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Abstract—The combination of game theory and data mining
opens new directions and opportunities for developing novel
methods for extraction of knowledge among multiple collab-
orative agents. This paper extends on this combination, and
motivated by the work of Nix and Kantarcioglu employs the
Vickrey-Clarke-Groves (VCG) mechanism to achieve privacy-
preserving collaborative classification. Specifically, in addition to
encouraging multiple agents to share data truthfully, we facilitate
preservation of privacy. In our model, privacy is accomplished by
allowing the parties to supply a controlled amount of perturbed
data, instead of randomised data, so long as this perturbation
does not harm the overall result of classification. The critical
point which determines when this perturbation is harmful is
given by the VCG mechanism. Our experiment on real data
confirms the potential of the theoretical model, in the sense
that VCG mechanism can balance the tradeoff between privacy
preservation and good data mining results.

I. INTRODUCTION

DATA mining provides a range of useful tools for data

manipulation and extraction of meaningful information

from large data sets, that can improve our lives. For example,

collaboration among hospitals and other healthcare institutions

by providing the medical record sets, and thus creating a

large database, can lead to better and more reliable research

results. In a different scenario, markets can share their data

related to the customers’ shopping preferences, in order to

make future product deals and offers that will increase the

income. Furthermore, cooperation in international level among

governments, by merging intelligence data sets, might result

in strengthening the security against terrorism. However, in all

cases it is important to ensure that sensitive information must

remain hidden and not be disclosed.

This paper addresses the problem of privacy preserving

collaborative data mining, motivated by a paper by Nix and

Kantarcioglu [1]. A brief description of the setting is as

follows: a number of participants, also called agents, jointly

supply their individual data sets in order to perform a data

mining task and extract information from the large database

that is formed. As the trustworthiness of the agents is not
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guaranteed, it is necessary to add incentives for good be-

haviour. One approach is to have penalising strategies that

will prevent inappropriate behaviour. However, game theory

offers a solution with positive incentives. Our work, as in

[1], employs a method from a branch of game theory, called

mechanism design. More specifically, we use the Vickrey-

Clarke-Groves (VCG) mechanism, in which the payoff of each

agent contains the agent’s contribution to the ‘community’.

Thus, if an agent’s contribution harms the overall result, this

agent will be charged and hence receive low payoff. Following

the setting of [1] we also choose the data mining task to be

classification. However, in contrast to [1], for simulation of an

agent who supplies falsified data we modify the complete data

set of the agent through a controlled amount of perturbation,

rather than random perturbation of certain percentage of the

data. Furthermore, apart from complete randomization of the

data, which corresponds to the action of an agent who lies or

an agent who aims for the maximum possible privacy, we also

include small deviation from the true data. The latter action

models an agent who wishes to preserve the privacy of his

data without damaging the overall result. We show that this

strategy results in information gain while keeping the agent’s

data private.

II. RELATED WORK

The combination of data mining and game theory in a

collaborative environment has opened a new direction for

research. Halpern and Teague [2] address the problem of secret

sharing and multi-party computation, under the assumption

that the agents are rational, rather that being good or bad. They

show that there exists a randomised secret sharing scheme in

which the agents reach a Nash equilibrium that overcomes

the iterated deletion of weakly-dominated strategies. In [3]

Abraham at al. extend the work of [2], by introducing the

notion of k-resilient equilibrium, which is similar to the

Nash equilibrium, but instead of tolerating deviation from

one player, it tolerates deviations by coalitions with at most

k members. Examination and analysis of the multi-party

computation, and specifically of the secure sum computation

problem under a game theoretic framework can be found

in [4]. In many scenarios, in order to simulate real world

situations the involved parties are divided into good or bad.
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However, under a game theoretic framework this approach is

often replaced by settings where the participants are assumed

to be rational, whose aim is to maximise their gain. In this

context, the authors of [5] introduce the notion of rational

secure computation and show that the ballot-box can be used

to securely compute any function. Although security is an

important issue to be addressed, the behaviour of the partic-

ipants must also be examined. Thus, in order to discourage

improper behaviour, [4], [6], [7] introduce penalising methods.

