammar to another (equivalent), indeed, becomes the power to

shift between domains of possible applications. Even if making

each grammar more universal in its application scope, the

practical benefits may be easily thwart by the difficulties. The

problem is, refactoring is often a non-trivial task and if done

manually, it is prone to errors, especially with large grammars.

This is an issue, as in general there is no formal way to prove

two context-free grammars generate the same language.

We addressed this issue in [3] by proposing mARTINICA,

metrics Automated Refactoring Task-driven INcremental syn-

tactIC Algorithm. Its main idea is to apply a sequence of sim-

ple transformation operators to a chosen context-free grammar

to produce an equivalent grammar with the desired properties.

Each refactoring operator transforms arbitrary context-free

grammar to an equivalent context-free grammar which may

have different form than the original. Properties the grammar

should possess are defined by so called objective function.

That is, the purpose of mARTINICA is to find a sequence of

refactoring operator instances transforming particular context-

free grammar to an equivalent with a form satisfying user-

defined requirements. Current state of the algorithm develop-

ment requires grammar production rules to be expressed in

the BNF notation as it in general, unlike EBNF, expresses

elementary properties, e.g. left/right recursion or iteration.
With respect to diversity of possible requirements on the

qualitative properties, refactoring operators provide relatively

universal grammar transformations. Although the relative uni-

versality of refactoring operators contributes to versatility of

the algorithm, it also may lead to high computational complex-

ity and, in specific cases, to inability to fulfill the refactoring

task. Within the current research, we propose a solution of

these issues based on patterns which, in this context, we

consider to be a problem-specific refactoring operators.
In general, we consider a pattern to be a problem-solution

pair in given context [4] [5]. Alexander argues each pattern can

be understood as an element of reality, and of language [4].

As an element of reality, pattern reflects a relation between

specific context, certain system of forces recurring in given

context, and certain spatial configuration leading to balance

in a given system of forces [4]. As an element of language,

pattern reflects an instruction showing how certain spatial

configuration can be repeatedly used to balance certain system

of forces wherever specific context makes it relevant [4].
As such, patterns are tools for documenting existing, well

proven design knowledge, supporting construction of systems

with predictable properties and quality attributes [5]. Thence,

the role of patterns in the field of grammar refactoring is:

1) To preserve knowledge of language engineers about

when and how to refactor context-free grammars, and

2) To support process of grammar refactoring by providing

this knowledge.

To incorporate patterns in automated grammar refactoring,

we have coined a new term: grammar refactoring patterns.

Each grammar refactoring pattern describes a way in which a

context-free grammar can be transformed preserving generated

language, and a specific situation of this to be possible. De-

scription of the situation, in which transformation provided by

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1491–1498

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1491

a pattern can be applied, defines refactoring problem addressed

by the pattern, while grammar transformation defines solution

of the refactoring problem.

II. MOTIVATION

Grammarware engineering as an up-and-rising discipline

aims at solving grammar development issues, promising an

overall rise in grammar quality, and development productivity

[6]. Grammar refactoring may occur in many fields, e.g.

grammar recovery, evolution and customization [6]. In fact, it

is one of five core processes of grammar evolution, alongside

the extension, restriction, error correction, and recovery [7].

However, unlike a well-proven practice of program refactoring,

grammar refactoring is little understood and practised [6].

Equivalent Context-Free Grammar Form

O
b

je
ct

iv
e
 F

u
n

ct
io

n
 V

a
lu

e

Fig. 1. Previous research approach

Equivalent Context-Free Grammar Form

O
b

je
ct

iv
e
 F

u
n

ct
io

n
 V

a
lu

e

Fig. 2. Current research approach

Fig. 1 and 2 both reflect the objective function value at

particular grammar forms. Horizontal axis, indeed, denotes a

hypothetic area (not a dimension) of all the equivalent context-

free grammar forms, and vertical axis denotes the objective

function values of this grammar.

The points marked in the graphs represent forms of a

context-free grammar. All the points originate from a single

point, corresponding to the initial grammar form and its

objective function value.

Our previous approach involved an improvement of the

objective function through the application of refactoring op-

erators [3]. Its potential to improve is expressed by the up

arrows in Fig. 1. The issue lied in local extrema: If populations

reached them, further slide over the function became uncertain.

