
Modelling Java Concurrency: An Approach
and a UPPAAL Library

Franco Cicirelli, Angelo Furfaro, Libero Nigro, Francesco Pupo
Laboratorio di Ingegneria del Software

Università della Calabria, DIMES

I-87036 Rende (CS) - Italy

Email: f.cicirelli@dimes.unical.it, a.furfaro@dimes.unical.it, l.nigro@unical.it, f.pupo@unical.it

Abstract—To effectively cope with correctness issues of concur-
rent and timed systems, the use of formal tools is mandatory. This
paper proposes an original approach to modeling and exhaustive
verification of Java-based concurrent systems which relies on
the popular UPPAAL model checker. More precisely, a library
of UPPAAL timed automata (TA) reproducing the semantics of
major Java concurrent and synchronization mechanisms was
developed, which fosters a smooth transition from specification
down to implementation. The library includes such common
control structures like semaphores and monitors, both classic
and Java specific. The paper describes the developed TA library
and shows its practical use by means of examples. Finally, an
indication of on-going and future work directions is drawn in
the conclusion.

I. INTRODUCTION

C
URRENT and prospective availability of powerful multi-

core (in the CPU) and many-core (in the Graphical

Processing Unit or GPU) computing architectures, and the

growing acceptance of Java as a key technology for building

time-dependent embedded systems, challenges software devel-

opers to the construction of concurrent programs which can

greatly benefit from the high-performance computing poten-

tial of such parallel machines. Concurrent algorithm design,

though, is a well-known difficult task due to human inability

to check, either through peer-review or by experimental tests,

the correctness of a parallel program where multiple threads of

control evolve simultaneously according to complex interleav-

ing of their actions. Race conditions, deadlocks, starvations

and so forth are common risks deriving from an improper use

of locks.

The work described in this paper argues that to properly

design and implement concurrent and time-dependent software

systems, the use of formal tools is mandatory which can

enable a reasoning on concurrency, which is of utmost impor-

tance both in an educational or industrial context. This paper

describes current status of a research project on modeling

and verification (M&V) of concurrent and timed systems

which was preliminarily proposed in [1]. The approach is

centered on Java as the target implementation language and

UPPAAL [2], [3] as a popular, mature and efficient timed

automata (TA) [4] based toolbox, which makes it possible to

model check complex systems [5], [6]. Although the developed

concurrent structures are Java-based, they can easily be ported

to other concurrent languages as well. More precisely, this

paper describes current shape of a UPPAAL catalog of concur-

rent control structures, which was significantly improved and

expanded with respect to the initial version reported in [1].

This paper contribution can be related to the solutions

proposed e.g. by Hamberg & Vaandrager in [7] and to the

well-known approach FSP/LTSA [8]. Our work shares with

[7] the use of the UPPAAL model checker and some com-

mon semaphore and monitor control structures. However, the

catalog described in this paper is original, more general and

efficient, and fosters different concurrent programming styles.

In addition, proposed mechanisms were mainly inspired by

Java concurrency features. The FSP/LTSA approach is based

on a process algebra specification of a concurrent system (FSP

or Finite State Processes), automatically transformed into an

equivalent Labelled Transition System (LTS) expression which

is model checked in the toolbox LTSA (LTS Analyzer). A

system specification must finally be implemented into Java.

However, the FSP specification language does not favor the

expression of FIFO based concurrent control structures (e.g.

of a semaphore). Moreover, FSP/LTSA adopts a discrete time

model which can complicate the verification of realistic mod-

els. A semantic gap exists between an FSP specification and

a corresponding implementation in Java of a system model.

Obviously, in general, an implementation cannot be proved to

be a faithful concretization of a specification, but a reduction

in the above semantic gap, as proposed in this work, can help

achieving a correct implementation.

The paper is structured as follows. First basic concepts of

UPPAAL are summarized. Then a running modeling example

is introduced. The paper goes on by describing the developed

TA catalog for modeling concurrent Java programs. Then

the library is practiced through the chosen example. The

discussion puts into evidence a general approach for modeling

a Java thread-safe class. Finally, an indication of on-going and

future work is given in the conclusion.

