oS

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1483-1490

Visual Programming of MPI Applications:
Debugging and Performance Analysis

Stanislav Bshm, Marek Béhalek, Ondiej Meca, Martin Surkovsky
Department of Computer Science
FEI VSB Technical University of Ostrava
Ostrava, Czech Republic
stanislav.bohm @vsb.cz, marek.behalek @vsb.cz, ondrej.meca@vsb.cz, martin.surkovsky @vsb.cz

Abstract—Our research is focused on the simplification of
parallel programming for distributed memory systems. Our
overall goal is to build a unifying framework for creating,
debugging, profiling and verifying parallel applications. The key
aspect is a visual model inspired by Colored Petri Nets. In this
paper, we will present how to use the visual model for debugging
and profiling as well. The presented ideas are integrated into our
open source tool Kaira.

I. INTRODUCTION

ARALLEL computers with distributed memory have re-
Pcently become more and more available. A lot of people
can participate in developing software for them, but there
are well-known difficulties of parallel programming. There-
fore for many non-experts in the area of parallel computing
(even if they are experienced sequential programmers), it
can be difficult to make their programs run in parallel on
a cluster computer. The industrial standard for programming
applications in the area of distributed memory systems is
Message Passing Interface (MPI)'. It represents a quite low-
level interface. There are tools like Unified Parallel C? that
simplify creating parallel applications, but the complexity
of their development lies also in other supportive activities.
Therefore, even an experienced sequential programmer can
spend a lot of time learning a new set of tools for debugging,
profiling, etc.

The overall goal of our research is to reduce complexity in
parallel programming. We want to build a unified prototyping
framework for creating, debugging, profiling and formally
verifying parallel applications, where a user can implement
and experiment with his/her ideas in a short time, create a real
running program and verify its performance and scalability.
The central role in our approach is a visual programming
language (based on Petri nets) that we use for modeling
developed applications. In this paper, we present how to use
the same model for debugging and profiling. The presented
ideas are implemented in Kaira?, a tool that we are developing.

The work is partially supported by: GACR P202/11/0340, the European
Regional Development Fund in the IT4Innovations Center of Excellence
project (CZ.1.05/1.1.00/02.0070)

Uhttp://www.mpi-forum.org/

Zhttp://upc.Ibl.gov/

3http://verif.cs.vsb.cz/kaira

978-1-4673-4471-5/$25.00 (© 2013, IEEE

II. TooL KAIRA

This section serves as an overview for our tool Kaira; for
more details see [1], [2]. Our goal is to simplify the develop-
ment of MPI parallel applications and create an environment
where all activities are unified under one concept.

The key aspect of our tool is the usage of a visual model.
In the first place, we have chosen the visual model to obtain
an easy and clear way how to describe and expose parallel
behavior of applications. The other reason is that a distributed
state of the application can be shown through such visual
model. The representation of an inner-state of distributed
applications by a proper visual model can be more conve-
nient than traditional ways like stack-traces of processes and
memory watches. With this feature, we can provide visual
simulations where the user can observe a behavior of devel-
oped applications. It can be used for incomplete applications
from an early stage of the development. In a common way of
developing MPI programs, it often takes a long time to get
the developed application into a state where its behavior can
be observed. In context of this paper, the visual model is also
useful for debugging and a performance analysis as will be
demonstrated later.

On the other hand, we do not want to create applications
completely through the visual programming. Sequential parts
of the developed application are written in the standard
programming language (C++) and combined with the visual
model that catches parallel aspects and communication. We
want to avoid huge unclear visual diagrams; therefore, we
visually represent only what is considered as “hard” in par-
allel programming. Ordinary sequential codes are written in
a textual language. Moreover, this design allows for easy
integration of existing C++ codes and libraries.

It is important to mention that our tool is not an automatic
parallelization tool. Kaira does not discover parallelisms in
applications. The user has to explicitly define them, but
they are defined in a high-level way and the tool derives
implementation details.