The algorithm of mARTINICA solved this issue by enabling

the populations to regress, but merely in a certain number of

steps [8], which is one of the few possible heuristics. Two

potential ways of the algorithm are to enable a progress to a

certain value or a certain number of steps. However, neither of

them is ideal and cannot work universally. Further, the issue

lied in a negative impact on the computational complexity as

well.

Consequently, the current approach considers refactoring

patterns. If applied to a grammar, at the corresponding ob-

jective function it is possible to skip the local extremus (Fig.

2), what is their primary feature. Certainly, various patterns

concern various objective functions. That is, this solution is

not universal, however, it is ideal for domain-specific tasks,

such as left recursion removal.

Since this approach is not heuristic and it always works, it

is considered to be progressive according to the previous one.

Generally, the main idea behind our research lies in gram-

mar modifications according to their objective functions,

which is supplemented by the current research dedicated to

creation of a tool for grammar modifications according to

properties of refactoring operators.

III. RELATED WORK

Unfortunately, it was possible to find very little reported

research in the field of automated grammar refactoring. The

small amount of the published work is mostly concerned

with refactoring context-free grammars achieving some fixed

domain-specific objective.

Kraft, Duffy and Malloy developed a semi-automated gram-

mar refactoring approach to replace iterative production rules

with left-recursive rules [9]. They present a three-step pro-

cedure consisting of grammar metrics computation, metrics

analysis to identify candidate nonterminals, and transformation

of the candidate nonterminals. The first and third step are fully

automated, while the process of identifying nonterminals, to be

transformed by replacing iteration with left recursion, is done

manually. Since grammar metrics are calculated automatically,

this approach is called metrics-guided refactoring. However,

the resulting values must be interpreted by human, using them

as a basis for making the decisions necessary for resuming the

refactoring procedure. The work also provides an exemplary

illustration of the grammar refactoring benefits, since left-

recursive grammars are more useful for some aspects of the

grammar application [10], and are also more useful to human

users [11] than iterative grammars.

In the field of compiler design, the procedure of left-

recursion removal is a well-known practice. Louden reports

an algorithm for automated removal of direct and indirect left

recursion [12]. This approach is further extended by Lohmann,

Riedewald and Stoy [11], presenting a technique for removing

left-recursion in attribute grammars and semantic preservation

while executing this procedure.

1492 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Initial context-free
grammar

Resulting context-free
grammar

Objective function
Number of

evolution cycles
Population size

Life length of
generation

Refactoring
operator1

Refactoring
operator2

Refactoring
operatorN

...

mARTINICA

Fig. 3. Black-box view of mARTINICA

Lämmel presented suite of fifteen grammar transforma-

tion operators, four considering grammar construction, five

considering grammar destruction and six considering gram-

mar refactoring [13]. These operators are in large degree

tailored for solving issues of two specific problem domains

e.g. grammar adaptation and grammar recovery. Paper [13]

also introduced the idea of incremental grammar refactoring

through the sequence of simple transformations deriving from

application of refactoring operators, however no specific au-

tomated refactoring approach, such as mARTINICA [3] was

introduced.
Lämmel and Zaytsev introduced suite of four refactoring

operators, specifically aimed for tackling refactoring tasks

occurring in the process of grammar extraction from multiple

diverse sources of information [14].

IV. BACKGROUND

This section discusses refactoring operators as a basis for

understanding grammar refactoring patterns and the core idea

of the approach. This section also briefly introduces a method

of describing a context-free grammar properties through the

formalism of an objective function, used as a specification of

the refactoring objective.

A. Refactoring Operators

Formally, grammar refactoring operator is a function taking

a context-free grammar G = (N,T,R, S) and using it as

a basis for creating new grammar G′ = (N ′, T ′, R′, S′)
equivalent to G. At this stage of development, the experiments

were performed on the basis of eight operators: Unfold, Fold,

Remove, Pack, Extend, Reduce, Split and Nop. The first

three have been adopted from Lämmel’s paper on grammar

adaptation [13], while the others are proposed by us [8].
Grammar refactoring patterns are proposed as an addition

to the base of refactoring operators. However, in this context,

the key difference between refactoring operators and patterns

is that the growth in the number of patterns (in the base of

operators) does not have significant negative impact on the

algorithm complexity, and the opposite is often true. This is

caused by their domain-specific orientation and quite narrow

scope of refactoring tasks to which individual patterns are

applicable.