II. AN OVERVIEW TO UPPAAL

A system [2] is the parallel composition of multiple timed

automata modeled as template processes, which can have

parameters, can be instantiated, and consist of atomic actions.

Parallel composition means that UPPAAL is capable of ana-

lyzing all the possible action interleavings of the component

processes.

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1361–1368

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1361

TA synchronize to one another by CSP-like channels (ren-

dezvous) which carry no data values. Asynchronous communi-

cation is provided by broadcast channels where a single sender

can engage in a synchronization with a (possibly empty) group

of receivers. The sender of a broadcast signal in no case is

blocked. Locations (states) of an automaton are linked by a

set of edges (transitions). Time is handled by means of clock

variables. Clocks can only be reset and compared against to

a nonnegative integer constant. All the clocks of a model

increase automatically at the same rate of advancement of the

(hidden and dense) system time. UPPAAL extends basic TA

with integer (and boolean) variables and arrays of integers,

clocks and channels. Declarations can be global (shared by all

the TA in a model) or local to a TA. In latest versions of the

toolbox, C-like functions and structures are permitted.

Edges can be annotated by three (optional) components: (i)

a guard, (ii) a synchronization action (? for input and ! for

output) on a channel, and (iii) an update consisting of a set

of clock resets and variable assignments. The update of an

output command is executed before that of the matching input

command.

A clock invariant can be attached to a location as a progress

condition. The timed automaton can remain into the location

as long as its invariant gets not violated. UPPAAL offers

also committed and urgent locations which must be exited

immediately (without passage of time), and urgent channels

whose synchronizations must be fired as soon as possible.

Committed locations have priority with respect to urgent

locations.

UPPAAL consists of a graphical editor, a simulator and

a verifier (model checker). The simulator executes a speci-

fication and visually documents the reached execution state

by traversing the model state graph. The simulator is useful

for model debugging and for examining a diagnostic trace

(counter example) built by the verifier. For exhaustive property

assessment, the verifier must be used which tries to build the

reachability graph of the model, where execution states are

organized into equivalence classes based on time zones (clock

inequalities system).

Safety (e.g., absence of deadlocks) and bounded liveness

(e.g. an end-to-end time constraint) properties can be verified

by reachability analysis using a subset of TCTL formulas [2].

Admitted formulas (see below) refer to local state properties,

i.e. boolean expressions over predicates on locations and

integer variables and clock constraints.

E <> ϕ means “Possibly ϕ” (a state can be reached in

which ϕ holds).

A[] ϕ means “Invariantly ϕ” (in all states ϕ holds).

E[] ϕ means “Potentially Always ϕ” (a path exists where ϕ

holds in all reached states).

A <> ϕ means “Always Eventually ϕ” (equivalent to: not

E[] not ϕ).

ϕ − − > ψ means “ϕ always leads to ψ” (equivalent to:

A[] (ϕ imply A <>ψ).

III. A MODELING EXAMPLE

A classic yet representative concurrent example which

can be modeled and verified using UPPAAL is the Dining-

Philosophers problem (see e.g. [9], [10], [11]). N philosophers

(e.g. N = 5), seat around a table which has a never ending

big plate of spaghetti. Philosophers are equipped by a own

plate and a single fork (at its left). Philosophers spend their

life by thinking and, when they become hungry, try to get the

two forks at its left and its right so as to take some spaghetti

and then switching to eating. A thinking phase consumes

from 2 to 10 time units. An eating requires from 4 to 12

time units. Forks are kept by the philosopher for the whole

duration of its eating. When the philosopher finishes eating, it

puts forks (hopefully after cleaning them) on the table and

turns to thinking again. The availability of forks can now

make some adjacent colleague get them and pass to eating

as well. The problem is to ensure that the system is live (no

deadlock occurs) and that it is bounded the waiting time a

hungry philosopher experiments before achieving the forks

(absence of starvation).

Fig. 1 shows a “native” model for philosopher i, which

directly depends on the basic UPPAAL features. A global array

of boolean fork, initialized to all true, holds the status of

the fork resources. Forks relevant to the i-th philosopher have

indexes i (left) e (i + 1)%N (right). Adjacent philosophers

have identifiers respectively (i + 1)%N (left colleague) and

(i+ (N − 1))%N (right colleague).