Semantics of our visual language is based on Coloured Petri
nets (CPNs)[3]. Petri nets is a formalism for the description
of parallel processes. They also provide well-established
terminology, a natural visual representation for visual editing

1483

1484

job job@job_id(job) % process_count()
Distribute »

JobType

JobType

job

results@0

[bulk, guard(size == param::JOBS_COUNT)] results ResultType

Fig. 1. The example model

of models and their simulations. Modeling tool CPN Tools*
was also the great inspiration for us (especially how to
visualize the model).

To demonstrate how our model works, let us consider the
model in Figure 1. It presents a problem where some jobs are
distributed across computing nodes and results are sent back
to process 0. When all the results arrive, they are written into
a file. Circles (places in terminology of Petri nets) represent
memory spaces. Boxes (transitions) represent actions. Arcs
run from places to transition (input arcs) or from transition
to places (output arcs). The places contain values (tokens).
Input arcs specify what tokens a transition needs to be enabled.
An enabled transition can be executed. When a transition is
executed, it takes tokens from places according to input arcs.
After finishing the computation of the transition, new tokens
are placed into places according to output arcs. In CPNs places
store tokens as multisets, in our approach we use queues.

A double border around of a transition means that there is a
C++ function inside and it is executed whenever the transition
is fired. A double border of a place indicates an associated C++
function creating the place’s initial content. Arcs’ inscriptions
use C++ enriched by several simple constructions. A compu-
tation described by this model runs on every process. Tokens
can be transferred between processes by expressions after “@”’
symbol on output arcs.

As a more advance example, we use the heat flow problem
on a cylinder. We will use a version of this problem where
the body is discretized by a grid depicted in Figure 2.
The implementation of this problem in Kaira is depicted in
Figure 3. The transition Compute executes single iteration of
the algorithm. It takes a process’ part of the grid and two rows,
one from neighbor above and one from below. It updates the
grid and sends top and bottom rows to neighbors. When the
limit of iterations is reached then the results are sent to process
0 where they are written. The init area (depicted as the blue
rectangle) is used to set up initial values of places not only
on process 0 but over specified processes (all processes in our
case). The measurements of this program and a comparison to
the sequential version are part of Section V.

“http://cpntools.org/

PROCEEDINGS OF THE FEDCSIS. KRAKOW, 2013

Heat flow problem: Parallelization:

(777777777 RN
(17771777

T/

“. Exchanges of rows
in each interation

1) = Tiw—1,5) () + Tz 41,5)+ T2,y — 1) () + Tz y 1) (£)
= 1

Fig. 2. The heat flow problem on a cylinder and the used method of
parallelization

ca::range(0, ctx.process_count())

down@to_down(ctx)

std::vector<double>

¢ < param::LIMIT()

param::LIMIT()

Local data -

DoubleMatrix

Down row

std::vector<double>

up@to_up(ctx)

Send result

data

|, [bulk, origin, guard(size == ctx.process_count())] results
Write results I‘

Fig. 3. The implementation of the heat flow problem in Kaira

data@0

DoubleMatrix

III. SIMULATIONS AND RECORDS OF GENERATED
APPLICATIONS

In this section, we will introduce two crucial features:
simulations and tracing of generated applications. Both can
be used for debugging and the latter for profiling. Later we
will describe two other features and we will also discuss the
drawbacks of our approach.

A. Simulations

Besides generating standalone parallel applications from the
model, the user can also run the developed application in the
simulator. The main task of the simulator is to expose an
inner state and it allows for controlling a run of the generated
application. The inner state is shown in the form of labels
over the original model (see Figure 4). The three types of
information are depicted:

o Tokens in place (The state of memory)
« Running transitions (The state of execution)

STANISLAV BOHM ET AL.: VISUAL PROGRAMMING OF MPI APPLICATIONS

— tokens

ca::range(0, ctx.process_count())

‘ Local data

DoubleMatrix

Down row

std::vector<double>
2->1(48
data /
running transitions J

N
[bulk, origin, guard(size == ctx.process_count())] results/
Write results ||«

DoubleMatrix

30 o+

i
param::LIMIT()
»

up@to_up(ctx)

Send result
i

data@0

Fig. 4. The model in the simulator

o Packets transported between nodes (The state of the
communication environment)

It completely describes a distributed state of the application.
The user can control the behavior of the application by the
three basic actions:

« Start an enabled transition
o Finish a running transition.
« Receive a packet from a network.