B. Objective Function

We adopt a modified understanding and notation of objec-

tive functions from mathematical optimization. An objective

function describes properties of a context-free grammar to be

achieved by refactoring. However, it does not describe the way

in which the this should be performed, and the condition in

which desired context-free grammar properties are achieved.

In our view, the objective function consists of two parts:

objective and state function. Our refactoring algorithm works

with only two kinds of objectives, which are minimization and

maximization of a state function. We define a state function as

an arithmetic expression whose only variables are the grammar

metrics [1] calculable for any context-free grammar. As such,

a state function is a tool for qualitative comparison of two or

more equivalent context-free grammars.

Exemplary objective function prescribing minimization ob-

jective under state function consisted of count of nonterminals

(var) and count of production rules (prod) is (1).

f(G) = minimize 2 ∗ var + prod (1)

C. mARTINICA: Refactoring Algorithm

The main idea behind mARTINICA (Fig. 3) lies in applying

a sequence of grammar refactoring operators to a context-free

grammar, to produce an equivalent grammar with a lower value

of the objective function if the objective is minimization, or

a higher if the objective is maximization. On the other hand,

pLERO allows specifying one operator of such a sequence.

Since mARTINICA is an evolutionary algorithm, it also

requires other input parameters, in addition to the initial

grammar and the objective function, in order to be executed.

It requires three other input parameters: number of evolution

cycles, population size and length of a generation life. The

first two are typical for algorithms of a similar type, while the

third parameter is our own.

As shown in Fig. 4, presenting a white-box view, the

algorithm starts with creation of an initial population of

grammars. Each population member is then created in the basis

of the initial grammar, transformed by semi-random sequence

of refactoring precesses. After the initial phase, the algorithm

iterates for count of evolution cycles through:

JÁN KOLLÁR ET AL.: LANGUAGE FOR GRAMMAR REFACTORING PATTERNS 1493

Initial population
creation

Test grammars
creation

Selection

Population of
grammars

Refactoring
operators

1

2 3

Phase of the algorithm Refactoring operators
Grammar population entities

Fig. 4. White-box view of mARTINICA

1) Test grammars creation in which candidate population

members are created. For each grammar in each gener-

ation three test grammars are created:

a) Self-test grammar that attempts to redouble trans-

formation that led to improvement in value of

objective function in past generations of this pop-

ulation member.

b) Foreign-test grammar that attempts to incorporate

transformation that led to progress in value of

objective function in past generations of some other

population member.

c) Random-test grammar that attempts to transform

grammar towards optimization of value of objec-

tive function on the basis of random sequence of

refactoring operators.

2) Selection in which population members are substituted

by candidates with best value of objective function.

The resulting grammar reflects a population member of the

last generation with the best value of the objective function.

Detailed description concerning proposal and implementa-

tion of mARTINICA algorithm along with some experimental

results can be found in [3] [8].

V. GRAMMAR REFACTORING PATTERNS

In our view, each grammar refactoring pattern provides an

equivalent transformation to context-free grammars. In this

sense, the concept of grammar refactoring patterns is closely

related to the concept of refactoring operators. However,

there are several key differences between grammar refactoring

patterns and refactoring operators.

First of all, refactoring operators provide problem-

independent transformations, while grammar refactoring pat-

terns provide problem-specific transformations. This means

refactoring operators provide general transformations, with

usage not bound by any specific class of refactoring tasks,

while grammar refactoring patterns provide domain-specific

transformations, intended for tackling the issues of particular

class of refactoring problems.

Secondly, each of the refactoring operators can be applied

to an arbitrary context-free grammar, including the situation of

particular grammar form not allowing occurance of a specific

transformation. In this case, the original grammar form is

returned as a result of the transformation. On the other hand,

each grammar refactoring pattern prescribes some specific pre-

conditions a context-free grammar must fulfill in order to be

transformable by a particular refactoring pattern.

