
dotRL: A platform for rapid Reinforcement
Learning methods development and validation

Bartosz Papis, Paweł Wawrzyński

Institute of Control and Computation Engineering, Warsaw University of Technology

Abstract—This paper introduces dotRL, a platform that en-
ables fast implementation and testing of Reinforcement Learning
algorithms against diverse environments. dotRL has been written
under .NET framework and its main characteristics include: (i)
adding a new learning algorithm or environment to the platform
only requires implementing a simple interface, from then on it
is ready to be coupled with other environments and algorithms,
(ii) a set of tools is included that aid running and reporting
experiments, (iii) a set of benchmark environments is included,
with as demanding as Octopus-Arm and Half-Cheetah, (iv) the
platform is available for instantaneous download, compilation,
and execution, without libraries from different sources.

Index Terms—Reinforcement learning, evaluation platform,
software engineering

I. INTRODUCTION

IN THE area of Reinforcement Learning (RL) [1] algo-

rithms are developed that learn reactive policies for sequen-

tial decision making and control. Research in RL is based on

the paradigm of micro–worlds: ideas are tested and demon-

strated with the use of decision-making and control problems

that can be defined analytically and reimplemented by others.

This has forced researchers to spend a lot of time developing

their experimental platforms. In order to help others and enable

fair comparison of the ideas, many researchers have published

their platforms: RL-Glue [2], PyBrain [3], CLSquare [4], RLT

[5], PIQLE [6], lipbqrl [7], MDP Toolkit [8], MMLF [9], or

QCON [10]. The general design principles for RL platforms

were analysed in [11].

The purpose of this paper is to introduce another platform,

dotRL, for development of RL algorithms. Although the

platforms reduce the space for yet another project, it also

demonstrates that a researcher developing a new idea in RL

or a student getting familiar with this field still prefers writing

their own platform from scratch instead of using an existing

one. That is why the main principle that we adopted when

designing our platform was as follows: the user should spend

as little time as possible installing, getting familiar with the

platform, and writing code, before they are ready to run their

own agent or environment.

A. Related work

Perhaps the oldest and best-known RL platform is RL-

Glue [2]. It dates back to 1996 through a project by Rich

Sutton and Juan Carlos Santamaria called RL-Interface. RL-

Glue has been a protocol specified by annual RL competition

workshops held at ICML and NIPS. RL-Glue is basically

a text communication protocol over sockets, between agents

and environments. Reinforcement learning toolbox (RLT) [5]

is a flexible platform for development learning algorithm in

various scenarios: MDP, POMDP, and imitation learning. The

price of this flexibility is the complexity of this platform and

difficulty of its use. Libpgrl [7] focuses on planning and rein-

forcement learning in a distributed environment. Maja machine

learning framework (MMLF) [9] supports not only RL but

also model-based learning and direct policy search. It enables

automated experimentation with the use of XML configuration

files. PyBrain [3] is a general machine learning library, that

also includes RL, but focuses on neural networks. Object-

oriented platforms written in Java include PIQLE [6], RLPark

[12], and Teachingbox [13]. Another platform, YORLL [14],

is written in C++.

B. Requirements and basic assumptions

The dotRL platform is designed to minimize the time

spent by its user on technical and infrastructural details. The

user should focus almost all of their effort on dealing with

purely scientific issues. In order to meet this requirement, the

design of dotRL is based on the following assumptions and

characteristics:

1) Altogether, dotRL is a solution written under .NET

4.5 framework, Windows operating system, and Visual

Studio 2010. As a result, further development of dotRL

may be based on all the tools provided with Visual

Studio and .NET technology.

2) Having been downloaded and opened with Visual Stu-

dio, it is ready to be compiled and run.

3) In order to add a new agent or a new environment

to the platform, one only needs to implement a class

with an appropriate interface. After compilation, the

platform alone is able to couple this new entity to other

environments or agents.

4) Each agent and environment is designed for one particu-

lar problem type. The problem type defines the types of

state and action spaces. They may be continuous (i.e.,

contain vectors of reals), discrete (contain vectors of

integers), and possibly others.

5) A set of tools is provided with dotRL that enables

launching many learning runs with the same setting

and getting logs almost directly insertable to a scientific

paper. Tools for implementing agents, such as neural

networks, are also included.

6) A set of exemplary agents and environments are pro-

vided with the platform. Those include as complex en-

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 129–136

978-1-4673-4471-5/$25.00 c© 2013, IEEE 129

vironments as Octopus-Arm [15], [16] and Half-Cheetah

[17], [18].