By executing these three types of actions, the application
can be brought to any reachable state. The model naturally
hides irrelevant states during sequential computations and
only aspects important to parallel execution are visible and
controllable.

This approach also gives us the possibility to observe
the behavior of the application in a very early state of the
development without any additional debugging infrastructure.
For example, we can see which data are sent to another process
even if there is no implementation of the receiving part.

The user has complete well-formed control of the appli-
cation in the simulator; therefore, the application can be
put into an interesting state (and the user can observe the
consequences) even if the application rarely reaches such state.

B. Tracing

An application developed in Kaira can be generated in the
tracing mode, where activities of a run of the application are
recorded into a tracelog. When the application finishes its run,
the tracelog can be loaded back into Kaira and used for the
visual replay or for statistical summaries. Generally, issues
with such post-mortem analysis can be categorized into these
basic groups: selection what to measure, instrumentation and
presentation of results. Such tracelogs can be useful both for
profiling and debugging.

In the case of debugging, we usually want to collect detailed
information of the run for the reconstruction of the cause of
the problem. In the case of profiling, we want to discover
performance issues and therefore need to measure a run with

time characteristics as close as possible to real runs of the
application. But the measurement itself creates an overhead
that devalues the gathered information about performance.
Therefore, in both cases, it is important to specify what to
store in the tracelog. In common profilers, specifications of
measurements are usually implemented as a list of functions
that we want to measure/filter out. But it can be a non-trivial
task to assemble such a list, especially in the case when we
use some third-party libraries with an unclear purpose to the
user. It often needs some experience to recognize what can be
safely thrown away.

In Kaira, the user specifies what is measured in terms of
places and transitions. It is done just by placing labels in
a model (Figure 6). The tracing of transitions enables the
recording of information about their execution. The tracing
of places enables the recording of information about tokens
that go through them. The user can easily control what to
measure and it is obvious what information will be gained
or lost after switching on or off each setting. Moreover, our
approach also allows for simply enriching the model by more
detailed tracing. Places and transitions can trace additional
data. It is implemented as connecting functions to places and
transitions.

The usage of this feature is demonstrated in the experiment
in Section V. The experiments also demonstrate tracelog sizes
so even if we trace all transitions and names of all tokens in
places (that is useful for debugging), sizes of tracelogs are
usually manageable. The recording of high-level information
from the perspective of our visual model is far from recording
every function call in the program.

The second task is the instrumentation, i.e. putting the
measuring code inside the application. In our case, Kaira can
automatically place the measuring codes during the process
of generation of the parallel application. Parallel and com-
munication parts are generated from the model, therefore we
know where are interesting places where to put measuring
codes. By this approach, we can obtain a traced version of an
application that does not depend on the complier or computer
architecture. In contrast to a standard profiler or debugger for
generic applications, we do not have to deal with a machine
code or manual instrumentation.

As we already said, the results are presented to the user
in the form of a visual replay or as statistical summaries. In
replay, the data stored in tracelog are shown in the same way
as in the simulator, thus as the original model with tokens in
places, running transitions and packets on the way (Figure 5).
The user can jump to any state in the recorded application.
Our tool also provides statistical summaries and standard
charts like a normal profiler, and additionally, information is
presented using the terms of the model. For example, the
utilization of transitions (Figure 10), the numbers of tokens
in places, etc.

C. Combination of simulation and recording

The useful feature for debugging parallel applications is
a technique usually called deterministic replay [4]. Existing

1486

Kaira -0
Project View Edit Build Simulation Tracelog Analysis Others

Welcome | Tracelog %

Replay 2 || <<|04749/16013 >> | === 3/0 0:00:01:969017468 Fin

Views

All ca:range(0, ctx.process_count())

0
1
2
3

DoubleMatrix@0
DoubleMatrix@1
DoubleMatrix@3

Fig. 5. The screenshot of a replay.

