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Abstract—IEC 61131-3 standard defines five languages for
programming industrial controllers. They support both textual
and graphical development approaches. In case of Function
Block Diagram graphical language, diagrams consist of a set of
elements connected with lines, which have various length and
shape. Development of an editor supporting diagrams design
involves implementation of an algorithm, which is able to
automatically find a suitable connection between blocks. In the
paper an appropriate application of A* algorithm is proposed.
The authors have ensured that the proposed solution is efficient
and work smoothly. Relations between implementation details
and performance are discussed. Achieved results caused that the
mechanism has been introduced into graphics editors available
in CPDev engineering environment for programming controllers.

Index Terms—A* algorithm, graphics editors, IEC 61131-3,
searching path.

I. INTRODUCTION

G
RAPHICS editors for various diagrams allow the user

to create connections between symbolic blocks. The

simplest approach is to draw an exact line or polyline by the

user. It can be cumbersome and lead to errors, especially when

the block, which is a start or end point for the connection, is

moved later, because the connection is not updatable. A better

solution is to draw connections between blocks automatically

and also update them when necessary, without user attention.

This scenario makes creation of the diagram easier and limits

a number of errors. It is consistent with a process of diagram

creation that starts from designing the first working version

of control algorithm, without focusing on legibility of the

diagram, and then moving elements to get more readable

design that is easier to understand and maintain.

To implement such an approach, a dedicated algorithm

is required. It complies with some rules corresponding to

the diagram type (e.g. restrictions on overlapping lines and

crossing other blocks) and takes into account user preferences

(directions changed rarely). Moreover, the algorithm should

determine all paths on the fly, immediately after creating or

moving an element.

Results obtained during research caused an implementation

of the mechanism of automatic connections finding in graphics

editors inside the CPDev engineering environment. They work

smoothly also on devices with limited resources and allow

the designer to create and modify connections in almost

Fig. 1. FBD program that represents the following formula: RUN =
(RUN ∨ START ) ∧ (COUNTER < 100).

imperceptible way. A process of updating connections between

multiple elements typically takes only a few milliseconds.

In this paper, the algorithm with an application for Function

Block Diagram (FBD) graphical language from IEC 61131-3

standard is presented. The article is organized as follows. The

second section reviews FBD language and CPDev engineering

environment. A problem of path searching in a graph with

analysis of A* algorithm modifications is described in the third

section. The results of measurements and a short information

about test software is presented in the fourth section.

II. FBD IN CPDEV ENGINEERING ENVIRONMENT

Third part of the IEC 61131 standard [1] defines five

programming languages for industrial controllers. Textual lan-

guages include ST (Structured Text) and IL (Instruction List).

FBD (Function Block Diagram) and LD (Ladder Diagram) are

graphical, while SFC (Sequential Function Chart) is mixed and

requires parts implemented in other languages.

In the paper, the authors focus on FBD, that is a graphical

language allowing users to create control programs in a

visual way. POUs (Program Organization Units, i.e. programs,

function blocks, and functions) defined in this language consist

of rectangles that represent variables, constants, instances of

function blocks, and functions. All of them are connected with

lines as shown in Fig. 1.

Graphical languages benefit from visual programming.

Their features include legibility of diagrams, easiness of

program understanding or modification, and a possibility of

attaching printouts directly to the documentation. Engineering

tools (e.g. Beckhoff TwinCAT [2], CoDeSys [3], Control

Builder F [4]) contain graphics editors that allow users

to design programs graphically. They support drawing and
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Fig. 2. CPDev IDE with editors of ST and FBD languages.

updating connections between blocks automatically, using

some proprietary solutions, without any clues of the used

algorithms and implementation details. Development of the

CPDev engineering environment required another solution,

thus the authors proposed using the A* algorithm with some

adjustments and tuning of parameters, as described later.

