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Abstract—In this paper, we describe a new source code
transformation called dynamic loop reversal that can increase
temporal and spatial locality. We also describe a formal method
for predicting the cache behaviour and evaluation results of the
accuracy of the model by measurements on a cache monitor. The
comparisons of the numbers of measured cache misses and the
numbers of cache misses estimated by the model indicate that
model is relatively accurate and can be used in practice.

I. INTRODUCTION

L INEAR codes for dense linear algebra consist mainly

of loops. A number of source code transformations

techniques have been developed and used in the state-of-the-

art compilers. In this paper, we consider the following standard

techniques: loop unrolling, loop blocking, loop fusion, and

loop reversal [1], [2], [3]. The main result of this paper is a

description of a new transformation technique, called dynamic

loop reversal, shortly DLR, to improve temporal and spatial

locality.

Models for predicting the number of cache misses have also

been developed for standard source code transformations [4],

[5], [6], [7]. In order to incorporate the DLR into compilers,

we propose such a model for the DLR in Section IV-B .

II. TERMINOLOGY

Throughout the paper, we assume that indexes of vectors

and matrices start from 1, all elements of vectors and matrices

are of type double and that all matrices are stored in the row-

major format.

A. The cache architecture model

We consider a set-associative cache. The number of sets

is denoted by h. One set consists of s independent blocks.

The size of the data part of a cache in bytes is denoted

by DC S. The cache block size in bytes is denoted by BS.

Then DC S = s ·BS · h. The size of type double is denoted

by SD. We consider only write-back caches with LRU block

replacement strategy.

B. The compressed sparse row (CSR) format

A matrix A is dense if it contains Θ(n2) nonzero elements

and it is sparse otherwise. In practice, a matrix is considered

sparse if the ratio of nonzero elements drops bellow some

threshold. The most common format (see [8], [9], [10])

for storing sparse matrices is the compressed sparse row

(CSR) format. The number of nonzero elements is denoted

by NZA. A matrix A stored in the CSR format is repre-

sented by three linear arrays ElemA,AddrA, and CiA. Array

ElemA[1, . . . ,NZA] stores the nonzero elements of A, array

AddrA[1, . . . , n] contains indexes of initial nonzero elements

of rows of A, and array CiA[1, . . . ,NZA] contains column

indexes of nonzero elements of A. Hence, the first nonzero

element of row j is stored at index AddrA[j] in array ElemA.

The density of the matrix A (denoted by density(A)) is the

ratio between NZA and n2.

III. CODE RESTRUCTURING

In this section, we propose a new optimization technique

called dynamic loop reversal (or alternatively outer-loop-

controlled loop reversal).

A. Standard static loop reversal

In the standard loop reversal, the sense of the passage

through the interval of a loop iteration variable is reversed.

This rearrangement changes the sequence of memory require-

ments and reverses data dependencies. Therefore, it allows

further loop optimizations in general.

Example code 1

1: for i← n, 2 do

2: B[i]+ = B[i− 1];

3: for i← 2, n do

4: A[i]+ = B[i];

Example code 1 represents a typical combination of data-

dependent loops whose data dependency can be recognized

automatically by common compiler optimization techniques.

However, the first loop is reversible (it means that it is possible

to alternate the sense of the passage). The reversal of the

second loop and loop fusion can be applied and the reuse

distances (see Section IV-A for the definition of the reuse

distance) for memory transactions on array B are decreased.

Example code 2 Loop reversal and loop fusion applied to

Example code 1

1: for i← n, 2 do

2: B[i]+ = B[i− 1];
3: A[i]+ = B[i];

In Example code 3, data-dependency analysis reveals that

the two loops are also reversible.
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Example code 3

1: for i← 1, n do ⊲ Loop 1

2: s+ = A[i] ∗A[i];
3: norm =

√
s;

4: for i← 1, n do ⊲ Loop 2

5: A[i]/ = norm;

However, the application of the loop reversal to the second

loop decreases the reuse distances.

Example code 4 Loop reversal applied to Example code 3

1: for i← 1, n do ⊲ Loop 1

2: s+ = A[i] ∗A[i];
3: norm =

√
s;

4: for i← n, 1 do ⊲ Loop 2

5: A[i]/ = norm;

The problem is that in this case (and in other similar cases),

the compiler heuristics for the decision which loop to reverse

to minimize reuse distances is complicated.