In particular, assuming semi-honest players, [6] is concerned

with the problems that arise in a sovereign information sharing

setting. The goal is to ensure that the participants learn

the result from the task on the shared information, without

gaining any knowledge about the shared data. This is achieved

by using an auditing device that will repeatedly check the

players’ actions, penalising inappropriate behaviour. Punishing

strategies against malicious players is also examined in [7], in

a setting which includes verification of the results, in addition

to the information sharing. A different approach to punishing

policies in order to achieve good behaviour is the use of

VCG mechanism [1], [8]. In [8] this particular mechanism is

employed for regression learning and in [1] for classification.

III. MECHANISM DESIGN

Mechanism design is a branch of game theory concerned

with the problem of social welfare [9]–[11]. The setting

involves a set of I agents, each one having their own private

preferences on a set of alternatives, and a principal, whose

role is to ensure that the rules of the mechanism will be

followed. The aim of the mechanism is to help the agents

make a collective choice that is beneficial for all. Formally, a

mechanism is a collection of strategy sets S1, . . . , SI and an

outcome function g : S1 × . . . × SI → X , where X is a set

of possible alternatives. Each alternative is associated with a

utility function ui(x) (known also as payoff), which denotes

the gain of agent i when alternative x is chosen. As different

alternatives lead to different payoffs, clearly each agent has a

different preference on the alternatives. In order to model the

distinctiveness of the agent’s preferences, we associate each

agent with a type θi, i = 1, . . . , I . An important point is that

the preference, and hence the type of each agent is private

information and hence θi is known only to agent i. For this

reason, in the game theoretic context, we are in an environment

of incomplete information.

Once the agents have decided upon the preferences and their

type has been determined, they report types θ̂i, which might

or might not coincide with θi (direct revelation mechanism).

After θ̂i has been announced from all agents, the mechanism

selects the collective choice to be

k∗(θ̂) = argmax
k∈K

∑

i

vi(k, θ̂i),

where K is the set of possible choices, θ̂ = (θ̂1, . . . , θ̂I) and

vi(k, θ̂i) is the valuation of agent i on the choice k, when his

reported type is θ̂i.

A. The Vickrey-Clarke-Groves Mechanism

The Vickrey-Clarke-Groves mechanism (denoted by VCG)

is a mechanism where the utility function has the following

quasi-linear form:

ui(x, θi) = vi
(

k∗(θ̂), θi
)

+ ti,

where vi
(

k∗(θ̂
)

, θi) is agent i’s valuation on the choice k∗(θ̂)
when his type is θi. The term ti denotes the payment rule and

in this particular mechanism has the form:

ti =
∑

j 6=i

vj
(

k∗(θ̂), θ̂j
)

+ hi(θ̂−i),

where θ̂−i = (θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂I). In general, hi is an

arbitrary function, but in the case of VCG mechanism is equal

to the following:

hi(θ̂−i) = −
∑

j 6=i

vj
(

k∗−i(θ̂−i), θ̂j
)

,

where k∗−i(θ̂−i) is the social choice which has resulted from a

mechanism with all agents excluding agent i. This particular

formula for the function hi is called the pivotal or Clarke

mechanism and reflects the contribution of agent i to the

community. The utility function has the final form:

ui(x, θi) = vi
(

k∗(θ̂), θi
)

+

+
(

∑

j 6=i

vj
(

k∗(θ̂), θ̂j
)

−
∑

j 6=i

vj
(

k∗−i(θ̂−i), θ̂j
)

)

(1)

If k∗(θ̂) = k∗−i(θ̂−i), which means that the reported type

of agent i does not change the social choice, then ti = 0 and

hence, i is not charged. If k∗(θ̂) 6= k∗−i(θ̂−i), which means that

agent i’s type changes the social choice (agent i is pivotal),

then ti < 0. By allowing the payment rule ti to be negative, it

is possible to have a mechanism with the following properties:

1. ex post efficient: the social welfare is maximised

2. incentive compatible: for all agents, true revelation of their

type, i.e. θ̂i = θi, ∀i ∈ I is a dominant strategy.