-

int get rank(Matrix &m);

ca: : token_name get_rank

(std::string) (int)

Fig. 6. Tracing labels, from left: Tracing names of tokens that arrive into the
place; tracing values obtained by applying a function to each token arriving
to this place; tracing transition firing.

tools use the data-replay, the order-replay or some combina-
tion of both approaches. In the data-replay approach, every
communication message is recorded and a single process can
be rerun with the same communication as was recorded. The
advantage is that it is feasible even for instances with many
processes. The disadvantage is huge tracelogs and it can be
hard to discover errors that need an overall context. In the
order-replay approach, we store the ordering of incoming
messages. We get smaller tracelogs, but we must simulate all
processes during the replay.

In Kaira we have implemented the order-replay approach in
the form of control sequences. This feature naturally connects
the infrastructure of our simulator with tracing abilities. A
control sequence is a list containing actions. Each action is
one of three basic types from Section III (starting and finishing
transitions and receiving packets). Actions contain information
about the process and the thread where the activity is executed,
the transition’s name (in the case of transition firing) and
the source process of the message (in the case of receiving
packets). When we store this information we are able to repeat
the run of the application.

Sequences are generated in the simulator or they are ex-
tracted from tracelogs. The simulator can replay sequences
and get the application into the desired state. Because the
control sequence and the model are loosely connected, the

PROCEEDINGS OF THE FEDCSIS. KRAKOW, 2013

utilization of process 2

; anomaly B

go to the problem in the replay

O—_-0O

one step before transition execution

generate
the control sequence

[asmall modification of the model &
load the control sequence into the simulation

Vi

®
N

Fig. 7. The use case of control sequences

sequence remains relevant even if we make some changes into
the model. The usefulness can be exposed by the following
scenario: The user finds a problem by a visual replay or by
summaries obtained from a tracelog. Then a sequence that
brings the application exactly one step before the problem can
be exported from the tracelog. Then the model can be enriched
by more precise debugging outputs. For example, it can be a
printf added into a transition’s code or an extra debugging
transition. Now we can get the application into the state before
the problem by replaying the sequence in the simulator. In this
situation, we have the possibility to obtain more information
about the problem because of the modified version of the
application. This scenario is captured in Figure 7.

D. Other features

Our model allows implementing two additional features
that can be used for debugging or the performance analysis.
Because we control how parallel aspects are generated, we
can always generate the sequential application from the
model. Such generated application works like the original
one but it is performed exactly by one thread independently
on how many processes are specified. This feature does not
need any change in the model. It enables easy profiling and
debugging of sequential parts of developed programs by the
tools designed for sequential applications without problems
caused by threads or MPIL.

The other feature is the possibility to connect into a running
application. We can start a generated application in a mode
where the application listens on a TCP port. The application
normally runs but when we connect to this port, the run is

STANISLAV BOHM ET AL.: VISUAL PROGRAMMING OF MPI APPLICATIONS

paused and the inner state of the application is displayed in
the simulator. The application can be also controlled in the
same way. When the connection is closed, the application
continues computing. This way we can easily debug situations
when the application hangs up or we can just observe how far
the computation is. But in the current implementation there
are some limitations. This feature works only for applications
generated with the thread backend (i.e. it does not work for
MPI applications) and after the connection to the application,
the control is passed to the user after finishing all current
running transitions.

E. Drawbacks

Here, we want to discuss the drawbacks of our approach.
The most obvious issue is that our approach does not give us
any tool to debug or profile codes in places and transitions.
We can say what data were on the input of the transition, what
was the output. We can get the application into a state before
or after execution of the transition or profile the transition as a
whole. But we cannot observe, debug or profile the inner state
of transition executions. This can be a serious problem and
may force the user to use other tools in some situations. On the
other hand the codes in transitions are sequential codes without
any communication so they can be easily profiled or debugged
separately. It can be further simplified by the fact that we can
always generate the sequential version of the program.