In our approach, each pattern is represented as a spec-

ification consisting of a set of transformation rules, while

transformation rule provides transformation on some subset

of grammar’s production rules that exhibit specific structural

properties. In this notion of refactoring patterns, each instance

of refactoring operator is actually a refactoring pattern which

lacks explicit specification of required structural properties of

grammar’s production rules, and each refactoring pattern is in

fact non-parametric refactoring operator.

VI. CORE

For the purposes of patterns expression, we propose pLERO,

pattern Language of Extended Refactoring Operators.

pLERO is currently being developed in two distinct di-

alects e.g. imperative [15] and functional. Refactoring patterns

written in imperative dialect of pLERO are more process-

centric, meaning that they are intended for specification of

particular steps of a refactoring process, while refactoring

patterns written in functional dialect are more result-centric

and facilitate understanding of a grammar’s structural changes.

In this paper, we present the functional dialect of pLERO,

while detailed description of the imperative dialect of pLERO

can be found in [15].

A. pLERO

Through pLERO it is possible to define patterns for gram-

mar refactoring or other transformations, applicable to gram-

mars expressed in BNF. That is, pLERO is a language for

defining parameterless operators of a problem class.

Pattern description consists of a set of transformation rules,

while each rule comprises predicate describing the shape of a

grammar’s production rules, and transformation defining how

production rules matched against predicate should be changed.

Predicate and transformation are expressed in similar fash-

ion by formalism of meta-production rules. Each meta-

production rule defines structure of some subset of a gram-

mar’s production rules. Predicate is specified by exactly one

meta-production rule matched against grammar’s production

rules, while transformation is described by set of meta-

production rules defining shape of production rules to be

included in grammar during refactoring process.

Each meta-production rule can be divided in two parts,

namely, left side of meta-production rule and right side of

meta-production rule. Left side of meta-production rule speci-

fies nonterminal on the left side of a grammar’s production

rule, while right side of meta-production rule specifies se-

quence of symbols that can be found on the right side of a

grammar’s production rules. Left side of meta-production rule

1494 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Grammar parser

Meta-grammar
parser

Grammar model

Meta-grammar
model

Grammar
transformer

Pattern matcher

Conflict resolver

Initial context-free
grammar

txt

pLERO specification

txt

Resulting context-
free grammar

txt

Fig. 5. Architecture of pattern application system

is some pattern variable, while right side of meta-production

rule is concatenation of pattern variables.

Pattern variable specifies homogenous sequence of symbols

in a grammar’s production rules, consisting of variable prefix

and name. Variable prefix describes possible matched symbols

and their number, while variable name is identifier of this

sequence. The prefix can be "t" for terminals, "n" for nonter-

minals, and "s" for both terminals and nonterminals. The letter

specifying the symbol type can be followed by the asterisk "*"

denoting the variable can match a sequence of symbols instead

of a single symbol. For instance, the most generic variable

type has prefix "s*" that can match any sequence of symbols.

Variable prefix and name are separated by dot ".". After the

dot, the variable name follows, e.g. "s*.symbols".

Pattern variable on the left side of meta-production rule may

only have prefix "n" not followed by asterisk, denoting exactly

one nonterminal. Each pattern variable on the right side of

meta-production rule can have arbitrary valid prefix.

Each specification of refactoring pattern in pLERO must

comply with the same template (Fig. 6) which allows spec-

ification of global pattern variables denoting same symbol

sequences in all transformation rules of a pattern during entire

refactoring process.

pattern [pattern_name] {

variables:

[prefix1].[variable_name1],

[prefix2].[variable_name2],

...

[prefixn].[variable_namen];

new symbols:

[prefixI].[variable_nameI],

[prefixII].[variable_nameII],

...

[prefixN].[variable_nameN];

[transformation_rule1];

[transformation_rule2];

...

