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Abstract—In this paper, an investigation of the influence of
the population size on the genetic algorithm (GA) performance
for a model parameter identification problem, is considered. The
mathematical model of an E. coli fed-batch cultivation process
is studied. The three model parameters – maximum specific
growth rate (µmax), saturation constant (kS) and yield coefficient
(YS/X ) are estimated using different population sizes. Population
sizes between 5 and 200 chromosomes in the population are
tested with constant number of generations. In order to obtain
meaningful information about the influence of the population
size a considerable number of independent runs of the GA
are performed. The observed results show that the optimal
population size is 100 chromosomes for 200 generations. In this
case accurate model parameters values are obtained in reasonable
computational time. Further increase of the population size,
above 100 chromosomes, does not improve the solution accuracy.
Moreover, the computational time is increased significantly.

I. INTRODUCTION

METAHEURISTICS, such as genetic algorithms (GA),

are widely used to solve various optimization prob-

lems. The GA are highly relevant for industrial applications,

because they are capable of handling problems with non-linear

constraints, multiple objectives, and dynamic components –

properties that frequently appear in the real-world problems

[15]. Since their introduction and subsequent popularization

[16], the GA have been frequently used as an alternative

optimization tool to the conventional methods and have been

successfully applied in a variety of areas, and still find

increasing acceptance [1], [3], [7], [11], [23], [28], [29].
The metaheuristic algorithms require of setting the val-

ues of several algorithm components and parameters. These

parameters values have great impact on performance and

efficacy of the algorithm [13], [22], [30], [14]. Therefore, it is

important to investigate the algorithm parameters influence on

the performance of the developed metaheuristic algorithms.

The aim is to find the optimal parameters values for the

considered optimization problem. The optimal values for the

parameters depend mainly on i) the problem; ii) the instance

of the problem to deal with and iii) the computational time that

will be spend in solving the problem. Usually in the algorithm

parameters tuning a compromise between solution quality and

search time should be done.

For the parameter setting of metaheuristics, several auto-

mated approaches exist. These methods use i) a single step of

parameter tuning (prior to the practical use of the algorithm),

or parameter control (self adaptation to the problem being

optimized) [19]. Parameter control is well suited when one

wants good average performances across diverse problems,

but the needed computation overhead leads to less efficiency

on specific problems, compared to parameter tuning [9]. Best

known parameter tuning techniques are racing [8], sequential

parameter optimization [5] and meta-parameter setting (some-

times referred as meta-algorithm [5]).

Population sizing has been one of the important topics to

consider in evolutionary computation [2], [12], [31]. Various

results about the appropriate population size can be found

in the literature[25], [27]. Researchers usually argue that a

“small” population size could guide the algorithm to poor

solutions [17], [24], [31] and that a “large” population size

could make the algorithm expend more computation time in

finding a solution [17], [20], [21]. Due to significant influence

of population size to the solution quality and search time [27] a

more thorough research should be done for this GA parameter.

The main goal of this research is to carry out investigation

of the influence of one of the key GA parameters – population

size (number of chromosomes) – on the algorithm performance

for identification of a cultivation process model. Parameter

identification of non-linear cultivation process models is a

hard combinatorial optimization problem for which exact

algorithms or traditional numerical methods do not work

efficiently. A non-linear mathematical model of fed-batch

cultivation process of the most important host organism for

recombinant protein production — bacteria Escherichia coli –

is considered [27].

The paper is organized as follows. The problem formulation

is given in Section 2. The numerical results and a discussion

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 371–376

978-1-4673-4471-5/$25.00 c© 2013, IEEE 371



are presented in Section 3. Conclusion remarks are done in

Section 4.

II. PROBLEM FORMULATION

A. E. coli Fed-batch Cultivation Model

Application of the general state space dynamical model

[6] to the E. coli cultivation fed-batch process leads to the

following nonlinear differential equation system [27]:

dX

dt
= µmax

S

kS + S
X −

Fin

V
X (1)

dS

dt
= −

1

YS/X
µmax

S

kS + S
X +

Fin

V
(Sin − S) (2)

dV

dt
= Fin (3)

where X is the biomass concentration, [g/l]; S is the substrate

concentration, [g/l]; Fin is the feeding rate, [l/h]; V is the

bioreactor volume, [l]; Sin is the substrate concentration in

the feeding solution, [g/l]; µmax is the maximum value of the

specific growth rate, [h−1]; kS is the saturation constant, [g/l];

YS/X is the yield coefficient, [-].

The initial process conditions are [4]:

• t0 = 6.68 h,

• X(t0) = 1.25 g/l and S(t0) = 0.8 g/l,

• Sin = 100 g/l.

For the considered non-linear mathematical model of E. coli

fed-batch cultivation process the parameters that should be

identified are:

• maximum specific growth rate (µmax),

• saturation constant (kS),

• yield coefficient (YS/X ).

B. Genetic Algorithm

GA was developed to model adaptation processes mainly

operating on binary strings and using a recombination operator

with mutation as a background operator. The GA maintains a

population of chromosomes, P (t) = xt
1
, ..., xt

n for generation

t. Each chromosome represents a potential solution to the

problem and is implemented as some data structure S. Each

solution is evaluated to give some measure of its “fitness”.