CPDev (Control Program Developer) is an engineering

environment [5] developed in the Department of Computer

and Control Engineering at Rzeszow University of Technology

(Poland). It can be used for programming PLC, and PAC

controllers, mini-DCSs [6], and secure NCS systems [7],

according to IEC 61131-3 standard [1]. The CPDev environ-

ment is universal and generates code in the form that can be

executed on various target platforms, including AVR, ARM,

x86, and FPGA. It is achieved by using a virtual machine

executing an intermediate code [8]. The environment is open

for controller constructors and engineers that can implement

low-level procedures and add them to the virtual machine.

Developers using CPDev can create own libraries with POUs

and reuse them in multiple projects. CPDev consists of several

parts, including integrated development environment (Fig. 2),

compilers, translators, configuration tools, testing application

[9], and visualization mechanism [10]. CPDev has been ap-

plied for ship control and monitoring systems from Praxis

Automation Technology B.V. (Leiderdorp, the Netherlands)

[11] and for small PAC controller in measurement-and-control

systems from LUMEL S.A. (Zielona Gora, Poland) [12].

All kinds of POUs, i.e. programs, function blocks, and func-

tions, can be created using CPDev graphics editors [13]. They

are equipped with typical functionalities such as basic edition

operations (adding, moving, copying, pasting), translation to

ST code, conversion to XML format, and printing accordingly

to a template. The editors provide also an execution mode

to run programs with support of tracing variable values and

breakpoints.

Automatic connection finding is one of the most important

features. It generates a connection between two elements on

the diagram (variables, functions, or function blocks) auto-

matically. Therefore, the user can focus on implementation

of the control software, without paying special attention to

connections. In CPDev graphics editors the lines are drawn

automatically, just after selecting the beginning and the end

of the connection. The problem can be interpreted as finding

a path in a graph. However, some simplifications and modifi-

cations have to be done due to short time requirement.

III. PATH SEARCHING IN A GRAPH

The problem of finding the shortest path in a graph is

one of typical problems in discrete mathematics [14]. The

classical approach, like the Dijkstra algorithm [15], focuses

on examining all possible paths to find the shortest one.

However, such a solution is not performance efficient. As

an extension to the classical approach, a number of BFS

(Best-First Search) algorithms have been proposed. For the

problem specified above, the authors have chosen the A*

algorithm [16], which combines traditional approach (similar

to Dijkstra’s) and heuristic one involving a metric. The A*

algorithm requires estimation of a distance between the current

node and the target for every node in a graph. Such a distance

must be predicted in an optimistic way, i.e. real distance

cannot be shorter than estimated. Numerous modifications of

A* algorithm have been described [17], as well as applications

including finding optimal routing in wireless sensor networks

[18], [19], shortest road on a map [20], or even solving motion

correspondence problem in computer vision [21].

Basically, the A* algorithm in every step tries to go the

most promising way, i.e. chooses such a neighbor node that

is close both to the current track and to the target node. At

first, estimated distance from the target is calculated for every

node, denoted as H score. While traversing the graph, real

distances from the start node to neighbors of the current one

are evaluated. The G score for every node reflects the distance

from the start point via the shortest path already examined. The

G score for every node can be updated later if a shorter path

to this node is found. The F score is a sum of G and H scores.

It represents estimated cost of using this node while directing

to the target. In every step a node with the lowest F score

from so-called open set (containing nodes to be traversed) is

selected, and added to the closed set (nodes already traversed).

Implementation of such an algorithm requires consideration

of some data structures for these sets. Ordinary lists or hashta-

bles can be used, but heaps or binary search trees (simple

BST or self-balancing, e.g. red-black trees RBT) [22] usually

turn out better. Selection of a node with the minimal F score

from the open set (which is a priority queue) is one of the

most time consuming parts in A* algorithm. The worst case

computational complexity of such an operation is O(n) for

tables, O(log n) for balanced BST or RBT, and O(1) for min

heap. Choosing F score as a key for a complex data structure

improves performance, but checking if the set already contains

the node, by using structure with coordinates of the node as

a key, is more convenient. Similarly, adding or removing a

node from complex data structures, as well as updating their

F score (and position in the structure) takes significantly more

time. Thus, choosing the most efficient structure, as well as

its key, in a given case requires some tests, as shown in the

following section.
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Fig. 3. Generated graph nodes.