7) The platform is fully compatible with RL-Glue [2].

To our knowledge, the platform presented in this paper is the

first full-featured platform written under .NET, and the first

one in which adding a new agent or environment only requires

implementing a single class. Especially this last feature is

helpful in rapid development and validation of new algorithms.

The aforementioned notion of problem types is based on the

following observation: An agent is usually applicable, without

modification only to environments with compatible state and

action space types. No one really implements a learning

algorithm that, in the same form, is applicable to several

problem types. It is possible to do so, but almost always means

that the agent will do something completely different for

different versions of environment it deals with at the moment.

Additional contribution of this work is RL-Glue codec for

.NET platform.

dotRL is an open source software under BSD license

and hosted on sourceforge.net [19]. We welcome anyone to

contribute to the project.

C. Organization of the paper

The remaining part of the paper is organized as follows. Sec.

II presents an overview of the user interface, sec. III defines

basic modules and components of the dotRL platform. An-

other subsection presents the interaction protocol between an

agent and an environment that the platform supports. Sec. IV

explains how to use a new component (agent or environment)

with the platform. Sec. V elaborates on integration of dotRL

with the RL-Glue protocol. Sec. VI concludes the paper and

indicates directions of future development of the platform.

II. USER INTERFACE

Typical usage scenario of the dotRL solution, when the user

wants to test an existing agent on an existing environment

consists of the following steps:

1) Click the “Experiment” menu item from the “New”

menu,

2) Choose an environment from the list of available envi-

ronments,

3) Choose an agent from the list of available agents com-

patible with the chosen environment,

4) Configure parameters of the chosen environment and

agent

5) Configure reporting parameters,

6) Configure experiment parameters (i.e. number of

episodes, maximum number of steps in one episode),

7) Click “OK” when finished configuring the experiment,

8) Click “Background learning” or “Real time learning”,

9) Click “Present policy” and/or view the created report

file.

The user can modify parameters of the ongoing experiment.

Details on extending the platform’s set of components (agents

or environments) are provided in Section IV. An example view

of the application during configuration of an experiment is

Fig. 1. Experiment configuration.

Fig. 2. Reporting configuration.

presented in Figure 1. Running experiment is presented in

Figure 3, and a screen presenting functionality allowing more

than one simultaneous experiments to run is shown in Figure

4.

To configure the reporting parameters “Add report file”

button in “Reporting” tab needs to be clicked. Then, the user

can either choose to use simple configuration and choose from

the standard set of report columns, or to configure their own

report:

1) For each report file tab:

a) Choose one of report triggers

b) Click “Add new column” for each desired column

in the output file

c) Choose one of available data sources and a way to

accumulate their values

ReportTrigger and DataSource objects are explained in

detail in Section III-C. An example view of the application

during reporting configuration is presented in Figure 2.

For interacting with RL-Glue one of these two actions must

be taken:

• Choose the RLGlueAgent or RLGlueEnvironment in the

component choice window after choosing to create new

experiment

• Start an RL-Glue experiment to connect to RL-Glue core.

Integration with RL-Glue components is explained in detail

in Section V.

130 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 3. An example experiment.

Fig. 4. An example batch experiment.

III. DOTRL COMPONENTS

This section presents the domain model [20] of the dotRL

solution. Section III-A presents the set of core entities which

reflect key notions of an RL experiment. Section III-B presents

how these components interact with each other during an

experiment.

A. Classes

Learning algorithms, called Agents in RL are rep-

resented as subclasses of the Agent<TStateSpaceType,

TActionSpaceType> base class. Problems to solve by

these algorithms, called Environments in RL are repre-

sented as subclasses of the Environment<TStateSpaceType,

TActionSpaceType> base class. Environments can have con-

tinuous or discrete state transition function and they accept

real or integer vectors as actions. This divides them into

four groups, three of which are commonly addressed, and

which we call problem types: continuous state & continuous

action, continuous state & discrete action, discrete state &

discrete action. Each agent and environment is dedicated to

one problem type and this is made explicit in dotRL in the

form of generic parameters of Agent and Environment base

classes. Interaction between an agent and an environment is

called Experiment. This whole design is modelled with classes

presented in Figure 5.

Agent represents the class hierarchy of all agents

implemented in dotRL, with Agent<TStateSpaceType,

TActionSpaceType> (in Figure 5 generic arguments

are omitted for clarity) being their base class. Agent’s

responsibility is to decide which Action to take in given

Environment’s State, and to improve its policy with received

Samples. Details on how to implement an agent are provided

in Section IV.