Fitness of a chromosome is assigned proportionally to the

value of the objective function of the chromosomes. Then, a

new population (generation t+1) is formed by selecting more

fit chromosomes (selection step). Some members of the new

population undergo transformations by means of ”genetic” op-

erators to form new solution. There are unary transformations

mi (mutation type), which create new chromosomes by a small

change in a single chromosome (mi : S → S), and higher

order transformations cj (crossover type), which create new

chromosomes by combining parts from several chromosomes

(cj : S × . . . × S → S). After some number of generations

the algorithm converges – it is expected that the best chro-

mosome represents a near-optimum (reasonable) solution. The

combined effect of selection, crossover and mutation gives so-

called reproductive scheme growth equation [15]:

ξ (S, t+ 1) ≥

ξ (S, t) · eval (S, t) /F̄ (t)

[

1− pc ·
δ (S)

m− 1
− o (S) · pm

]

The structure of the herewith used GA is shown by the

pseudocode below (Figure 1).

begin

i = 0
Initial population P (0)
Evaluate P (0)
while (not done) do

(test for termination criterion)

begin

i = i+ 1
Select P (i) from P (i− 1)
Recombine P (i)
Mutate P (i)
Evaluate P (i)

end

end

Fig. 1. Pseudocode for GA

Three model parameters are represented in the chromosome

– µmax, kS and YS/X . The following upper and lower bounds

of the model parameters are considered [29]:

0 < µmax < 0.7,

0 < kS < 1,

0 < YS/X < 30.

Roulette wheel, developed by Holland [16] is the herewith

used selection method. The probability, Pi, for each chromo-

some is defined by:

P [Individual i is chosen] =
Fi

PopSize
∑

j=1

Fj

, (4)

where Fi equals the fitness of chromosome i and PopSize is

the population size.

To reproduce the chromosomes simple crossover and binary

mutation according to [29] are applied. In proposed genetic

algorithm fitness-based reinsertion (selection of offspring) is

used.

For the considered here model parameter identification, the

type of the basic operators in GA are as follows [29]:

• encoding – binary,

• fitness function – linear ranking,

• selection function – roulette wheel selection,

• crossover function – simple crossover,

• mutation function – binary mutation,

• reinsertion – fitness-based.
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The values of GA parameters are [29]:

• generation gap, ggap = 0.97,

• crossover probability, xovr = 0.75,

• mutation probability, mutr = 0.01,

• maximum number of generations, maxgen = 200.

C. Optimization Criterion

In practical view, modelling studies are performed to iden-

tify simple and easy-to-use models that are suitable to support

the engineering tasks of process optimization and, especially of

control. The most appropriate model must satisfy the following

conditions:

(i) the model structure should be able to represent the

measured data in a proper manner;

(ii) the model structure should be as simple as possible

compatible with the first requirement.

The optimization criterion is a certain factor, whose value

defines the quality of an estimated set of parameters. To eval-

uate the mishmash between experimental and model predicted

data the Least Square Regression is used.

The objective consists of adjusting the parameters (µmax,

kS and YS/X ) of the non-linear mathematical model function

(Eq. (1) - Eq. (3)) to best fit a data set. A simple data set

consists of n points (data pairs) (xi, yi), i = 1, 2, . . . , n, where

xi is an independent variable and yi is a dependent variable

whose value is found by observation. The model function has

the form f(x, β), where the m adjustable parameters are held

in the vector β, β = [µmax kS YS/X ]. The goal is to find the

parameter values for the model which ”best” fits the data. The

least squares method finds its optimum when the sum S of

squared residuals:

S =
n
∑

i=1

r2i

is a minimum. A residual is defined as the difference between

the actual value of the dependent variable and the value

predicted by the model. A data point may consist of more

than one independent variable. For an example, when fitting a

plane to a set of height measurements, the plane is a function

of two independent variables, x and z, say. In the most general

case there may be one or more independent variables and one

or more dependent variables at each data point.

ri = yi − f(xi, β).

III. NUMERICAL RESULTS AND DISCUSSION

All computations are performed using a PC/Intel Core i5-

2320 CPU @ 3.00GHz, 8 GB Memory (RAM), Windows 7

(64 bit) operating system and Matlab 7.5 environment.