Fig. 4. Calculation of the path cost.

Another possibility for closed set implementation is addi-

tion of marks indicating whether the node has been already

traversed. Such marks are included in internal class repre-

sentation of the nodes. Thus, an additional data structure is

unnecessary, which simplifies the implementation.

Finding an appropriate connection between elements in

FBD diagrams can be considered as solving the shortest path

problem in a graph. The connection should meet the following

requirements:

• be found every time if elements are placed on the diagram

correctly,

• pass round elements placed earlier,

• limit a number of intersections with other lines,

• change direction rarely,

• support additional margin around elements.

In our solution such a graph is created automatically. The

nodes are simply diagram grid points, as shown in Fig. 3.

Elements placed on the diagram (variables, functions, and

function blocks) remove some nodes from the graph. Arcs

connect the nodes vertically and horizontally, according to the

neighborhood of the grid points. Initially weights of all arcs

are equal. The start and end nodes (in the graph) are defined

by positions of the elements, which should be connected.

A structure of the graph, which nodes represent grid points,

is suitable for searching the shortest path using A* algorithm.

The Manhattan (taxicab) distance is a natural choice for heuris-

tic function to estimate a connection cost in such a case. The

distance is calculated according to the formula d(n1, n2) =
|x1 − x2| + |y1 − y2|, where ni = (xi, yi) denotes node i

with coordinates xi and yi. Among other metrics, that could

be also considered, the maximum (Chebyshev) one seems also

Fig. 5. Variants of the path between A and B nodes.

Fig. 6. Connections found with line cost intersection 50.

promising, calculated as d(n1, n2) = max(|x1−x2|, |y1−y2|).

In order to find an optimal connection some additional con-

ditions must also be considered while analyzing the diagram.

Firstly, connection lines can not overlap, and can cross only

when necessary. Overlapping can be easily solved by removing

the arcs in the graph, which connect nodes representing fields

that are already parts of any line. Crossing can be reduced by

adding a high penalty for the G score. Secondly, lines in the

diagram should go straight and change direction rarely. It can

be achieved by setting an appropriate penalty on the G score,

depending on a direction of actual path. An example of path

cost calculation according to these rules is shown in Fig. 4.

It is worth mentioning, that G score rules sometimes lead

to calculating different costs for a path between two nodes,

depending on the previous path. Such a case is shown in Fig.

5. Considering the paths between A and B nodes, the algorithm

can choose either one marked by a solid line or by dashed. In

both cases the connection crosses C node. Two paths between

A and C have the same cost, but the cost of the path between

C and B is different, depending on the previous path. If the

solid line between A and C is chosen, the connection changes

direction in C towards B, thus some penalty for the G score

is added.

A method for adding nodes to the structure representing

the open set is another issue. In every step one node with the

lowest F score in the open set is selected, but sometimes there

may be many nodes with the same minimal F score. Selection

of the node in such a case depends on the order of adding

nodes in previous steps. There are several possibilities to be

considered. New nodes can be added before or after previous

ones, and they can be unsorted or sorted by direction. Such

modifications affect searching time and shape of resulting path.

The costs of line intersection and direction change have
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Fig. 7. Connections found with line cost intersection 5.

Fig. 8. Connection found with Manhattan metric.

Fig. 9. Connection found with Maximum metric.

also an impact on the final path (Fig. 6, 7). If penalty for

crossing a line is huge (as in Fig. 6), intersections will be

avoided, but the path will go by roundabout way. The metric

influences a shape of the path as well (Fig. 8, 9). For maximum

metric the algorithm tries to minimize the distance in one

of coordinates, the longest first. Such a metric can lead to

generating ”stairs shaped” connection (Fig. 9) when a penalty

for changing direction is low. Selection of appropriate cost

values to find reasonable compromise in general case is not

trivial.

IV. TEST SOFTWARE AND PERFORMANCE RESULTS

A. Test software

Test results have been measured using a dedicated software

with user interface shown in Fig. 10. That makes it possible

to adjust settings and perform measurements for various com-

binations of parameter values. All tests are run on the map

implemented as a matrix of integer values. They represent

current states of fields: start, end, blocked, line, or clear.