[transformation_rulem];

}

Fig. 6. Template of a pattern notation

The template also enables to specify new nonterminal

symbols, which need to be generated for the use in production

of new production rules. Notion of individual transformation

rules must also follow specific template shown in Fig. 7.

predicate -> transformation

Fig. 7. Transformation rule decomposition

While variables may consist of all the possible prefixes,

new variables may not; more specifically they cannot consist

of partially deterministic constructs such as "*" or "s", and

in current version of pLERO only "n" is allowed. Reason

for this is that these constructs do not specify unambiguous

concatenation of symbols and though it is not possible to

generate definite sequence of symbols on their basis. Moreover

new variables may be used only in meta-production rules

contained within transformation part of transformation rule,

and their use in predicate is prohibited. Reason for this is

that new variables correspond with sequences of symbols that

occur only in refactored grammar, and not in the original

grammar.

1) Pattern Matching:

In order to apply transformation provided by refactoring

pattern on some context-free grammar it is first necessary to

match this grammar against this pattern. Process of pattern

matching has two purposes:

• Determining if a grammar is transformable by a pattern

• Determining which pattern variable represents which se-

quence of symbols within production rules of a grammar

To each assignment of specific sequence of symbols to

particular pattern variable we refer as to variable binding and

to each variable representing definite sequence of symbols we

refer as to bound variable.
Variables are bound during the matching of the rule and

used in the replacement construction process. Global variables

keep their value after they are bound during the first successful

match. Other variables (to which we refer as to local variables)

are bound only during the application of a rule and cleaned

before the next matching.
The matching of a predicate against a grammar production

is successful if all the pattern variables can be bound to a

JÁN KOLLÁR ET AL.: LANGUAGE FOR GRAMMAR REFACTORING PATTERNS 1495

part of the production and no unmatched symbols are left.

Variables can match only some type of symbols, based on

their prefix. Simple variables must match exactly one symbol

of a specified type, while sequence variables can match any

number of symbols (including zero).

For instance, the predicate "n.1 ::= n.2 s*.1 t.1"

would match production "A ::= B ’c’ ’d’ ’e’", re-

sulting in bindings "n.1" = "A", "n.2" = "B", "s*." = "’c’

’d’", "t.1" = "’e’", and also "B ::= D ’f’", "n.1" =

"B", "n.2" = "D", "s*." is empty, "t.1" = "’f’". Since it

does not start with a nonterminal, it would not match "C ::=

’d’ ’e’ ’f’".

If the pattern "n.1 ::= s*.1 n.2 s*.2" is matched

against the production "A ::= B C D", the resulting bind-

ing would be "n.1" = "A", "s*.1" is empty, "n.2" = "B",

and "s*.2" = "C D".

Variable prefix specifies only structure of some sequence

of symbols, and it does not define particular symbols of a

specific grammar. On the other hand, variable name is an

identifier of a specific variable binding established during a

particular pattern matching process. For instance, the predicate

"n.1 ::= n.1 n.2" would match production "A ::= A

B", however it would not match production "A ::= B C"

since in this case variable n.1 would be bound to two different

nonterminals (B and C).

The matching of sequences is non-greedy. This means that

short sequences are performed first during the matching. The

process continues while the entire production is matched.

However, there are some cases in which conflicts in match-

ing of predicate against production can arise, e.g. conflict

always occurs if predicate contains two consecutive sequences

of arbitrary symbols ("s*.A s*.B"). In this case, we have

adopted first-match found resolution strategy.

2) Pattern Application:

Each transformation rule of refactoring pattern describes

structure of some production rules and specifies new produc-

tion rules that should replace this production rule. Predicate

is a concatenation of pattern variables, which can match a

sequence of production rule symbols and then represent these

symbols in the transformation.

If a variable of the same type and name is present in a

transformation rule, it will represent the same sequence of

symbols in all its occurrences. In the transformation, meta-

production rules have to consist only of the variables occurring

on the predicate side of the transformation rule or in global

variables. After the predicate matches any grammar produc-

tion, its variables are bound to parts of the production and

the replacement productions are constructed on the basis of

transformation patterns.

If applied to a grammar, all transformation rules of a pattern

are traversed in the order of their specification. Predicate

is then matched against all the unprocessed productions of

the original grammar. If the match is successful, replacement

production is constructed and the production is replaced in the

grammar.

Order of specification of transformation rules within a pat-

tern is important, for it serves as conflict resolution mechanism

in case when there are multiple predicates that can be matched

against one production rule.