The model is safe: a philosopher either picks both forks or

none, but it is incorrect from the point of view of starvation. A

hungry philosopher waits for forks in the WAITING location.

When the fork status changes, a signal over the broadcast

channel check is sent which allows all interested philoso-

phers to review their status and possibly switch to the EATING

location. On a system with N instances of the basic TA, the

following queries can be issued:

1. A[] !deadlock (satisfied)

2. A[] forall(i:pid) Philosopher(i).EATING imply

!Philosopher((i+1)%N).EATING &&

!Philosopher((i+(N-1))%N).EATING (satisfied)

3. Philosopher(0).THINKING-->Philosopher(0).EATING

(not satisfied)

Query 2. confirms only not adjacent philosophers can be

eating simultaneously. Native UPPAAL models tend to be

concise and efficient (in space and time) for model checking.

However, a native model has to be intuitively implemented

e.g. in Java, relying on the reasoning on the problem solution

allowed by model analysis. Ultimately, the action vocabulary

of the source model (atomic actions, broadcast signals etc.)

has to be transformed in the vocabulary of the target lan-

guage (synchronized blocks and wait/notifyAll operations, or

semaphores etc.). All of this can create problems in achieving a

correct implementation. To shorten the semantic gap between

modeling and implementation, source model design can be

driven by implementation aspects. The following describes a

library of UPPAAL TA which furnishes reusable templates for

common concurrent control structures.

1362 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 1. A UPPAAL native model for the problem of Dining-Philosophers

IV. A TA CATALOG FOR CONCURRENT SYSTEMS

An original library of UPPAAL TA was developed which

includes classic binary/counting semaphores, Java inspired

semaphore, built-in monitor structure of Java, lock/condition

monitor of Java, Hoare monitor, Active Oberon inspired mon-

itor [12], exchangers, barriers etc. Other synchronizers can be

added.

A. Semaphore structures

Fig. 2 and 3 respectively show a binary semaphore and a

counting semaphore automata whose design tries to balance

ease of use with efficient analysis.

Semaphore processes in Fig. 2 and 3 are strong in that

they ensure FIFO management of waiting processes. Template

parameters include the unique id of the semaphore, the initial

number of permits and the expected queue size. A violation

of the queue size determines the Error location is entered

and the verification is deadlocked. Classic P/V operations are

implemented as channel arrays P[.]/V[.] whose dimension

mirrors the number of semaphores used in the model. A P

operation to a semaphore s, is requested by a synchronization

P[s]!. The requesting process is assumed to follow the pat-

tern (see also Fig. 10) of putting into a global (meta) variable

proc its unique process id at the time of P[s]!. Variable

proc is used only during the atomic action of P[s]!, with

the receiving semaphore which frees it immediately by storing

the proc value in a local variable. Being a meta variable,

proc does not contribute to the state part of the model.

A further channel array GO[.], whose dimension is the

number of processes in the model, is used for blocking the

requesting process until the semaphore assigns a permit to it.

As a consequence, a P[s]! operation issued by process p

should always be followed by GO[p]? synchronization. It is

worth noting that the use of GO is implicit in the operation

P in a programming language, but in UPPAAL it serves the

purpose of transforming a strict rendezvous (P[.]!) into an

extended rendezvous which terminates when the semaphore

completes the handling of the P operation and allows the

requesting process to unblock. A V[s]! request never blocks

the requesting process and normally does not require the proc

mediation.

With respect to the proposal in [7], our semaphores use

less variables. For instance, the identity of the requesting

process during a P operation which finds green a binary

Fig. 2. BINARYSEMAPHORE automaton

Fig. 3. SEMAPHORE automaton

semaphore, is temporarily stored in the surely empty internal

queue of the semaphore. The modeler often experiments that

even by dropping one single redundant variable can avoid

state explosion during the construction of the state graph, thus

facilitating model checking.