IV. OUR SCHEME

Motivated by the work of Nix and Kantarcioglu in [1] we

advance the potential of applying VCG mechanism in order

to achieve privacy preserving collaborative classification. To

comply with the game theoretic scenario, we assume a set of I

agents, each one possessing a data set di, under the assumption

that the pairwise intersection of these sets is empty. All agents

share the same strategy set:

S1 = . . . = SI = {true, perturbed, randomised},

where true, perturbed and randomised correspond to an

agent providing true, perturbed and randomised data, accord-

ingly. The set X of alternatives consists of the classification

results. As explained in a previous section, the outcome of

the mechanism, or in other words the collective choice, is that

particular alternative which maximises the social welfare. In

our scenario this is translated to achieving good classification
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results. As classification is a supervised mining task, this

alternative corresponds to the accuracy of the classification,

which measures the performance of the classifier. Following

the notation of [1] we denote the classification accuracy on a

data set d by acc(d). However, the lack of trust among the

agents requires the introduction of privacy notions.

In our model, privacy is preserved by adding noise to the

data values (perturbation). Although there are techniques to

determine the distribution [12] and even to recover the true

data from the noise [13], our experiment makes use of real

data sets that do not have any particular trend, and thus those

suggested methods for data recovery lead to poor results. For

a clearer understanding of why this game theoretic approach

succeeds, apart from the data perturbation, we also include

complete randomization of the data, by replacing the true

value with a random one. This random value is chosen from

the interval formed by the minimum and maximum values

of the attribute to be randomised. More formally, if xi is

the true value then the randomised value is x̃i = ti, where

ti ∈ [min attribute_value, max attribute_value]. Re-

garding the perturbation, the method we use depends on the

type of the data. For numeric attributes we have x′
i = xi+ ri,

where ri is chosen randomly from [−a, a]. If the attribute is

of nominal type, then we use the AddNoise filter of the data

mining toolset WEKA [14].

After the agents have decided on their preferences, their

type is determined. The different types that we consider are:

per, rand, true, where per describes an agent who provides

perturbed data, rand corresponds to an agent who randomises

the data and true represents an agent who is truthful. As all

agents ideally prefer the extraction of information from true

data, we regard their true type to be true, which corresponds

to the accuracy of the classification on the union of the data

sets
⋃

iǫI di when all data is true. However, when an agent

reports his type, the reported type θ̂i might not be the same

as the true type θi.

An important feature of the mechanism design concept is

a trusted third party who acts as the authority that imposes

the rules. This is the role of the mediator, who will perform

the mining task and distribute the payoffs to each agent. If

the mediator knew the true (private) type of the agents, then

he could decide the outcome of the mechanism and distribute

payoffs to the agents according to their types. However, as the

types are private the particular form of the Clarke mechanism

serves as an incentive for the agents to reveal the true type,

and thus lead to a fair payoff distribution by the mediator.