Similarly, Environment represents the hierarchy of classes

which represent RL problems to be solved by the Agents. The

class Environment<TStateSpaceType, TActionSpaceType>

(in Figure 5 generic arguments are omitted for clarity) is

the base class for any environment implemented in dotRL.

Environment’s responsibility is to simulate a designed be-

haviour, reacting to given Actions by changing it’s State and

providing a Reinforcement. Unlike some other solutions (like

PyBrain [3]) we do not divide responsibility of modelling a

behavior and assigning reinforcement between two separate

objects. Theoretically, it would lead to a more accurate domain

model and it is a valuable idea, but it makes development

more time-consuming and this opposes our requirements.

Different rewarding policies can be easily implemented using

environment’s parameters.

The Experiment models a key notion in RL research — an

experiment, i.e. a continuous interaction between an Agent and

an Environment. Experiment’s resposibilities are: controlling

the course of an experiment (i.e. informing about begining

and ending of an episode, evaluating finish conditions) and

passing information between an agent and an environment

(States, Actions, Samples and Reinforcements), and passing

information to classes resposible for reporting functionality.

State<TStateSpaceType>, Action<TActionSpaceType>

and Reinforcement (again, generic parameters omitted for

clarity in Figure 5) are simple wrapper classes for vectors

and numbers to make RL domain notions explicit in the code

— they are not essential, but they make the design clear and

explicit, and improve implementation’s readability.

EnvironmentDescription<TStateSpaceType,

TActionSpaceType> (again, generic parameters omitted

for clarity in Figure 5) is a class containing information about

the structure of an environment. The details about its contents

are provided in Section IV.

Presentation class provides a root for hierarchy of classes

that are used to visualize the state of the environment. Its

responsibility is to draw a visualization of a given state on a

given canvas object (.NET’s System.Drawing.Graphics). It is

used only when user chooses “Policy presentation” mode in

the user interface.

Sample represents a smallest piece of information in a RL

experiment. Sample consists of:

• PreviousState: a state in which the Environment was.

• Action: an action taken by the Agent for state Previ-

ousState.

• CurrentState: a resulting state after taking action Action

in state PreviousState.

• Reinforcement : a reinforcement received after taking

action Action in state PreviousState.

The use of samples allows the implementation of an agent

to be stateless — no information needs to be stored between

calls to various agent’s methods (such as EpisodeStarted,

GetAction, etc.). More details are available in Section IV.

BARTOSZ PAPIS, PAWEŁ WAWRZYŃSKI: DOTRL: A PLATFORM FOR RAPID REINFORCEMENT LEARNING 131

tttttttttt

ttttt ttttttttttt

eettet

etetttntttttttttttnttttt

tttttttttttntnnttttttt

etentntnnttttttt

nttttntttntnnttttttt

tttetttttttttt

tnttttttttnttttt

...
tnttttnttttttttttt

teettttttetttttttttttt

ttttttttttttttt ...

nttntttetttt

Fig. 5. dotRL main components. Green classes represent core components
essential to implement the concept of RL experiment. Gray classes are
useful utility classes which represent minor concepts. Blue classes represent
a place for user’s activity: they are concrete implementations of agent’s and
environment’s behaviors. Ordinary arrow represents association, filled arrow
represents inheritance.

B. Operation sequence

We propose to adopt a simple interaction scenario based

on explicit interfaces. Many existing RL platforms use typical

setting in which subsequent method calls (episode start, step,

episode end) implicitly rely on each other, forcing agent’s

implementation to be a state machine. This is not always

the most convenient way, and such interface does not follow

readable code guidelines [20]. The proposed sequence of

method calls between components during an experiment is

presented in Figure 6.

After the user initiates a new experiment instances of

chosen classes are being automatically created: a subclass

of the Agent<TStateSpaceType, TActionSpaceType> base

class and a subclass of the Environment<TStateSpaceType,

TActionSpaceType> base class (generic arguments are omitted

for clarity in Figure 6). First, the user configures the param-

eters of the experiment (i.e. number of episodes, number of

steps in each episode), agent and environment. Then, after

experiment passes the information about the environment to

the agent, a loop common to all RL experiments is being

started. Each episode consists of a sequence of repeatedly

executed steps:

1) The current state of the environment is retrieved by

calling the GetCurrentState method.