Fig. 4 portrays the JSemaphore automaton which was

inspired by the behavior of java.util.concurrent

Semaphore class. Differences from classic semaphores con-

cern the possibility of acquiring/releasing atomically a number

of permits greater than 1. In addition, a fair parameter

can be used to request a FIFO behavior of acquire re-

quests. The use of JSemaphore rests on the channel arrays

Acquire[.], Release[.], PermitsAvailable[.],

GO[.], and the use of two global variables: proc and

perm. The perm variable stores, at the time of an

Acquire[s]! or Release[s]!, the number of involved

permits, and contains the number of available permits

of the semaphore following a PermitsAvailable[s]!

operation. A GO[p]? synchronization must follow an

Acquire[s]! or a PermitsAvailable[s]! command.

More precisely, it is at the time of GO[p]? unblocking that

perm is filled of the semaphore permits number.

It should be noted that both classic and Java specific

semaphore TA are useful in practical concurrency modeling.

Whereas a burst of release operations on a JSemaphore

instance used as a mutex, will increase the permits number

arbitrarily, in the case of a BinarySemaphore a burst of

V’s can never augment the internal count beyond 1.

B. Monitor structures

Although widely used, semaphores are often viewed as a

low level concurrent abstraction mechanism, where a misuse

FRANCO CICIRELLI ET AL.: MODELLING JAVA CONCURRENCY: AN APPROACH AND A UPPAAL LIBRARY 1363

Fig. 4. JSEMAPHORE automaton

of P/V operations can easily lead to a deadlock. Monitors,

on the other hand, represent a higher level concurrent control

structure which naturally acts as a guardian of an abstract

data type, e.g. encapsulated into a Java class. Monitors are a

key for achieving thread-safe classes by offering control over:

mutual exclusion among methods (synchronized blocks or

critical sections of code) and suspension/signaling from within

a critical section. Different kinds of monitors are defined in the

literature, which are characterized by different programming

styles and guarantees/obligations which are assigned to both

processes and the control structure.

Java adopts the Lampson&Redell [13] monitor structure

with broadcast signaling, where suspended processes in a

synchronized block are responsible of re-checking a condition

in a while-loop to see, at each awaking, if the condition

requires coming back to waiting or instead the process can

go on because the condition is satisfied. Broadcast signaling

is not blocking for the signaler process. An awaken process

has to compete in reacquiring the lock for it to actually resume

execution.

The Hoare monitor (e.g. [9], page 234) has a different

signaling mechanism: when a process (signaler) changes the

status of the data structure so that a (possibly) waiting process

(signalee) on a condition can be awaken because the condi-

tion holds, control is immediately transferred to the signalee

(together with the lock) which is thus the only process which

can then proceed. The signaler, on the other hand, is put to

wait on an urgent queue from where it gets unblocked as soon

as the monitor is up to become free.

A discussion about Lampson&Redell vs. Hoare monitors

can be found in [9] at page 240 where it is argued, besides

any runtime implication and number of context switches, that

Lampson&Redell monitor can be superior in the most general

case.

An example of a monitor which facilitates the developer by

transferring responsibilities from the programming level to the

control structure, was adopted in the Active Oberon language

[12]. Here the programmer has only to deal with the logic

Fig. 5. JMONITOR automaton

of conditions which, as long as they do not hold, prescribe a

process has to wait. Signaling and process awaking is hidden

in the control structure.

In the following, a series of developed monitor TA is

presented.

Fig. 5 depicts the JMonitor automaton which allows

to model concurrent objects according to the Java built-in

monitor. A monitor instance can be operated using such chan-

nel arrays as enter[mid][pid], exit[mid][pid],

wait[mid][pid], notifyAll[mid][pid] which ac-

commodate for the possible existence of multiple mon-

itor instances in a model. Types mid and pid re-

spectively are integer sub-ranges of unique identifiers

for monitors and processes used in the model. For in-

stance, enter[m][p]!/exit[m][p]! are used by a

process p to explicitly enter/exit to/from a synchro-

nized block based on monitor identifier m. Similarly,

wait[m][p]!/notifyAll[m][p]! serve respectively to

suspend the requesting process p until its condition holds (in

a while loop), and to awake all the processes suspended on

monitor m.