Rewriting the payoff function (1) using the accuracy, agent i

obtains the payoff:

ui = acc(d) +
(

acc(d̂)− acc(d̂−i)
)

, (2)

with d =
⋃

iǫI di being the union of the true data sets di,

d̂ =
⋃

iǫI d̂i is the union of the reported data sets d̂i supplied

by the agents and finally d̂−i =
⋃

j 6=i d̂j , i, j ∈ I corresponds

to the data set formed from all data sets apart from the data

of agent i. The expression

acc(d̂)− acc(d̂−i) (3)

calculates the loss or gain that agent i poses to the overall

outcome, in other words his contribution. Using the result

of (3) as a reference point, we can determine whether the

agent wishes to mask his data in order to keep it private, or

his aim is to harm the ‘community’ by providing falsified

data. More specifically, if the modification of his data results

in classification accuracy that leads to (3) having a negative

value, then his behaviour is considered harmful. However,

if from the modification we obtain accuracy that keeps (3)

non negative, then we infer that agent i’s intention is to

preserve the privacy of his data without harming the overall

outcome of the classification. Clearly, in an ideal situation

agents would provide the true data and thus obtain high

classification accuracy. However, as privacy is also required,

the experimental results in the next section demonstrate that

a controlled amount of perturbation results in both high

accuracy levels and hiding of the data.

A. Measuring Privacy

Since the preservation of privacy is equally significant to

the extraction of information, truth telling is not a necessarily

desired strategy. On the other hand, complete falsification

results in poor information gain. Perturbation of the data

is a reasonable compromise, but what is the limit of the

perturbation range before reaches complete randomisation, and

subsequently diminishes the information gain? The answer lies

in the term acc(d̂−i) of (2) which indicates the accuracy that

can be achieved using data sets from all agents except agent

i. As long as the expression (3) remains non negative, the

perturbation of agent i’s data causes insignificant reduction to

the accuracy. If (3) becomes negative, then this is an indication

that the perturbed data of agent i harms the overall accuracy

and hence, agent i must obtain low payoff.

We suggest the following three different ways to measure

privacy:

With respect to the distance from the true values:

privacy =
|perturbed value − true value|

|randomised value − true value|

With respect to the range of the attribute values:

privacy =
|perturbed value − true value|

|max value − min value|

With respect to the accuracy:

privacy =
|accuracy(perturbed data) − accuracy(true data)|

|accuracy(randomised data) − accuracy(true data)|

Although in all cases the highest privacy is desirable,

expression (3) poses a bound in the privacy that can be

achieved without decreasing the agent’s payoff.
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V. EXPERIMENTAL RESULTS

In support of the aforementioned model, this section

presents our experimental results. The data set we used relates

to the Civil War events in Africa, and was obtained from

the Armed Conflict Location & Event Dataset [15]. For all

data mining operations we used the toolset WEKA [14].

In particular, for the classification we applied the LibSVM

to perform classification using the support vector machine

method. Without loss of generality, we assumed that there are

three agents with the following attributes:

Agent 1: {year, source}
Agent 2: {actor1, actor2}
Agent 3: {latitude, longitude}

All agents supply modified data, which can be either per-

turbed or randomised. We consider a small amount of perturba-

tion for the attributes held by agents 1 and 2. In order to under-

stand the sensitivity of the overall classification performance

in terms of the amount of perturbation, we perform simulation

study for a wide range of perturbation values while keeping the

amount of perturbation on the data supplied by agents 1 and 2

fixed. We also study the classification performance when agent

3 completely randomises his attributes in order to understand

the tradeoff between the privacy and the performance. The

reason we choose agent 3 for greater modification of the data

is due to his attributes latitude, longitude consisting of a

wide range of real numbers. Moreover, the attributes of agent

3 form convex sets consisting of real numbers in the range

of [min latitude, max latitude] for the latitude, and

[min latitude, max latitude] for the longitude. Hence,

the perturbed values also fall within these convex sets.

Let xi denote the true value of an attribute and x′
i

be the corresponding modified value. For perturbation of

the numeric attributes, and particularly for the year at-

tribute, we have that x′
i = xi + ri, with ri ∈ {−1, 0, 1}.