On the other hand, multiple production rules can be matched

against one predicate, but only if all global variables of

a predicate are bound to a same sequence of symbols in

each production, and in that case replacement productions are

constructed for each such rule.

B. Implementation

To be able to perform experiments and to demonstrate the

correctness of the approach, automated pattern application

system (Fig. 5) has been implemented, in which pLERO plays

a central role.

The system takes the initial grammar and the pLERO pattern

specification from the two different text files, and after the

refactoring it creates new text file containing the resulting

grammar.

The first text file is parsed by grammar parser which creates

its representation in the form of grammar model, while the

second is parsed by meta-grammar parser which creates meta-

grammar model.

The core of the system is divided in two coexisting entities:

1) Pattern matcher – The purpose is matching of grammar

model against meta-grammar model

2) Grammar transformer – The purpose is construction of

replacement productions and generating of refactored

grammar.

To resolve various conflicts occurring during the process

of pattern matching, various resolution strategies are imple-

mented in a separate module to which we refer to as a conflict

resolver.

VII. EXPERIMENTAL RESULTS

As an example, see Fig. 8 and 9 containing fragment

of Algol 60 grammar [16] and pattern for immediate left-

recursion removal (not direct). Then, Fig. 10 and 11 reflect

equivalent grammar fragments produced after two sequential

pattern applications.

After the first application of the pattern immediate left-

recursion concerning nonterminal "term" was removed.

After the second application of the pattern immediate left-

recursion concerning nonterminal "factor" was removed.

VIII. CONCLUSION

The most significant contribution, that we expect based

on the results presented in this paper, is the contribution

to automated grammar evolution. As such, our refactoring

approach presents an appropriate basis for creation of new

theory concerning automated task-driven grammar refactoring,

while the provided experimental results as well as the other

experiments [3] [8] explicitly demonstrate correctness and

effectiveness of this approach.

However, achievement of this goal also requires deeper

understanding and intensified research in refactoring operators,

1496 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

term ::= factor

term ::= term multiplying_operator factor

multiplying_operator ::= ’x’

multiplying_operator ::= ’/’

multiplying_operator ::= ’÷’

factor ::= primary

factor ::= factor ’↑’ primary

primary ::= unsigned_number

primary ::= variable

primary ::= function_designator

primary ::= ’(’arithmetic_expression’)’

Fig. 8. Fragment of Algol 60 grammar [16]

pattern LeftRecursionRemoval {

variables: n.A;

new symbols: n.A1;

n.A ::= n.A s*.x ->

n.A1 ::= , n.A1 ::= s*.x n.A1;

n.A ::= s*.x ->

n.A ::= s*.x n.A1;

}

Fig. 9. Example of a pattern for immediate left-recursion removal

term ::= factor N4

N4’ ::=

N4’ ::= multiplying_operator factor N4

multiplying_operator ::= ’x’

multiplying_operator ::= ’/’

multiplying_operator ::= ’÷’

factor ::= primary

factor ::= factor ↑ primary

primary ::= unsigned_number

primary ::= variable

primary ::= function_designator

primary ::= ’(’arithmetic_expression’)’

Fig. 10. Resulting grammar after first application of refactoring pattern

as well as quality-based grammar metrics. Crucial part of

this research are refactoring patterns, since they operate with

knowledge derived from experience of language engineers, and

thus they present an appropriate tool for converging of state-

of-art and state-of-practice in the field of grammar refactoring.

In the future, we would like to focus on achieving greater

abstraction power of the pLERO language, so it would for-

term ::= factor N4

N4 ::=

N4 ::= multiplying_operator factor N4

multiplying_operator ::= ’x’

multiplying_operator ::= ’/’

multiplying_operator ::= ’÷’

factor ::= primary N20

N20 ::=

N20 ::= ’↑’ primary N20

primary ::= unsigned_number

primary ::= variable

primary ::= function_designator

primary ::= ’(’arithmetic_expression’)’

Fig. 11. Resulting grammar after second application of refactoring pattern

malize other knowledge considering refactoring problems and

context of their occurrence, such as consequences of pattern’s

application on grammar’s quality attributes. We would also

like to adopt our approach to EBNF notation, which is

structurally richer and would cause pattern matching to be

more deterministic.