B. The effect of the static loop reversal on cache behaviour

If the size of array A is less than the cache size

(nSD ≤ DC S), then Example codes 3 and 4 are equivalent

as to the cache utilization. However, if the size of array A
exceeds the cache size, then no elements of A are reused in

Example code 3,whereas the last k = BS

SD
elements of A are

reused within the second reversed loop in Example code 4. So,

the loop reversal improves the temporal locality (see Figures 1

and 2).
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Fig. 1. The reuse distances in Example code 3.

C. Dynamic loop reversal

The static loop reversal is used to reverse data-dependency

in one dimension. This has motivated us to generalize this

idea and we have designed another optimization for nested

reversible loops based on loop reversal. Consider the following

code:
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Fig. 2. The reuse distances in Example code 4.

Example code 5

1: for i← 1, n do

2: s = 0;
3: for j ← 1, n do

4: s+ = A[i][j] ∗ x[j];

The direction of the inner loop can be alternated forward

and backward in even and odd iterations of the closest outer

loop. In this way, we can use the positive effect of a loop

reversal in every iteration of the outer loop. This is why we

call it a dynamic loop reversal, or DLR for short. Example

code 5 is a candidate for such a transformation.

Example code 6 DLR applied to Example code 5

1: for i← 1, n do

2: s = 0;
3: if i is odd then

4: for j ← 1, n do

5: s+ = A[i][j] ∗ x[j];
6: else

7: for j ← n, 1 do

8: s+ = A[i][j] ∗ x[j];

We will denote this transformation by DLR(i → j). For

large arrays, this transformation leads to even better temporal

locality than the original Example code 5, because it reduces

the reuse distances and data reside in the cache from the

previous iteration. On the other hand, the saving of the number

of cache misses in one iteration of the outer loop is bounded

by DC S/BS. So, the DLR has a significant effect if the cache

size is comparable to the sum of affected arrays sizes in

one iteration of the outer loop. The necessary condition for

applying the DLR is that the inner loop must be reversible.

D. The application of DLR on triple-nested loops

In the previous text, the DLR was applied to double-

nested loops, but it can also be applied to triple-nested loops.

Consider the following code skeleton:
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Example code 7

1: for i← 1, n do

2: for j ← 1, n do

3: for k ← 1, n do

4: (* loop body *)

In Example code 7, there are three options how the DLR

can be applied:

• on the i-loop: DLR(i→ j),

• on the j-loop: DLR(j → k),

• both transformations: DLR(i→ j) and DLR(j → k).

The last option means composition of two transformations

DLR(i → j) and DLR(j → k). This composition we will

denoted by DLR(i→ j → k). In this case, the effect of DLR is

twofold: DLR(i→ j) (on the outer pair of loops) can improve

temporal locality inside the L2 cache and DLR(j → k) (on

the inner pair of loops) can improve temporal locality inside

the L1 cache.

E. Comparison and possible combinations of DLR and other

loop restructuring techniques

In this section, we describe some loop restructuring tech-

niques (for details see [11], [12], [13], [14], [15]), compare

them with DLR, and discuss their possible combinations with

DLR.

1) Loop unrolling: Loop unrolling has two main effects.

Firstly, it makes the sequential code longer, so it may improve

data throughput, because the instructions could be better

scheduled and the internal pipeline could be better utilized.

Secondly, the number of test condition evaluations drops

according to the unrolling factor. In general, the loop unrolling

concentrates on maximizing the machine throughput, not on

improving the cache behaviour.

2) Loop tiling (blocking): Loop tiling (sometimes called

loop blocking or iteration space tiling) is one of advanced loop

restructuring techniques. A compiler can use it to increase the

cache hit rate. One possible motivation for using this technique

is that the loop range (e.g., the size of the array traversed

repeatedly within the loop) is too big and exceeds the data

cache size DC S. Thus, the loop should be split into two loops:

the outer loop is the out-of-cache loop and the inner one is

the in-cache loop. The value Bf is called the tiling or block

factor and its optimal value depends on the size of the cache.

The loop tiling and DLR can be easily combined. DLR can

be applied on every pair of immediately nested loop, but its

useless to apply it for in-cache loops (i-loop, j-loop, and k-

loop). We consider loop tiling as a competitor for DLR and

we have performed experiments with both. These quantitative

measurements of effects of these techniques are presented in

Section VI-D.

IV. AN ANALYTICAL MODEL OF THE CACHE BEHAVIOR

FOR THE DLR

The polytope model (for details see [3], [6]) is used by

modern compilers for an estimation of the parameters for loop

restructuring techniques. We will present two cache behaviour

models based on reuse distances (shortly RD).