Every Java object owns a lock which can be used as

a monitor. The lock holds one implicit condition, whose

meaning is only known to the modeler/programmer. The

lock object is associated with a wait-set where both entering

processes which find the lock closed, or processes within

a synchronized block (based on the lock object) but whose

condition prescribes waiting, are put (although the two kind

of waiting processes are clearly distinguished to one another)

and suspended. Processes which are suspended for a wait

operation can only be awaken by a notifyAll opera-

tion which does not free the lock. Other processes awake

as the lock/monitor is up to be abandoned (at an exit

or wait operation). In the proposed implementation, the

wait-set is purposely realized implicitly. Processes request-

ing enter simply are blocked if the monitor is already

locked.

Processes which execute wait are supposed to move into

a location (see WAITING in Fig. 11) from which they can

only exit following a relevant notifyAll signal. Towards

1364 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 6. LOCK automaton

this, channels notifyAll[.][.] are declared as broadcast

channels.

The automaton in Fig. 5 maintains the identity of the

monitor owner, which is used both to realize reentrancy and

to check for erroneous operations, which in Java correspond

to raising an IllegalMonitorStateException.

The implicit realization of the wait-set complies with the

Java specification and lets processes which try to enter the

monitor and awaken processes to be handled non determinis-

tically and thus without any privilege. The design pattern also

requires that an awaken process from a wait location has to

explicitly compete in reacquiring the lock (this operation is

hidden in the Java wait() method of class Object). The

design pattern makes it possible to implement also a timed

wait. In this case, from the wait location (now provided of a

clock invariant) the process can also exit when the clock goes

beyond a given time limit (timeout), thus competing for the

lock before checking the condition.

In reality the Java built-in monitor also offers a notify

operation to awake one unspecific process suspended in the

wait-set. For generality reasons the automaton in Fig. 5 only

implements the notifyAll (broadcast) operation because, as

discussed e.g. in [14] at pages 181-183, the use of notify

can cause what is known as the Lost-Wakeup-Problem.

Since Java 5, the java.util.concurrent package also

provides a refinement of the built-in monitor through the

lock/condition control structure. In this version, it is possible to

introduce both a lock object and a certain number of condition

objects linked to the lock object. As a consequence, processes

can be suspended on the different conditions and the signaling

mechanism can be directed to all the processes waiting on a

certain condition.

Fig. 6 depicts the Lock automaton which realizes the

locking mechanism (and its reentrancy) and also handles the

relevant conditions.

Monitor operations are captured by two dimensional

lock[lid][pid], unlock[lid][pid] array chan-

nels, whose first dimension is related to the sub-range

of lock unique identifiers used in a model, and whose

second dimension is tied to the process unique identi-

Fig. 7. HOAREMONITOR template

fiers, and three dimensional await[cid][lid][pid],

signalAll[cid][lid][pid] array channels where the

first dimension consists of the unique condition identifiers of

a given lock identifier.

As in the case of the JMonitor automaton, the enter wait-

set and condition wait-set are realized implicitly, as well as

signalAll[cid][lid][pid] channels are declared as

broadcast channels.

The same conventions discussed for JMonitor apply here:

a waiting process on a condition c is supposed to wait into

a suitable location of the automaton, from where the process

can exit following a signalAll or a timeout. It then has

to compete for reacquiring the lock and is in charge of re-

checking the relevant condition.

As it is common, the Hoare monitor can be achieved

on top of semaphores, in particular binary semaphores. If

N are the conditions of the monitor, N + 2 semaphores

are to be used: one as mutex, another for the urgent

mechanism of signalers and N for conditions. In Fig. 7,

a slightly different but equivalent and more efficient au-

tomaton implementation is proposed which rests on N + 2
queues. The monitor can be used through the matri-

ces of channels enter[mid][pid], exit[mid][pid],

wait[cid][mid][pid], signal[cid][mid][pid],

go[pid] where mid, cid and pid are respectively the inte-

ger sub-ranges of monitor unique identifiers, relevant condition

unique identifiers, unique process identifiers. The pattern of

use does not necessarily depend on the while-loop required

by built-in Java monitor. A process waiting on a condition

is, in general, guaranteed that the condition holds when it is

signaled. The monitor is assumed to be not reentrant. As a rule,

a synchronization on the go[.]? channel must follow each

invocation (!) of enter, exit, wait or signal operation.