2) If the current state is terminal or the current episode

should end because of its duration limit, agent’s

EpisodeEnded method is called, and a new episode is

started by calling StartEpisode environment’s method

and EpisodeStarted agent’s method.

3) Agent’s action for current state is retrieved with call to

the GetActionWhenLearning method.

4) The Environment is informed what action it should

rrrr

tttrrttrtt

ttrtt

ttttrtttrtt

»»tt»tt»rr»

»»tt»tt»rr»

))r)trtrrr)))ttr)))

»»tt»tt»rr»
))r)trtrrr)))ttr)))

)rtttttrtttrtt)rr»rtttttt))

nrtttrtttrtt)rr»rtttttt

)tttt))t)r))

»rt)rt»

::»ttt):rttrt)r:)tttt:rr)»)r):n

)t)rttttrt)r))

tttrt)r)t)rtr))rt)tr)

::»ttt):rttrt)r:rt)r:n

)rt)»rrrtt)t)tr))

nrt)tr

)rtt»tttt))rt)r)rtttt)rt)tr)

n)»tttt

)rr»trtt»tttt))»tttt)

nrrtt»tr»rtrtt

)rt)»rrrtt)t)tr))

nrt)tr

)r)rt)r)tt)r)

tttrt)rtt)r)))

tttrrttrtttt)r)))
tttrrttrtttt)r)))

»rrttrt»

Fig. 6. dotRL interaction scenario. After user initiates a new experiment
the platform’s core components exchange data in a way typical for an RL
experiment.

execute via call to the PerformAction method.

5) The reinforcement and the new current state are retrieved

from the Environment as return values from the Pefor-

mAction and GetCurrentState methods.

6) The Agent is informed about the consequences of exe-

cuted action via call to the Learn method.

If the user wishes only to see how the agent behaves without

changing it’s policy they can choose “Policy presentation”

mode. In this mode, another copy of the environment is used

and agent’s GetActionWhenNotLearning method is used (op-

posed to GetActionWhenLearning) so there is no interference

with the learning process (provided that the implementation

of GetActionWhenNotLearning is correct and truly does not

influence the learning process).

C. Reporting

A valuable functionality of dotRL is provided by the report-

ing mechanisms. When configuring an experiment the user can

setup multiple output log files. This is done through three use-

ful notions: ReportTrigger, DataSource and DataAccumulator.

A report trigger is a class that decides when to write a line

to the output file. Lots of report triggers have already been

implemented, such as: TotalStepCountReportTrigger which

causes emiting a log file line at configured intervals of steps

in an experiment, EpisodeCountReportTrigger which causes

emiting a log file line at configured intervals of episodes in

the whole expermient.

DataSource consists of an object and it’s field, which’s value

132 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

will be reported to the output file. There are three main objects

which provide data: Experiment, Agent and Environment. The

experiment provides typical experiment information, like the

number of steps executed so far, or the reinforcement received

by the agent. Data exposed by the agent and the environment

depends on the creator of these components. Any useful piece

of data can be accessed by the reporting functionality as

easy, as marking any component’s field with ReportedValue

attribute. An example is provided in QLearningAgent which

exposes it’s td field, containing recently computed temporal-

difference value.

DataAccumulator allow some simple manipulations on the

data read from data sources. The most common are no-op

data accumulator (CurrentValueDataAccumulator) which just

outputs the returned value and AverageSinceTriggerDataAccu-

mulator which accumulates the data between each report file

line and calculates average.

D. Implemented components

Currently, the following components are implemented in

dotRL:

• Environments:

– Cart-Pole Swing Up [21]

– Double Inverted Pendulum on a Cart [22]

– Acrobot [23]

– Robot weightlifting [24]

– Kimura’s Robot [25]

– Half Cheetah [17]

– Octopus Arm [16]

– Coffee task [26]

– Grid

• Agents:

– Actor-Critic [27]

– Actor-Critic with Experience Replay [17]

– Q-Learning [28]

– SARSA [29]

IV. ADDING NEW COMPONENTS

We focus our design to make adding new agents and

environments as simple as possible. This allows a researcher to

spend most of his time on substantial work instead of dealing

with technical details. Developing a new agent or a new

environment is most straightforward: one needs just to sub-

class the Agent<TStateSpaceType, TActionSpaceType> class

or the Environment<TStateSpaceType, TActionSpaceType>

class, respectively. The TStateSpaceType and TActionSpace-

Type generic arguments need to be set to types corre-

sponding to desired problem type (for example: setting

TStateSpaceType = double, TActionSpaceType = int

allows creation of a continuous state & discrete action

agent/environment).