A series of numerical experiments are performed to evaluate

the influence of the population size in GAs on the accuracy

of the obtained solution. Using mathematical model of the

E. coli cultivation process (Eq. (1) - Eq. (3)) the model

parameters – maximum specific growth rate (µmax), saturation

constant (kS) and yield coefficient (YS/X ) – are estimated. For

TABLE I
ALGORITHM PERFORMANCE FOR VARIOUS POPULATION SIZES -

OBJECTIVE FUNCTION VALUES

Population size
Objective function S

Average Best Worst

5 6.1200 4.8325 9.2958
10 5.8000 4.8548 9.6175
20 4.7660 4.4753 5.3634
30 4.6519 4.4816 5.0094
40 4.6359 4.4437 4.9669
50 4.6070 4.4488 4.8636
60 4.5886 4.4625 4.8013
70 4.5648 4.4384 4.7357
80 4.5782 4.4474 4.7463
90 4.5711 4.4496 4.7211

100 4.5406 4.4252 4.7017
110 4.5455 4.4332 4.7319
150 4.5511 4.4575 4.6717
200 4.5453 4.4359 4.7206

TABLE II
ALGORITHM PERFORMANCE FOR VARIOUS POPULATION SIZES -

COMPUTATIONAL TIME

Population size
Computational time, s

Average Best Worst

5 4.9457 4.5552 5.6004
10 6.0039 5.6316 6.3648
20 7.6482 7.3008 7.9561
30 11.1115 10.8265 11.5129
40 12.9824 12.4957 13.3537
50 14.9087 14.3989 15.5377
60 17.2766 16.6141 20.3113
70 19.7601 19.1725 20.0617
80 22.1880 21.7153 22.6669
90 24.3414 23.9150 24.8198
100 26.8644 26.4890 27.8306
110 29.7057 29.1878 30.2642
150 39.7273 39.1407 40.3887
200 52.4782 51.3087 55.8952

the identification procedures consistently different population

sizes (from 5 to 200 chromosomes in the population) are used.

The number of generations is fixed to 200. Because of the

stochastic characteristics of the applied GA series of 30 runs

for each population size are performed.

In the Table I, obtained average, best and worst objective

function values for considered population sizes, are presented.

The results observed for computational time are listed in

Table II.

The numerical experiments show that increasing the size of

the population of 5 to 100 chromosomes significantly improves

the resulting value of the objective function (average results)

– from 6.1200 to 4.5406 (see Table I). The further increase in

the size of population (more than 100 chromosomes) does not

lead to more accurate results. The subsequent increase in the

population size leads only to an increase in computational time

without improving the value of the objective function (average

results) – from 26.8644 s (100 chromosomes) to 52.4782 s

(200 chromosomes) vs. S = 4.5406 to S = 4.5453 (see

Table II).
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Fig. 2. Objective function values obtained during the 30 algorithm runs for
5, 10, 20 and 30 chromosomes in the population

For better interpretation the obtained numerical results are

graphically visualized in the next figures. On Figure 2 the

objective function values, obtained during the 30 GA runs for

5, 10, 20 and 30 chromosomes in the population, are shown.

The graphical results show that the GA could not find accurate

solution using small population size – 5 or 10 chromosomes.

It is need at least 20 chromosomes in population for achieving

a better solution. On Figure 3 the objective function values,

obtained during the 30 algorithm runs for 100, 110, 150

and 200 chromosomes in the population, are shown. Here,

it could be seen that using large population size (110, 150

or 200 chromosomes) did not result in an improvement of

the objective function values. The ANOVA test is applied and

the values of the objective function for population size equal

and more than 100 are statistically equal. Moreover, as can

be seen from Figure 5 increasing the population size result in

an acceleration of computational time. When the population

size increases it leads to increase of the needed computational

resources like time and memory which can be a problem for

large-scale tests. Therefore we can conclude that populations

with 100 individuals is optimal with respect to the value of the

objective function and the needed computational resources.

All numerical experiments for the influence of the popu-

lation size on the objective function value and on the com-

putational time are summarized in Figure 4 and Figure 5.

It can be concluded that for the considered here non-linear

cultivation model parameter identification problem the optimal

population size is 100 chromosomes in the population (for 200

generations).

In the Table III the best parameter values (µmax, kS and

YS/X ), obtained using GA with 100 chromosomes in the

population, are presented. According to [10], [18], [32] the

values of the estimated model parameters are in admissible

boundaries.

IV. CONCLUSION

A good selection of the GA parameters improve both com-

putation time and solution accuracy. Finding good parameter

values is not a trivial task and requires human expertise as
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Fig. 3. Objective function values obtained during the 30 algorithm runs for
100, 150 and 200 chromosomes in the population
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TABLE III
BEST PARAMETER VALUES OF THE MODEL (100 CHROMOSOMES)

Parameter Value

µmax, [1/h] 0.4881
kS , [g/l] 0.0120
YS/X , [-] 2.0193

well as time. In this paper, the influence of the one of key

GA parameters (population size) on the GA performance, is

studied. As a test problem, the E. coli fed-batch cultivation

model parameter identification, is considered. The three model

parameters (maximum specific growth rate (µmax), saturation

constant (kS) and yield coefficient (YS/X )) are identified. For

a fixed number of the generations (200) different population

sizes of the GA are explored. The numerical experiments are

started with 5 chromosomes in the population and consistently

increased to 200 chromosomes. The obtained results show

that the optimal population size, for the considered here case

study, is 100 chromosomes. Thus, accurate model parameters

values are obtained with reasonable computational efforts.

The use of smaller populations result in lower accuracy of

the solution, obtained for a smaller computational time. The

further increase of the population size increases the accuracy

of solution. This effect is observed to a population size of

100 chromosomes. The use of larger populations does not

improve the solution accuracy and only increase the needed

computational resources.
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