A simplification of the Hoare monitor is provided by the

Active Oberon monitor (see Fig. 8) where the signaling

operation is removed. The burden (and the risks) of proceeding

by an awaken process whose condition cannot possibly hold,

FRANCO CICIRELLI ET AL.: MODELLING JAVA CONCURRENCY: AN APPROACH AND A UPPAAL LIBRARY 1365

Fig. 8. AOMONITOR template

are eliminated by the control structure which manages an

implicit signaling and the transfer of the lock to an awaken

process. Therefore, the resultant modeling/programming style

becomes more concise with respect to the Hoare monitor.

The AOMonitor automaton (Fig. 8) is supposed

to be reentrant. Its use depends on the matrices of

channels enter[mid][pid], exit[mid][pid],

await[cid][mid][pid], go[pid]. A go[.]?

synchronization is required after each invocation (!) of

enter, exit or await operation. Any waiting room is

realized as a FIFO queue.

The modeler has to introduce a global bool

eval(cid,mid) function, model specific, which receives

a condition id and its monitor id and returns true if the

logical boolean expression which is associated with the given

condition of the given monitor, holds; otherwise eval()

returns false.

The findActivatable(mid) function used in Fig. 8

scans the list of conditions of the given monitor and returns,

if there is one, the identifier of the first condition which is

found satisfied; the function returns -1 if the search fails. The

result of findActivatable is used to transfer the control

(together with the monitor lock) to the oldest process waiting

on the given condition.

In order to avoid starvation, the control structure maintains

the last index of success on the list of conditions so as to start

the next lookup from the next position and cyclically.

V. PUTTING THE LIBRARY INTO ACTION

Usefulness of the developed library was assessed through

several examples. In the following, the use of the library

is demonstrated by applying it to the Dining-Philosophers

problem. Modularity issues suggest separating the application

processes from the details of concurrency control which in

Java are embedded into a thread-safe class. Therefore it is

convenient to organize the Philosopher model as shown in

Fig. 9 and introducing a Manager model which exposes

Fig. 9. The PHILOSOPHER automaton

Fig. 10. Manager automaton based on semaphores

a suitable interface to philosopher processes and hides the

synchronization constraints. In particular, the channel arrays

getForks[pid], putForks[pid] e ok[pid] are as-

sumed to define the Manager interface. Since each philoso-

pher can block in the manager model, N identical instances of

the Manager are created, each one corresponding to a distinct

philosopher. All the manager instances, though, share global

data e.g. the boolean array fork[.] about free/occupied

status of forks. Both Philosopher and Manager have

one single parameter i (of type pid) which furnishes the

identity of the philosopher. Following a getForks[i]!

or putForks[i]! operation, the philosopher expects an

ok[i]? synchronization confirming that the requested op-

eration was carried out. Again, in a Java implementation the

ok signal is redundant because the extended rendezvous is

automatically provided by getForks/putForks methods

of the Manager class.

A. Manager based on semaphores

In Fig. 10 is depicted a Manager automaton which uses

N + 1 binary semaphores.

One semaphore is used for mutual exclusion (mutex,

initialized to 1). The remaining N semaphores, one per

philosopher, are waiting rooms or conditions (always kept

to 0). Condition identifiers coincide with philosopher iden-

tifiers. The model in Fig. 10 uses two further boolean arrays:

w[pid] and eat[pid]. The former serves to know if a

1366 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Fig. 11. Manager automaton based on Java monitor

given philosopher is waiting for forks. The latter is used

for implementing a simple strategy for avoiding starvation.

Philosophers are supposed to eat at turns. A turn finishes

when all philosophers have eaten. A getForks request is

not responded either because some fork is unavailable or the

philosopher has already eaten in the current turn. The latest

philosopher who eats resets the array eat so as to start a new

turn.

All the three queries suggested in section III, are now

satisfied. Query 3 concerning proving absence of starvation

deserves some further comments. It is a liveness property.

UPPAAL is most apt to verify safety and bounded liveness

properties. General liveness can be difficult to assess. In a

normal location, in fact, an automaton can stay an arbitrary

amount of time. To help checking liveness properties, Ur-

gent/Committed locations or urgent channels should be used.