Each component, once implemented, will appear auto-

matically in the user interface. If additionally a subclass

of the Presenter class is supplied, the environment’s state

will be visualized in the experiment’s window. Otherwise

the default presenter will be used, which just prints raw

state and reinforcement information. The implementation

of Experiment<TStateSpaceType, TActionSpaceType> (green

component in Figure 5) is provided by the dotRL platform, and

is fully configurable through the user interface.

Another convenience is automatic handling of component’s

parameters. Every Agent or Environment can have any of its

fields or properties (doesn’t matter whether private, protected,

public, static or instance related) marked with one of Parameter

or NumericParameter attributes. Such fields will appear in a

configuration dialog window before starting each experiment,

allowing the user to tune the component’s behavior. Also,

if any component uses another component (for example one

wants to implement an environment similar to an existing one,

and reuses the latter as a part of the new one) its parameters

will be also handled automatically.

A. Adding a new environment

Subclassing the Environment<TStateSpaceType,

TActionSpaceType> class requires implementing the

following methods (for clarity, generic arguments have been

omitted):

• EnvironmentDescription GetEnvironmentDescription():

called to retrieve information about the environment

• void StartEpisode(): called when a new episode begins

• Reinforcement PerformAction(Action action): called to

execute action and retrieve reinforcement

The first method is called to transfer information

about the structure of the problem to the agent. Usually

agents require information about the problem’s state,

action and reinforcement spaces. Such information is

stored in EnvironmentDescription<TStateSpaceType,

TActionSpaceType> class, which has two instances

of SpaceDescription<TSpaceType> classes (one

for state space and one for action space) and one

instance of DimensionDescription<TSpaceType>

class for describing the reinforcement space.

SpaceDescription<TSpaceType> consists of

DimensionDescription<TSpaceType> instance for each

described dimension. DimensionDescription<TSpaceType>

contains: minimum value, maximum value, average value and

standard deviation.

Not all of these fields are always used. Typically, state space

information contains:

• Minimum value for each state variable.

• Maximum value for each state variable.

• Average value for each state variable.

• StandardDeviation of each state variable.

Action space information:

• Minimum value for each action dimension.

• Maximum value for each action dimension.

Information about the reinforcement:

• Minimum reinforcement value.

• Maximum reinforcement value.

BARTOSZ PAPIS, PAWEŁ WAWRZYŃSKI: DOTRL: A PLATFORM FOR RAPID REINFORCEMENT LEARNING 133

Despite the typical setting, all values are optional but the

environment should provide as much information as possible,

to allow cooperation with agents that need it.
Typical behavior of the StartEpisode method is to initialize

environment’s state (to some predefined state, probably depen-

dent on parameters or to a random state).
The last method, PerformAction is typical to RL environ-

ment implementations: it usually performs a simulation step,

evaluating the consequences of the given action (calculating

environment’s next state) and returns a reinforcement associ-

ated with this action in its current state.
Technically, these methods should be implemented in the

paradigm of a stateful protocol — environment should keep

track of its current state. To facilitate this and for efficiency, the

Environment<TStateSpaceType, TActionSpaceType> base

classes exposes a protected mutable CurrentState property.

As long as it is used by StartEpisode and PerformAction

methods one needs not to bother about implementing the

GetCurrentState method.
Additionally these methods can optionally be overriden:

• State GetCurrentState(): called to retrieve environment’s

current state

• void ParametersChanged (): called after user changes en-

vironment’s parameters

• void ExperimentEnded (): called after the user closes the

experiment window

The default implementation of the first method returns the

CurrentState property as an immutable object. The default

implementations of the two remaining methods do nothing.
Environment class must contain a parameterless constructor.

B. Adding a new agent

Subclassing the Agent<TStateSpaceType,

TActionSpaceType> class requires implementing the

following methods (for clarity, generic arguments have been

omitted):

• void ExperimentStarted (EnvironmentDescription envi-

ronmentDescription): called to pass the information about

the environment to the agent

• Action GetActionWhenNotLearning: called to retrieve

agent’s decision about an action to take in the given state,

when presenting current policy

• Action GetActionWhenLearning(State state): called to

retrieve agent’s decision about an action to take in the

given state, during learning

• void Learn(Sample sample): called to inform the agent

about a state, action that took place and the resulting next

state and reinforcement

The first method is called before the start of the experiment,

so the agent could prepare its internal structures accordingly to

the structure of the environment(e.g., dimensions of the state,

and action spaces).
The GetActionWhenNotLearning should return the action

according to agent’s current policy for the given state, not

affected by agent’s exploration policy, and in way not to

interfere with agent’s internal state related to learning.