Available settings include:

• cost values (e.g. direction change or line crossing)

• open set data structure (BST, RBT, list, max heap, and

min heap)

• closed set data structure (hash set, mark, list, BST, and

RBT)

• keys for open and closed set structure (F value or coor-

dinates)

The testing application consists of two parts, i.e. map and

settings panel. In the example from Fig. 10, the map presents a

Fig. 10. The application for testing the mechanism of connection finding.

Fig. 11. The simple map for testing the mechanism of connection finding.

connection found by the mechanism between the start element

(top-left) and the end (bottom-right). Some other elements,

like blocks and variables from diagrams, are shown as black

rectangles. They are connected by gray lines.

The measurements have been performed for a number of

data sets, including simple and complex (Fig. 11, 12–15,

respectively). The results have been calculated for various

metrics, costs, structures, and keys for open and closed sets.

B. Simple map

The simple example from Fig. 11 consists of three blocks.

Two of them represent input variables and the third one is an

instance of function block. There are two lines from inputs to

the block. The algorithm has to find a path between the start

element (top-left) and the end (bottom-right) one. It is clear

that for specified values of parameters the algorithm tries to

avoid crossing lines, even if it requires to change direction and

apply a longer path.

Improving performance is one of the most important reasons

for testing the mechanism of finding connections. The results

are presented in Table I. Following abbreviations have been

assumed: F indicates F value, C – coordinates, HS – hash set

structure, Heap – min heap structure, Man – Manhattan metric,

and Max – Maximum metric. Cost is equal to 191 in all cases.

Tests have been performed on PC with 2,5 GHz processor.

Even for the simple example (Fig. 11) required times are

different and depend on parameters, mainly on open and closed
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TABLE I
RESULTS OF TESTING THE MECHANISM OF FINDING CONNECTIONS

FOR THE SIMPLE MAP.

#
Open set Closed set

Metr.
Required

time [ms]Str. Key Str. Key

1 RBT F Mark - Man 0
2 BST F Mark - Man 1
3 BST F Mark - Max 1
4 RBT F Mark - Max 1
5 BST F HS any Man 1
6 RBT F HS any Man 1
7 Heap F Mark - Man 1
8 BST F BST C Man 3
9 List F Mark - Max 4

10 BST F RBT F Man 20
11 Heap F HS F Max 45
12 RBT F List F Max 64
13 List F List C Max 74
14 BST F BST F Man 118
15 List C BST F Man 125
16 Heap C BST F Max 174

set structures, as well as their keys. The metrics do not have

such an important impact. The mechanism allows to calculate

the path in the fastest way by using RBT or BST structures

of the open set, and mark or hash set as a structure of the

closed set (Table I, rows 1-6). The performance is significantly

decreased by using a list or min heap as a structure of the open

set, and BST, RBT, or list as a structure of the closed set (Table

I, rows 15-16).

As mentioned in Section III, the results can be explained

by internal concepts of various data structures and their com-

putational complexity. In case of the open set it is important

to select data structure that performs well while adding or

removing an item, checking whether the structure contains

specified item, or selecting an element with minimum value.

For the closed set, only two operations should be well sup-

ported, i.e. adding an item and checking whether the structure

contains specified item. Choosing a suitable combinations of

structures for the open and closed sets significantly increases

overall performance of the mechanism.

C. Complex map

The complex map (Fig. 12–15) consists of sixteen elements

from the FBD diagram, i.e. ten input variables, three output

variables, and three instances of function blocks. All of them

are connected in more complicated way than before. The

performance results for finding connections are presented in

Table II. Cost is equal 351 in all cases.

The results confirm conclusions from the previous example.

Again, the mechanism performs well with RBT or BST as a

structure of the open set (Fig. 16), and with mark or hash set

as a structure of the closed set (Fig. 17). However, differences

between required times are higher, because significantly more

operations must be performed while searching. In this case,

the best combination of parameters finds the connection in

1 ms, but the worst in 781 ms.