Other issue is connected with our current implementation.
We have focused on minimizing the performance impact
of the debugging and profiling infrastructure on generated
applications. On the other hand, our tool itself was not subject
of optimizations, and therefore, processing a huge tracelog or a
long control sequence can be time consuming and demanding
on memory. Therefore, our infrastructure is not yet suitable
for debugging or profiling long running applications. Some
numbers to this topic are provided in Section V.

IV. RELATED WORKS

In this section, we want to compare Kaira with selected
tools for profiling and debugging. For the comparison with
other types of tools we refer to [2].

Different approaches have been proposed for debugging
MPI applications. More about debugging in MPI environment
can be found in [5], [6].

First, a MPI application runs on each computing node like
a normal program; therefore, we can use standard tools like
GDB’ (for debugging) or Callgrind® (for profiling). This ap-
proach is sufficient to find some types of bugs or performance
issues, but the major disadvantage is completely separated
instances of the supportive tool for each process. It is not easy
to control more debugger instances simultaneously or merge
several profiler’s outputs.

There are specialized debuggers and profilers to overcome
this issue. For debugging there are tools: Distributed Debug-

Shttp://www.gnu.org/software/gdb/
Shttp://valgrind.org/docs/manual/cl-manual.html

ging Tool’ or TotalView 8. They provide the same functionality
like ordinary debuggers (stack traces, breakpoints, memory
watches), but they allow to debug a distributed application
as a single piece. Besides these tools, there are also non-
interactive tools like MPI Parallel Environment’. Tt provides
additional features over MPI, like displaying traces of MPI
calls or real-time animations of communication. These tools
are universal in the sense that they can debug any application.
In our approach, we can only debug applications created in
Kaira. On the other hand, we are able to provide the debugging
infrastructure on a higher level of abstraction than source
codes.

To deal with hundreds of processors, there are also au-
tomatic debugging tools. These tools usually use the static
analysis of source codes to discover misuse of MPI calls (MPI-
Check) or the analysis based on the state space exploration
(ISP [7]).

As it was mentioned in previous sections, a potentially
powerful technique for debugging of MPI applications is the
deterministic replay. An example of a tool implementing this
approach is MPIWiz [4].

In the case of profilers for parallel applications, one of the
most successful freely available tools is Scalasca [8]. The big
advantage is the ability to work in an environment of thousands
of processors. Scalasca implements the direct instrumentation
approach, it provides data summarizations at a runtime or
traces for postmortem analyses. In the tracing mode, Scalasca
records performance related events. Summarized performance
profiles are based on functions call paths. In both cases,
resulting reports can be interactively explored in the graphical
browser.

The similar tool to Scalasca is TAU (Tuning and Analysis
Utilities) [9]. It is capable of gathering performance infor-
mation through instrumentation of functions, methods, basic
blocks, and statements. From this perspective, both Scalasca
and TAU adopt similar strategies. The main difference is in
the low level measuring systems.

There are also different tools that focus mainly on the
visualization of traced data like Vampir [10] and Paraver [11].
These tools are able to import tracelogs produced by others
and the user is able to browse traced data. Usually, a set of
filters can be specified to remove unnecessary details.

V. EXPERIMENTS

This section contains two example programs. Their purpose
is to demonstrate features mentioned in Section III. All pro-
grams were executed on a machine with 8 processors AMD
Opteron/2500 (32 cores in total) and compiled with Intel
Compiler at the optimization level —02.

A. Basic measurements

As the first example, we show results for the heat flow prob-
lem introduced at the end of Section II. In this example, we

Thttp://www.allinea.com/products/ddt/
8http://www.roguewave.com/
9http://www.mcs.anl.gov/research/projects/perfvis/software/MPE/

1487

1488

show a comparison between the hand-made solution profiled
by Scalasca and the version created and profiled in Kaira. Both
implementations are distributed together with Kaira.

The implementations share the same computation code. It
is about 380 LOC (lines of code without comments). The
solution in Kaira contains 25 LOC in transitions and places
and 10 LOC for binding the external types. The hand-made
solution contains 100 LOC, which are not shared with the
solution in Kaira. The following experiments were executed
on the instance of the size 6400 x 32000 and 300 iterations.