The third method, GetActionWhenLearning should return

the action according to current agent’s policy for the given

state which can be distorted for exploration. Also in this

method agent can calculate or remember some additional

quantities which will be needed in the Learn method. It is

guaranteed that a call to Learn method will always follow a

previous call to GetActionWhenLearning.

The Learn method, typical to RL agent implementations,

is used to transfer experience to the agent. Agent can, for

example accumulate this experience, or improve its policy at

once.

Technically these methods should be implemented in the

paradigm of a stateless protocol. Subsequent calls to GetAc-

tionWhenLearning or Learn should not be explicitly depen-

dent. Of course, there should be an implicit dependency

between these calls and calls to the Learn method through the

agent’s policy and some internal variables used for learning.

Also, the action returned by the GetActionWhenLearning

method will be present in a sample given to a subsequent

Learn call.

The GetActionWhenNotLearning method should act in a

completely transparent way — no assumptions should be made

about the moment of its execution, as user can switch to

“Policy presentation” mode at any time. The environment will

remain unaffected, as in “Policy presentation” mode its copy

is being used.

Similarly to environments’ base class, the base class for

agents exposes a mutable protected Action property to be

modified in place for efficiency, and returned from GetAction

as an immutable version.

Additionally these methods can optionally be overriden:

• void EpisodeStarted (State state): called when episode

starts

• void EpisodeEnded (): called when episode ends

• void ExperimentEnded (): called after the user closes the

experiment window

The default implementations of these methods do nothing.

Agent class must contain a parameterless constructor.

C. Adding a new presenter

Subclassing the Presenter base class is optional, however it

allows a researcher to evaluate environment’s behavior visu-

ally. Usually environments represent some imaginable object,

or they are related to a real-world object. Having them drawn

and being able to observe their dynamics makes it easier to

verify their implementation, and to analyze agent’s behavior.

To implement a presenter one needs to:

• subclass the Presenter base class and implement the Draw

method,

• provide a constructor taking one argument of type of the

environment to visualize.

The Draw method should draw the visualization of environ-

ment’s current state to the canvas held by the Graphics object,

exposed by the Presenter base class. Draw implementation

should use drawing functions also provided by the Presenter

134 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

base class, as they scale the drawing appropriately to win-

dow’s dimensions and aspect ratio. Presenter implementations

should hold the reference to the visualized environment for

themselves. Implementation of a presenter can be designed

to visualize more than one environment — it just needs to

provide one constructor for each visualized environment. This

is useful when one environment is derived from another one.

V. INTEGRATION

A. Integration with RL-Glue

In RL research field there are many agents and environments

available, however they are implemented in different platforms

and languages. This problem is taken care of by the RL-Glue

protocol [2]. dotRL supports it, to give its users access to the

vast set of agents and environments already implemented and

compatible with RL-Glue.

Generally, interaction between two integrated platforms (or

components from different solutions) relies on one of them

managing the course of an experiment and the other acting

passively as one of experiment components: an agent or an

environment. This gives two options of integrating dotRL with

RL-Glue components:

1) dotRL manages the course of an experiment employing

a RL-Glue agent or environment.

2) dotRL acts as RL-Glue component: an agent or an

environment, while RL-Glue manages the course of the

experiment.

dotRL allows both scenarios: the user can instantiate a

component (agent or environment) alone, and configure it

to connect to a RL-Glue server application, or user can

open an ordinary experiment window chosing a special agent

(RLGlueAgent) or environment (RLGlueEnvironment) type

which act as proxies and encapsulate RL-Glue network com-

munication details. Example of the first scenario is presented

in Figures 7 and 8. Some other platforms, like Teachingbox

[13] also provide integration with RL-Glue, but dotRL is

the only platform known to the authors which allows both

integration scenarios.

B. Integration with other applications

Integrating dotRL with other platforms, or single-

component applications is easy thanks to the mechanisms

provided by the .NET framework. For example:

• C/C++ code, compiled to a DLL library is easily acces-

sible from .NET through the Platform Invoke Services

(P/Invoke) or It Just Works (IJW).

• Python code can be accessed with solutions like Iron-

Python [30] which provide Python virtual machine im-

plementation in .NET.