TABLE II
RESULTS OF TESTING THE MECHANISM OF FINDING CONNECTIONS

FOR THE COMPLEX MAP.

#
Open set Closed set

Metric
Required

time [ms]Str. Key Str. Key

1 RBT F Mark - Man 1
2 BST F Mark - Man 2
3 BST F HS F Man 3
4 RBT F HS F Man 3
5 Heap F Mark - Man 3
6 BST F RBT C Man 5
7 Heap F RBT F Max 103
8 Heap F BST F Max 781

Fig. 12. Connections found for the Manhattan metric and 50 as a cost of line
intersection.

Fig. 13. Connections found for the Manhattan metric and 20 as a cost of line
intersection.
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Fig. 14. Connections found for the Maximum metric and 50 as a cost of line
intersection.

Fig. 15. Connections found for the Maximum metric and 20 as a cost of line
intersection.

Using a proper open set structure (for fixed closed set

structure) improves performance even a few times (Fig. 16).

The difference is also seen in case of mark and hash set as

structures of the closed set (Fig. 17). The mark can lead up to

50% increase of performance. Choosing a key for the closed

set structure also affects performance, but only in case of

structures other than mark.

A comparison between four combinations of structures

of open and closed sets (RBT or BST, mark or hash set),

depending on the metric, is shown in Fig. 18. The difference

in case of the complex map is not high between BST and

RBT used as the open set. Performance for mark and hash

set as structures of the closed set is also similar. There is a

difference in average time required to find connection when
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Fig. 16. Average required time for finding connection by open set structure
(mark, F value as closed set structure and key, Manhattan metric).
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Fig. 17. Average required time for finding connection by closed set structure,
open and closed set keys (BST as open set structure, Manhattan metric).

the mechanism uses Manhattan and maximum metrics. It is

caused mainly by a different number of fields analyzed during

searching. The difference is specific to the map.

Parameters have an impact not only on performance, but

also on the path found. Depending on the metric and costs,

it can change a direction more or less frequently, promote

variants without crossing other lines, or even promote a

specific direction. Differences are presented in Figs. 12–15

on a set of maps for the complex example.

The first connection (Fig. 12) is found for the Manhattan

metric and 50 as a cost of crossing other lines. In this case the

algorithm avoids crossings even by changing directions more

frequently (see the top left part). In the second connection

(Fig. 13) the cost of crossing is smaller and equals to only

20. It promotes crossing other lines instead of changing

direction. Because of it, the first half of the connection differs

significantly from the previous case. Similar conclusions can

be made for the third and fourth connections (Figs. 14, 15),

however, shape of the connection is different. The change
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Fig. 18. Average required time for finding connection, depending on metric,
open and closed set structures, with F values as keys.

is caused by the metric, either Manhattan (Figs. 12, 13) or

maximum (Figs. 14, 15). The authors empirically found that

values about 10-20 for direction change and 20-50 for line

crossing give satisfactory results in case of FBD and LD

diagrams.

V. CONCLUSION

The problem of finding a suitable path in a graph is typical

in discrete mathematics. However, its application in FBD

graphic diagrams to automatically find connections between

elements requires some additional research and discussion.

The mechanism meets a set of requirements which contain

an execution in short time allowing to use on devices with

limited resources. It supports a process of almost imperceptible

updating and redrawing connections after moving any block

on the diagram. Thus, the developer can easily adjust design

of the diagram after creation of the first working version of

POU. It can significantly increase legibility of the diagram and

makes it easier to understand, modify, and maintain. Taken

assumptions caused some modifications and tuning of the A*

algorithm. As measured, values of parameters have significant

impact on performance, length, and shape of the connection.

In the paper the authors considered some implementation

details of A* algorithm, created a dedicated software for

performance testing, and presented conclusions. The measure-

ments indicate data structures that are efficient for the A*

algorithm, and group of structures with performance problems.

An impact on the shape of connection depending on path costs

and metric is also described. All of these aspects are combined

to tune properly the mechanism of finding connections in

IEC 61131-3 Function Block Diagram editor implemented in

the CPDev engineering environment.
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