However, our vision goes even further, since mARTINICA

and pLERO currently cover only one aspect of grammar

adaptation, e.g. grammar refactoring, while the ultimate goal

is to create universal approach covering other processes con-

cerning grammarware engineering, e.g. grammar construction

and destruction.

In case of interest, it is possible to download automated

pattern application system from:

http://plero.fei.tuke.sk

ACKNOWLEDGMENT

This work was supported by project VEGA 1/0341/13

Principles and methods of automated abstraction of computer

languages and software development based on the semantic

enrichment caused by communication.

REFERENCES

[1] J. Cervelle, M. Crepinsek, R. Forax, T. Kosar, M. Mernik, and G. Rous-
sel, “On defining quality based grammar metrics,” in Proceedings of

International Multiconference (IMCSIT ’09). Los Alamitos, USA: IEEE
Computer Society Press, 2009, pp. 651–658.

[2] T. Mogensen, Basics of Compiler Design. Copenhagen, DK: University
of Copenhagen, 2007.

[3] I. Halupka and J. Kollár, “Evolutionary algorithm for automated task-
driven grammar refactoring,” in Proceedings of International Scientific

Conference on Computer Science and Engineering (CSE’2012). Slo-
vakia: Technical University of Košice, 2012, pp. 47–54.

[4] C. Alexander, The Timeless Way of Building. New York, USA: Oxford
University Press, 1979.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture Volume 1: A System of Patterns.
New York, USA: John Wiley & Sons, 1996.

[6] P. Klint, R. Lämmel, and C. Verhoef, “Toward an engineering discipline
for grammarware,” ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 14, no. 3, pp. 331–380, 2005.

JÁN KOLLÁR ET AL.: LANGUAGE FOR GRAMMAR REFACTORING PATTERNS 1497

[7] T. Alves and J. Visser, “A case study in grammar engineering,” in
Proceedings of 1st International Conference on Software Language

Engineering (SLE’ 2008). Berlin-Heidelberg: Springer-Verlag, 2008,
pp. 285–304.

[8] I. Halupka, J. Kollár, and E. Pietriková, “A task-driven grammar refac-
toring algorithm,” Acta Polytechnica, vol. 52, no. 5, pp. 51–57, 2012.

[9] N. Kraft, E. Duffy, and B. Malloy, “Grammar recovery from parse
trees and metrics-guided grammar,” IEEE Transactions on Software

Engineering, vol. 35, no. 6, pp. 780–794, 2009.
[10] R. Lämmel and C. Verhoef, “Semi-automatic grammar recovery,” Soft-

ware: Practice and Experience, vol. 31, no. 15, pp. 1395–1438, 2001.
[11] W. Lohmann, G. Riedewald, and M. Stoy, “Semantics-preserving mi-

gration of semantic rules during left recursion removal in attribute
grammars,” Electronic Notes in Theoretical Computer Science (ENTCS),
vol. 110, pp. 133–148, 2004.

[12] K. Louden, Compiler Construction: Principles and Practice. Boston,
USA: PWS Publishing, 1997.

[13] R. Lämmel, “Grammar adaptation,” in Proceedings of the International

Symposium of Formal Methods Europe on Formal Methods for Increas-

ing Software Productivity (FME ’01). London, UK: Springer-Verlag,
2001, pp. 550–570.

[14] R. Lämmel and V. Zaytsev, “An introduction to grammar convergence,”
in Proceedings of the 7th International Conference on Integrated Formal

Methods. London, UK: Springer-Verlag, 2009, pp. 246 – 260.
[15] J. Kollár and I. Halupka, “Role of patterns in automated task-driven

grammar refactoring,” in 2nd Symposium on Languages, Applications

and Technologies (SLATE’13). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2013, pp. 171–186.

[16] R. L. Sites, Algol-60 Version 5 Reference Manual.
Control Data Corporation (CDC), 1979. [Online]. Avail-
able: http://www.computinghistory.org.uk/det/7244/Algol-60-Version-5-
Reference-Manual/

1498 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