All places and transitions are traced except for places Up
row and Down row. The standard function writing token name
for the type std: : vector<double> stores all values from
the vector into the tracelog. (6400 doubles for places Up
row and Down row). In our example, we do not need such
information, so we can change this writing function to store a
smaller amount of data or we can just switch off the tracing
(as we have done here). In the case of the hand-made solution
profiled by Scalasca, 5 patterns in the filter file was used
(23 functions were filtered out). These numbers are small,
because of simplicity of the example. For illustration, the code
generated by Kaira contains more internal functions and when
it is profiled in Scalasca, we had to use 14 patterns in the
filter file and 382 functions were filtered out. Without the
filter file, Scalasca produces extremely huge logs (in the order
of gigabytes) and it deforms runs of the application, because
traced data are very often flushed on the disk.

Table I shows the comparison between the solutions gener-
ated by Kaira and the handmade solution. In both cases, the
measurements were done without writing the resulting matrix
into the file. Our problem scales well up to 16 processors, then
it reaches limits of used computer.

In case of Scalasca we have instrumented all source files.
This instrumentation adds some overhead. It can be improved
by additional separation of computation code and communi-
cation, but it cannot be always possible. For example when
we use an external library.

Figure 8 shows that solution produced by Kaira is compa-
rable to handmade solution and our tracing introduces only
a small overhead. For this small number of processors, the
measured times are better than the handmade solution profiled
by Scalasca. Scalasca is designed for thousands of processors;
therefore it is not well suited for this experiment. But our goal
was to show that Kaira tracing is comparable (in the scale of
tens of processes) with existing mature parallel profilers and
Scalasca is a well-established tool in this area.

Figure 9 shows the grow of tracelog sizes. Kaira tracelogs
are bigger but still comparable. In Kaira case, they contain
information for a replay, not only profile data.

B. Advanced measurement

In this section we will demonstrate how a tracelog can be
enriched by custom data and how tool R'® can be combined
with Kaira to obtain various statistics. R is one of the most

0http://www.r-project.org

PROCEEDINGS OF THE FEDCSIS. KRAKOW, 2013

o
S - —A— Handmade
3] —e— Kaira
— o | —— Handmade + Scalasca
L g 4 —a— Kaira + tracing
® A
E ,
= o
o _|
o
o

Number of processes

Fig. 8. The comparison of running times between the hand-made solution and
the solution generated by Kaira for the heat flow example (based on Table I).

o
g -
& —A— Scalasca
—e— Kaira
o
o
= S
o Te)
o
& o
© —
= &
S
o
=
17}
o _|
Te)
o _]
(s}

T T T T T T
1 2 4 8 16 32

Number of processes

Fig. 9. The comparison of tracelog sizes between the handmade solution
traced by Scalasca and Kaira’s solution traced by Kaira (based on Table I).

popular statistical tools. Kaira can export collected data from
a tracelog in a form of a table that can be loaded into R.
Each row of this table corresponds to the three basic events
(explained in Section III) and their subevents (token add, token
removed, packet sent). In Kaira’s distribution, there is a simple
script for R that provides basic operations over such table. It is
often easy to extract useful information about the performance
from data in this form.

As the example, we have chosen the Ant Colony Opti-
mization (ACO) algorithm that is used to solve Traveling
Salesman Problem (TSP). There are many ways to parallelize
this algorithm; the presented solution is described in more
detail in the paper [12]. The visual model for the solution is
depicted in Figure 11. We will show how to get specific data
from the application’s run and present them with the help of R.

Processes

STANISLAV BOHM ET AL.: VISUAL PROGRAMMING OF MPI APPLICATIONS

TABLE 1
MEASURED VALUES FOR THE HAND-MADE SOLUTION AND KAIRA’S SOLUTION OF THE HEAT FLOW EXAMPLE
Number of processes 1 2 4 8 16 32
Handmade solution [s] 497.39 249.58 134.39 70.98 57.88 73.38
Handmade solution + Scalasca [s] | 3020.89 | 1525.62 | 763.63 | 380.23 | 193.08 | 99.33
Kaira solution [s] 443.5 205.57 137.75 72.95 68.04 83.09
Kaira solution with tracing [s] 444.78 229.67 147 72.98 68.14 83.06
Scalasca log size [kB] 128 160 216 336 576 1126
Kaira log size [kB] 40 136 264 520 1126 2150
Utilizations of processes ca::range(0, ctx.process_count())
colony colony
QAntcolony
gen < param::Generation()
gen " [bulk] received
P Compute |/

Fig. 10. The example of zoomed chart of process utilizations in the heat flow
example with 16 processes.