A. A cache miss model with reuse distances

This model is inspired by the model introduced in [16]. We

will call it the basic RD model.

Definition Consider an execution of an algorithm on the

computer with load/store architecture and assume that ad-

dresses of memory transactions during this execution form a

sequence P [1, . . . , n] = [addr1, . . . , addrn]. Then P is called

a sequence of memory access addresses and P [i] = addri
is the i-th transaction with memory address addri. The reuse

distance RD(t), where t ∈ (1, n〉, is the number of dif-

ferent memory addresses accessed between two uses of the

address P [t]. Formally, if P [t] = addrt and ǫ(t) > 0 is the

minimal integer number such that P [t − ǫ(t)] = addrt, then

RD(t) = |{P [t − ǫ(t)], . . . , P [t − 1]}|. If such an ǫ(t) does

not exist, then RD(t) =∞, otherwise RD(t) ≤ ǫ(t).

The notion of reuse distances can be used for developing

a simple cache miss model based on estimating the numbers

of thrashing misses in fully-associative (h = 1) caches. If

RD(t) > DC S/SD, then the content of the cache block from

the memory address P (t) is replaced by some new value and

a cache miss occurs. If RD(t) = ∞, then a compulsory

miss occurs, otherwise a thrashing miss occurs. Recall that

we assume only caches with LRU block replacement strategy.

In this basic RD model, the spatial locality of the cache

memory is not considered, i.e., it is assumed that a cache block

contains exactly one array element (BS = SD). However,

BS = c ·SD, where c is typically 4 or 8 in modern processors,

and therefore, spatial locality must be taken into account in

order to have a more realistic model.

B. A simplified cache miss model for the DLR

Even the basic RD model is too complicated for modelling

the cache behavior of DLR in real applications. Hence, we

introduce another model that is even more simplified. We

call this model simplified RD model. We use this model for

enumeration cache misses saved by DLR. To derive an ana-

lytical model of the effect of the DLR on the cache behaviour,

consider the following code skeleton representing most often

memory access patterns during a matrix computation:

Example code 8

1: statement1;

2: for i← i1, i2 do

3: statement2;

4: for j ← j1, j2 do

5: statement3;

6: = B[j]; ⊲ Memory operation of type α
7: = B[i]; ⊲ Memory operation of type β
8: = A[i][j]; ⊲ Memory operation of type γ
9: = A[j][i]; ⊲ Memory operation of type δ

10: statement4;

11: statement5;
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We consider the following simplifying conditions:

A1 We assume that all matrices are stored in the row-

major order.

A2 We assume that statements1−5 contain only local

computation with register operands. That is, we

assume that statements1−5 have negligible cache

effects and the only memory accesses are memory

operations of type α− δ.

A3 We assume that the reuse distances depend on the

exact ordering of memory operations (inside the j-

loop) only slightly and so do the number of cache

misses.

A4 We do not distinguish between load and store oper-

ations.

A5 We assume that the cache memory is big enough to

hold all the data for one iteration of the (inner) j-

loop.

A6 We assume that the cache memory is not able to

hold all the data for one iteration of the outer i-loop.

Otherwise, the DLR has no effect in comparison to

standard execution.

A7 This model is derived only for immediately nested

loops.

Let us now analyse the effect of DLR(i→ j) on individual

memory operations.

• A memory operation of type α is affected by the DLR,

because its operand (or its part) can be reused. The effect

of DLR can be estimated by the RD analysis.

• A memory operation of type β is not affected by the

DLR, because it returns the same value (in the j-loop).

It is usually eliminated by an optimizing compiler.

• A memory operation of type γ is not affected by the

DLR, because its operand cannot be reused due to the

row-major matrix format assumption.

• A memory operation of type δ is affected by the DLR,

due to its spatial locality.

1) Evaluation of simplified RD model: The number of

cache misses during one execution of Example code 8 is

denoted by X . The number of cache misses during one

execution of Example code 8 with DLR(i → j) is denoted

by Y . The reduction of the number of cache misses during

one execution of Example code 8 due to the DLR(i → j) is

denoted by µsaved and it is equal to X − Y . The value of

µsaved has an upper bound

µsaved ≤ (i2 − i1) ·DC S/BS.

This general upper bound can be reached only for loops where

all memory operations are affected by the DLR. In practical

cases, the reduction of the number of cache misses is smaller.