We perturbed both latitude and longitude as x′
i =

xi + ri, with ri ∈ [−a, a]. In our experiments we con-

sidered a range of perturbation as characterised by a =
0.5, 1, 1.5, 2, 2.5, 3. The nominal attributes (i.e. source,

actor1, actor2) are perturbed using the AddNoise WEKA

filter, with the noise parameter being 10%. For the randomisa-

tion of latitude and longitude x′
i = ti, where ti is drawn

uniformly at random from [min latitude, max latitude]
and [min longitude, max longitude], respectively. In or-

der to prevent overfitting we applied the 0.632 Bootstrap

method [16] with 200 bootstrap samples, each one having the

same size as the training set.

Figure 1(a) depicts the overall accuracy for four cases when

the perturbation parameter a takes the aforementioned values

(a) all agents provide true data (legend −+−), (b) all agents

perturb the data (legend −o−), (c) agent 1 and 2 supply

perturbed data and agent 3 provides randomised data (legend

−∗−) and (d) the classification is performed on the perturbed

data of agents 1 and 2 only (legend −⋄−). A closer look at

these accuracies (Figure 1(b)) shows that between the ideal

accuracy (which is achieved when all agents provide the true

data) and a higher level of privacy (achieved when the data

is perturbed), there is an interval where these two desired

but contradictory properties are in balance. This interval lies

between the accuracy of the classification on the true data and

the output of (3), which is the accuracy that is achieved without

the contribution of agent 3. Clearly, when agent 3 randomises,

the resulting accuracy is significantly diminished.

Figures 2(a) and 2(b) depict the contribution (corresponding

to the outcome of (3)) and payoff of agent 3. For a better

understanding of these results, both figures present the charges

and payoff, respectively, that result from the supply of per-

turbed data from agents 1 and 2, and true data from agent 3

(legend −⋄−). As this situation offers the maximum payoff

to agent 3, when he introduces perturbation in his data the

charges increase and his payoff decreases. Perturbation of up

to a = 2 (i.e., 20 of perturbation) results in high payoff, and

at the same time the data is concealed, as 20 latitude is equal

to 222km. Furthermore, both Figure 2(a) and 2(b) show that

randomisation is not a beneficial approach due to very low

payoff.

Regarding the privacy, Figure 3 shows the three differ-

ent ways of measuring it. Clearly, the maximum privacy is

achieved when the data is completely randomised. However,

as randomisation results in poor classification accuracy, the

actual maximum privacy that can be attained is represented by

the line denoted by ’max-privacy-’. In all three subfigures, this

line marks the critical point which separates the privacy with

positive classification results from the privacy with undesirable

classification results. Finally, Figure 4 presents a 3D overview

of the relation among the perturbation, the accuracy and the

privacy, for the three different privacy measures. The square on

the figures denotes the critical point (as can also be seen in the

intersection of those two curves in Figure 1(b)) where we have

the maximum privacy while the accuracy of the classification

is high and the perturbation of agent 3 is not harmful.

VI. CONCLUSIONS

This work examined the problem of collaborative data

mining using tools from game theory, while being able to offer

data privacy to individual agents. In particular, motivated by

[1] we used the Vickrey-Clarke-Groves mechanism in order

to offer incentives that will prompt the agents to follow the

rules. The behaviours that we considered are true, per,

rand, corresponding to agent providing true, perturbed and

randomised data. Our experiment showed that indeed the use

of the VCG mechanism leads to high accuracy of the data

mining task, while preserving the privacy of the data by

allowing the agents to supply perturbed data. The key point of

the VCG mechanism is that the gain of each agent includes

the agent’s contribution. Hence, the agent can perturb the data,

as long as his contribution does not harm the overall result.
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(a) The overall classification accuracy (b) Magnified part of the overall accuracy, showing the
interval where accuracy is high and the contribution of
agent 3 is not harmful.

Fig. 1.

(a) The contribution of agent 3. (b) The payoff of agent 3.

Fig. 2.

(a) With respect to the distance from the true
values.

(b) With respect of the attribute values. (c) With respect to the accuracy.

Fig. 3. Privacy
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