In Fig. 10, the use of committed locations was preferred.

A bounded liveness property for the model of Fig. 9 and

Fig. 10 concerns the worst case amount of time a philosopher

stays in the WAITING location of its manager, waiting for the

other colleagues to complete the current turn. Using N = 5
philosophers, and adding a decoration clock y to the Manager

model, which is reset at each getForks[i]? request, the

following query was issued to the UPPAAL verifier:

A[] Manager(0).WAITING imply Manager(0).y<=64

The query was found satisfied, but changing the upper

bound to 63 the query no longer holds. This result corresponds

to a (10− (2 + 4)) ∗ (N − 1) remaining thinking time for the

other partners, and then a 12 ∗ (N − 1) worst case eating time

of remaining colleagues.

As a final remark, except for the GO[pid] and ok[pid]

channels which are required only in the UPPAAL models, the

automata in Figures 9 and 10 can directly be expressed in Java

code.

B. Manager based on JMonitor

Using the built-in Java monitor, a Manager model like

that shown in Fig. 11 can be achieved. With respect to the

semaphore based solution, it requires less space and time for

the analysis.

A similar model to that in Fig. 11 was built using the

lock/condition monitor, which is slightly more efficient due

Fig. 12. Manager automaton based on lock/condition monitor

Fig. 13. Manager based on the Hoare monitor

to reduced partial order following a signaling operation. The

new model is portrayed in Fig. 12.

It should be noted that since enter/lock requests can be

delayed by the monitor being already locked, such operations

should not exit from urgent locations. In addition, because of

broadcast signaling, there is no need to pay for the w[pid]

boolean array used in the semaphore based solution.

C. Manager based on Hoare monitor

It was interesting achieving a Hoare monitor based model

for manager, to compare expressiveness and guarantees during

signaling with Java built-in or lock/condition based versions.

The model is portrayed in Fig. 13. As expected, this particular

example does not allow to exploit the normal guarantees of

the Hoare monitor: i.e. that a signaled process waiting on

a condition is sure its condition holds when awaken by a

signal. In fact, putting forks is only a partial fulfillment for the

precondition of adjacent philosophers to be able to get forks.

As a consequence, without going to put much burden on the

signaler processes, the right solution consists in envisioning

the while-loop also in a signalee so as to come back to waiting

if the precondition for awaking does not actually hold. Without

the while-loop, UPPAAL confirms the model is incorrect.

Model of Fig. 13 is more expensive in terms of space and

time for verification with respect to models in Fig. 11 and Fig.

12. This is due to the use of queues for conditions and related

bookkeeping data.

D. Manager based on Active Oberon monitor

This version of the Manager model is illustrated in Fig. 14.

FRANCO CICIRELLI ET AL.: MODELLING JAVA CONCURRENCY: AN APPROACH AND A UPPAAL LIBRARY 1367

Fig. 14. Manager automaton based on the Active Oberon monitor

The following is the eval() function which was prepared

for working with the Dining-Philosophers problem:

bool eval(cid c, mid m){

if(!eat[c]&&fork[c]&&fork[(c+1)%N])

return true;

return false;

}//eval

The solution in Fig. 14 is the most concise and easy to fol-

low from the modeler/programmer point of view. Its analysis

performance, though, is similar to the Hoare monitor version

because the model has almost the same data requirements.
Verification experiments with N = 5 philosophers were

carried out on a Win 8, 12GB, Intel Core i7-3770K, 3.50GHz.

To figure out efficiency of the various models, the query which

checks for the absence of deadlocks lasts in the worst case in

about 25sec with a RAM peak of about 100MB.

VI. CONCLUSION

The UPPAAL library of timed automata (TA) proposed in

this paper is effective for modeling and verification (M&V)

of Java-based concurrent and timed programs. It includes

both semaphores and monitor control structures. The Java

built-in monitor or its refinement based on lock/condition

are often preferable both from the M&V perspective and

the implementation viewpoint. The Active Oberon monitor

offers the most concise level for modeling and implementing

a thread-safe class.
Being not primitive in Java, Hoare monitor and Active

Oberon monitor classes were achieved on top of semaphores.