For our experiment, we used the file eil51.tsp from TSPLIB!!.

In the used version of the ACO algorithm, ants are separated

into colonies and the evolution of each colony is computed in
parallel (each colony is assigned to a single MPI process).
A colony is stored in the place in the top-left corner. The
transition Compute takes a colony and computes the next
generation of ants. In each iteration, every process saves the
best solution to the place Best trail. It is distributed to other
processes through the place Ant distribution. When the last
generation is computed, Send results takes the best solution
and it sends them to process 0, where the overall best solution
is chosen.

To verify that the solution works properly, it is useful to

inspect the fitness value (i.e. the quality of the solution) in
time. We use the ability to connect a tracing function with a
place. In our case, we connect a simple function returning a
fitness value of an ant to place Best trail (Figure 12). When a
token arrives to this place, its value is stored in the tracelog (in
the scope of an event that creates this token). After exporting
the tracelog table into R, we obtain the charts in Figures 13
and 14.

Ut is available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

[bulk, multicast] send @ workers,

Ant distribution

param::Generation() CostTrail

Send Result

best@0

Best trail

CostTrail

Y

R [bulk, guard(size == ctx.process_count())] bests
P Wwrite result

CostTrail

Fig. 11. The implementation of Ant Colony Optimization.

\ [bulk, multicast]

best

unter
int

param::Generation()

best O\ traceCost
1 Result (double)
CostTrail
best@0

Fig. 12. Connecting a tracing function to the place Best trail.

When the best solution for each colony is sent to others,
the convergence is the same for all processes (Figure 13), as
we may expect. To check this assumption, we can disable
communication, by removing the edge with the expression
[bulk, multicast] send@workers. The fitness val-
ues for this case are shown in Figure 14.

VI. CONCLUSION

In previous papers, we have been focused on the develop-
ment of MPI applications by usage of the visual model and
visual programming. Our visual language is based on well-
known formalism — Coloured Petri Nets. In this paper, we
have presented how the same visual model and in fact the same
approach was used for debugging and performance analyses.
The presented ideas are implemented in our tool Kaira.

We introduced a simulator that allows the live introspection
into developed programs. This simulator uses the original
visual model. Thus the developer is able to inspect the de-

1489

1490

Convergence of the fitness value
(with communication)

Process

process 0
process 1
process 2
process 3
process 4
process 5
process 6
process 7
B process 8
—— process 9

process 10

—— process 11

—— process 12

— — process 13

1000 1200 1400
1 1
NERRREN

Fitness

800

process 14
process 15

0 5000 10000 15000

Time [ms]

Fig. 13.
solution.

Minimization of fitness values in time; colonies exchange the best

Convergence of the fitness value
(no communication)

1400

Process

process 0
—— process 1
— process 2
—— process 3
—— process 4
—— process 5
process 6
process 7
—— process 8
—— process 9
process 10
—— process 11
—— process 12
— process 13
—— process 14
—— process 15

1200
1

1000
1

Fitness

600
1

Time [ms]

Fig. 14. Minimization of fitness values in time; without communication.

veloped application’s behavior using the same visual model
that he developed and that he understands. Using control
sequences, we are able to capture a simulation and later it
can be reproduced even on a modified visual model. They
serve as basic infrastructure and they allowed us to implement
deterministic replay and we want to implement more advanced
features like a massive parallel replay.

Also for profiling we use a similar approach and we use the
original model. We use it not only to present the obtained data
(application’s replay) but also to simplify the measurement
specifications. This is crucial for profiling, because when we

PROCEEDINGS OF THE FEDCSIS. KRAKOW, 2013

measure everything, the obtained data are usually useless and
setup measurement filters in a standard tool can be hard.