• Because Matlab gives access to its API through DLL

interface, it also possible to run Matlab scripts using

P/Invoke mechanism. Matlab ’s COM interface can also

be used.

• Interaction with XML based communication (e.g. con-

figuration of the Octopus-Arm environment [15], [16])

is easy to develop thanks to provided tools ranging

from simple XML stream processors (XmlReader and

XmlWriter) to powerful LINQ to XML which allows

comfortable operating on XML documents in an elegant

and concise way.

• Network communication is also supported with easy to

use highlevel classes and libraries like WCF (Windows

Communication Foundation).

In any of these cases, user is required only to implement a

wrapper class managing the interoperability using one of de-

scribed mechanisms as a subclass of the Agent or Environment

base class.

C. Comparison with RL-Glue

Although RL-Glue and dotRL are different types of solu-

tions, some of their merits can be compared:

• RL-Glue being a network protocol is fully platform

independent, whereas dotRL can work only on platforms

with existing .NET framework implementation. However,

the number of platforms which support .NET is becoming

bigger. Thanks to the MONO project [31], .NET is

supported not only on Windows, but also most Unix-

like systems, MacOS X, and even Android (full list of

supported systems can be found in [32]).

• RL-Glue is however tied to the infrastructure: BigEndian

convention is obligatory1, and there are fixed sizes of

basic data types. dotRL is completely infrastructure ig-

norant, as long as .NET Framework is supported.

• RL-Glue, being a handcrafted protocol is not feasible

for extensibility (e.g. hard-coded order of elements in

TaskSpec). dotRL is easily extensible by design.

• In both solutions adding new components requires at

minimum writing only one class required to implement

one simple interface.

• RL-Glue does not offer a standard way to turn off

policy improvement. dotRL handles this case via “policy

presentation” mode.

• In RL-Glue reporting and visualization must be managed

by the user on their own (however, see RL-Viz project

mentioned below). dotRL offers easily extensible report-

ing and presentation frameworks with convenient GUI.

RL-Glue is more popular, and in fact seems a better solution

if multiplatform or distributed environment is obligatory. How-

ever, dotRL is easier to maintain (no hardcoded assumptions),

provides more useful tools for evaluation of new agents (built

in extensible reporting framework), visualization of environ-

ments (built in extensible visualization framework), and allows

easy integration with other solutions (details were provided in

sec. V-B). In the context of reporting and visualization it is fair

to mention the RL-Viz project, however it remains unreleased

since 2007 [33].

1BigEndian is obligatory in the context of network communication with
the RL-Glue Core application. Refer to the RL-Glue Core implementation:
“rlBufferWrite” and “rlBufferRead” functions in the “RL network.c” file.

BARTOSZ PAPIS, PAWEŁ WAWRZYŃSKI: DOTRL: A PLATFORM FOR RAPID REINFORCEMENT LEARNING 135

Fig. 7. RL-Glue connection configuration.

Fig. 8. RL-Glue experiment in progress, using dotRL’s QLearningAgent for
RL-Glue sample environment and experiment written in Python

VI. CONCLUSIONS AND FUTURE WORK

In this paper dotRL — a platform for fast development

and validation of reinforcement learning algorithms was in-

troduced. The platform had been designed to minimize the

time spent by its user on technical and infrastructural details,

as they should focus on purely scientific issues. Seemingly,

the platform meets this requirement.
Directions of further development of dotRL include its

integration with other platforms. They also encompass enrich-

ing the set of agents and environments available within the

platform.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[2] B. Tanner and A. White, “Rl-glue: language-independent software
for reinforcement-learning experiments,” Journal of Machine Learning

Research, vol. 10, pp. 2133–2136, 2009.
[3] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,

T. Rückstieß, and J. Schmidhuber, “Pybrain,” Journal of Machine

Learning Research, vol. 11, pp. 743–746, 2010.
[4] R. Hafner and M.Riedmiller, “Case study: control of a real world system

in clsquare,” in Proceedings of the NIPS Workshop on Reinforcement

Learning Comparisons, Whistler, British Columbia, Canada, 2005.
[5] G. Neumann, “Reinforcement learning for optimal control tasks,” Mas-

ter’s thesis, Technischen Universitat, Graz, 2005.