By the way, a BinarySemaphore class was also realized

which is weakly bisimilar to the automaton in Fig. 2.
A nondeterministic point e.g. in the Hoare monitor class

accompanies the implementation of the wait operation which

in general must free the lock and put the requesting process to

sleep. Whereas UPPAAL atomic actions hide the problem (e.g.

through a committed location), in a concrete implementation

the alea point could be handled by ensuring that before

relinquishing the lock the wait operation starts a new time-

slice. This could be achieved by using the Thread yield()

method. However (see discussion in [15] at page 287) the

yield() method can often behave as a no operation. A better

provision could be a Thread.sleep(1) if 1 millisecond is

the time resolution of the underlying operating system.

The library is currently in use in an undergraduate course on

systems programming and the response of students is positive.

A major benefit of the catalog and of the UPPAAL model

checker rests on the possibility of favoring a reasoning on

concurrency.

On-going and future work are geared to:

• Optimizing the library so as to improve the efficiency of

model checking activities.

• Extending the library with other concurrency control

structures, e.g. based on the concept of software trans-

actional memory [14] which delivers a different and

attractive style of concurrent programming.

• Extending the approach based on the UPPAAL model

checker to M&V of lock-free concurrent objects [14]

which are often perceived as a grand challenge for an

exploitation, in parallel and embedded software systems,

of the computing potential of current and future multi-

core/many core machines.

ACKNOWLEDGMENT

Authors are grateful to Christian Nigro for his contribution

during the design and realization of the UPPAAL library

proposed in this paper and its support in Java.

REFERENCES

[1] F. Cicirelli, L. Nigro, and F. Pupo, “Modelling and verification of con-
current programs using UPPAAL,” in Proc. of 25th European Conference

on Modelling and Simulation, Krakow, Poland, 2011, pp. 525–533.
[2] R. Alur and D. Dill, “A theory of timed automata,” Theoretical Computer

Science, vol. 126, no. 2, pp. 183–235, 1994.
[3] G. Behrmann, A. David, and K. Larsen, “A tutorial on UPPAAL,” in

Formal Methods for the Design of Real-Time Systems, ser. LNCS 3185,
M. Bernardo and F. Corradini, Eds. Springer, 2004, pp. 200–236.

[4] “UPPAAL, on-line,” www.Uppaal.org.
[5] F. Cicirelli, A. Furfaro, and L. Nigro, “Model checking time-dependent

system specifications using Time Stream Petri Nets and UPPAAL,”
Applied mathematics and computation, vol. 218, no. 16, pp. 8160–8186,
2012.

[6] F. Cicirelli, A. Furfaro, L. Nigro, and F. Pupo, “Development of a
schedulability analysis framework based on PTPN and UPPAAL with
Stopwatches,” in Proc. of the IEEE/ACM 16th International Symposium

on Distributed Simulation and Real Time Applications (DS-RT’12),
Dublin, Ireland, 2012, pp. 57–64.

[7] R. Hamberg and F. Vaandrager, “Using model checkers in an introduc-
tory course on operating systems,” SIGOPS Oper. Syst. Rev., vol. 42,
no. 6, pp. 101–111, 2008.

[8] J. Magee and J. Kramer, Concurrency: state models & Java programs.
John Wiley & Sons, Ltd., 2006.

[9] W. Stallings, Operating Systems: Internals and Design Principles.
Upper Saddle River, NJ, USA: Prentice Hall Press, 2005.

[10] A. Silberschatz, P. Galvin, and G. Gagne, Operating System Concepts,
8th ed. Wiley Publishing, 2008.

[11] A. S. Tanenbaum, Modern Operating Systems. Upper Saddle River,
NJ, USA: Prentice Hall Press, 2001.

[12] P. Reali, “Active oberon language report,” http://bluebottle.ethz.ch/
languagereport/index.html, 2002.

[13] B. Lampson and D. Redell, “Experience with processes and monitors in
Mesa,” in Proc. of the seventh ACM symposium on Operating systems

principles, Pacific Grove, California, USA, 1979, pp. 43–44.
[14] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming,

revised version of first ed. Elsevier Science Limited, 2012.
[15] B. Joshua, Effective Java, 2nd ed. Addison Wesley, 2008.

1368 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