We also demonstrate that presented features can be imple-
mented with a performance that is comparable with existing

mature tools. Practical experiments show that a performance
of the handmade solution is comparable with the solution
generated by Kaira. Measured times differences were up to
20%. The overhead introduced by tracings in Kaira is up to
3%. Our tracelogs are bigger than Scalasca’s tracelogs, but
their growths is similar.

We consider these features to be a successful step towards
providing the unifying framework for prototyping and devel-
opment of MPI applications. We are also working on more
advanced features: performance prediction and verification.
These parts are interconnected by our model and results from
one analysis can be used in the rest of Kaira infrastructure. It
can serve as another argument why to use Kaira.

REFERENCES

[1] S.Bohm and M. Béhdlek, “Generating parallel applications from models
based on petri nets,” Advances in Electrical and Electronic Engineering,
vol. 10, no. 1, 2012.

, “Usage of Petri nets for high performance computing,” in
Proceedings of the Ist ACM SIGPLAN workshop on Functional
high-performance computing, ser. FHPC *12. New York, NY, USA:
ACM, 2012, pp. 37-48. [Online]. Available: http://doi.acm.org/10.1145/
2364474.2364481

[3] K. Jensen and L. M. Kristensen, Coloured Petri Nets - Modelling and
Validation of Concurrent Systems. Springer, 2009.

[4] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng, Z. Zhang,
and G. Voelker, “Mpiwiz: subgroup reproducible replay of mpi
applications,” in Proceedings of the 14th ACM SIGPLAN symposium
on Principles and practice of parallel programming, ser. PPoPP °09.
New York, NY, USA: ACM, 2009, pp. 251-260. [Online]. Available:
http://doi.acm.org/10.1145/1504176.1504213

[5] J. M. Squyres, “Mpi debugging — can you hear me now?” ClusterWorld
Magazine, MPI Mechanic Column, vol. 2, no. 12, pp. 32-35, December
2004. [Online]. Available: http://cw.squyres.com/

[6] ——, “Debugging in parallel (in parallel),” ClusterWorld Magazine,
MPI Mechanic Column, vol. 3, no. 1, pp. 34-37, January 2005.
[Online]. Available: http://cw.squyres.com/

[71 A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby, and
R. Thakur, “Formal verification of practical mpi programs,” SIGPLAN
Not., vol. 44, no. 4, pp. 261-270, Feb. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1594835.1504214

[8] M. Geimer, F. Wolf, B. J. N. Wylie, E. Abrahdm, D. Becker, and
B. Mohr, “The Scalasca performance toolset architecture,” Concurrency
and Computation: Practice and Experience, vol. 22, no. 6, pp. 702-719,
Apr. 2010.

[9] S.S. Shende and A. D. Malony, “The tau parallel performance system,”

Int. J. High Perform. Comput. Appl., vol. 20, no. 2, pp. 287-311, May

2006. [Online]. Available: http://dx.doi.org/10.1177/1094342006064482

A. KnAipfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber,

H. Mickler, M. MAZller, and W. Nagel, “The Vampir performance

analysis tool-set,” in Tools for High Performance Computing,

M. Resch, R. Keller, V. Himmler, B. Krammer, and A. Schulz, Eds.

Springer Berlin Heidelberg, 2008, pp. 139-155. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-68564-7_9

V. Pillet, V. Pillet, J. Labarta, T. Cortes, T. Cortes, S. Girona, S. Girona,

and D. D. D. Computadors, “Paraver: A tool to visualize and analyze

parallel code,” In WoTUG-18, Tech. Rep., 1995.

M. Béhilek, S. Bohm, P. Kromer, M. Surkovsk)’/, and O. Meca, “Par-

allelization of ant colony optimization algorithm using Kaira,” in 77th

International Conference on Intelligent Systems Design and Applications

(ISDA 2011), Cordoba, Spain, Nov. 2011.

[2]

[10]

[11]

[12]