[6] F. D. Comité and S. Delepoulle, “Piqle: a platform for implementation
of q-learning experiments,” in NIPS workshop: reinforcement learning

benchmarks and bake-offs II, 2005.
[7] D. Aberdeen, O. Buffet, F. P. Selmi-Dei, X. Zhang, and T. Lopes,

“libpgrl,” 2006, http://code.google.com/p/libpgrl/.
[8] I. Chadés, M. J. Cros, F. Garcia, and R. Sabbadin, “Markov decision

processes (mdp) toolbox,” 2009, http://www.inra.fr/mia/T/MDPtoolbox/.
[9] M. Edgington, “Maja machine learning framework,” 2009,

http://mmlf.sourceforge.net/.
[10] D. Kapusta, “Connectionist q-learning java framework,” 2005,

http://elsy.gdan.pl/.
[11] T. Kovacs and R. Egginton, “On the analysis and design of software

for reinforcement learning, with a survey of existing systems,” Machine

Learning, vol. 84, pp. 7–49, 2011.
[12] “Rlpark.” [Online]. Available: http://rlpark.github.com/
[13] “Teachingbox.” [Online]. Available: http://amser.hs-

weingarten.de/en/teachingbox.php
[14] P. Scopes, V. Agarwal, S. Devlin, K. Efthymiadis, K. Malialis, D. T.

Kentse, and D. Kudenko, “York reinforcement learning library (yorll),”
reinforcement Learning Group, Department of Computer Science.

[15] Octopus-sources, 2006, http://www.cs.mcgill.ca/ dprecup/workshops/IC-
ML06/Octopus/octopus-code-distribution.zip.

[16] B. G. Woolley and K. O. Stanley, “Evolving a single scalable controller
for an octopus arm with a variable number of segments,” in Proceedings

of the 11th international conference on parallel problem solving from

nature, PPSN-2010. Springer, 2010.
[17] P. Wawrzynski, “Real-time reinforcement learning by sequential actor-

critics and experience replay,” Neural Networks, vol. 22, pp. 1484–1497,
2009.

[18] P. Wawrzynski and A. K. Tanwani, “Autonomous reinforcement
learning with experience replay,” Neural Networks, in press,
doi:10.1016/j.neunet.2012.11.007.

[19] B. Papis and P. Wawrzyński, http://sourceforge.net/projects/dotrl/.
[20] E. Evans, Domain-driven design: tackling complexity in the heart of

software. Addison-Wesley, 2003.
[21] K. Doya, “Reinforcement learning in continuous time and space,” Neural

Computation, no. 12, pp. 243–269, 2000.
[22] A. Bogdanov, “Optimal control of a double inverted pendulum on a

cart,” CSEE, OGI School of Science and Engineering, OHSU, Tech.
Rep. CSE-04-006, December 2004.

[23] J. H. Connell and S. Mahadevan, Eds., Robot learning, ser. The Kluwer
international series in engineering and computer science. Boston:
Kluwer Academic Publishers, 1993, index.

[24] M. T. Rosenstein and A. G. Barto, “Robot weightlifting by direct
policy search,” in In Proceedings of the Seventeenth International Joint

Conference on Artificial Intelligence. Morgan Kaufmann, 2001, pp.
839–844.

[25] H. Kimura and S. Kobayashi, “Reinforcement learning using stochastic
gradient algorithm and its application to robots,” in IEE Japan Trans.

on Electronics, Information and Systems, vol. 119, 1999, pp. 913–934.
[26] C. Boutilier, R. Dearden, and M. Goldszmidt, “Exploiting structure in

policy construction,” in IJCAI-95, pp.11041111, 1995.
[27] H. Kimura and S. Kobayashi, “An analysis of actor/critic algorithm

using eligibility traces: Reinforcement learning with imperfect value
functions,” in Proceedings of the 15th international conference on

machine learning, 1998, pp. 278–286.
[28] C. J. C. H. Watkins and P. Dayan, “Technical note q-learning,” Machine

Learning, vol. 8, pp. 279–292, 1992.
[29] G. A. Rummery and M. Niranjan, “On-line q-learning using connec-

tionist systems,” Cambridge University Engineering Department, Tech.
Rep., 1994.

[30] A. Harris, Pro IronPython, 1st ed. Berkely, CA, USA: Apress, 2009.
[31] X. Inc., http://www.mono-project.com.
[32] Wikipedia, “Mono (software),” 2013, [Accessed 09-May-2013]. [On-

line]. Available: http://en.wikipedia.org/wiki/Mono %28software%29
[33] B. Tanner. [Online]. Available: http://code.google.com/p/rl-viz/

136 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