To estimate the reduction of the number of cache misses during

an execution of Example code 8 with the DLR, we need to

count the number of iterations of the j-loop that can reside in

the cache. We will denote this number by Niter

Niter =
DC S

BS

∑

m SCMO(m)
, (1)

where

• m is a memory operation (of type α− δ) in the j-loop,

• SCMO(m) is the probability that memory operation m
loads data into a new cache block.

SCMO(m) =































1 if m is a memory operation

of types β or δ which are

accessed in column-like pattern.

SD/BS if m is a memory operation

of types α or γ which are

accessed in row-like pattern.
(2)

If Niter < 1, then the assumption (A5) is not satisfied and

µsaved = 0.
If Niter ≥ (j2 − j1), then the assumption (A6) is not satisfied

and µsaved = 0.

We can also estimate probability (denoted by PDLR(m))
that the memory location accessed by memory operation m is

reused using DLR.

PDLR(m) =







































































0 if m is a memory operations

of types β or γ (i.e., it is

not affected by the DLR;)

1− SD/BS if m is a memory operation

of type δ (i.e., it is affected

by the DLR, for column-like

access, the last element

in cache-line is not counted;)

1 if m is a memory operation

of type α (i.e., it is affected

by the DLR,for row-like access.)
(3)

Finally, the number of cache misses saved by the DLR

applied to the i-loop can be approximated by

µsaved = (i2 − i1) ·Niter

∑

m

(

PDLR(m) · SCMO(m)
)

, (4)

where m is a memory operation in the j-loop.

Comparisons of the numbers of estimated and measured

cache misses are presented in Section VI-C3.

V. EXPERIMENTAL EVALUATION OF THE DLR

A. Testing codes

For measuring of the effect of DLR (performance, cache

miss rate, and so on), we use two simple codes:

• matrix-matrix multiplication (MMM for short),

• multiplication of two sparse matrices (spMMM for short).

We have deeply studied characteristics of these codes in

following sections:

• For performance results, see Section VI-A.

• For cache utilization results, see Section VI-B.

• We also evaluate precision of our analytical model for

MMM STD code, see Section VI-C.

• We also combine effects of DLR and loop tiling for

MMM STD code, see Section VI-D.
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1) Matrix-matrix multiplication: We consider input real

square matrices A and B of order n. A standard sequential

pseudocode for matrix-matrix multiplication C = A ·B is the

following:

1: procedure MMM STD(in A,B;out C)

2: for i← 1, n do

3: for j ← 1, n do

4: sum = 0;

5: for k ← 1, n do

6: sum+ = A[i][k] ∗B[k][j];

7: C[i][j] = sum;

8: return C;

2) Multiplication of two sparse matrices: We consider input

real square sparse matrices A and B of order n represented

in the CSR format (see Section II-B), output matrix C is a

dense matrix of order n. A standard sequential pseudocode

for the sparse matrix-matrix multiplication C = A ·B can be

described by the following pseudocode:

1: procedure SPMMM CSR(in A,B;out C)

2: for y ← 1, n do

3: for i← A.Addr [y], A.Addr [y + 1]− 1 do

4: x = A.Ci[i];
5: for j ← B.Addr [x], B.Addr [x+ 1]− 1 do

6: x2← B.Ci[j];
7: C[y][x2]+ = A.Elem [i] ∗B.Elem [j];

8: return C;

B. Configuration of the experimental system

All cache events were evaluated by our software cache

emulator [17] and verified by the Intel Vtune tool. The exper-

iments were performed on the Pentium 4 Celeron at 2.4 GHz,

512 MB, running OS Windows XP Professional, with the

following cache parameters:

• L1 data cache with DC S = 8K , BS = 32, s = 4, h = 64,

and LRU strategy.

• L2 unified cache with DC S = 128K , BS = 32, s = 4,

h = 1024, and LRU strategy.

We used the Intel compiler version 7.1 with switches:

-O3 -fno_alias -xK -ipo

VI. THE RESULTS OF EXPERIMENTAL EVALUATION

A. Performance evaluation of testing codes

We count every floating point operation (multiplication,

addition and so on). The performance in MFLOPS is then

defined as follows:

MFLOPS(MMM STD) =
2n3

execution time [µs]

MFLOPS(SPMMM CSR) =
2 ·NZA ·NZB

n · execution time [µs]

The graph in Figure 3 illustrates the performance with or

without DLR. These graphs illustrate that the DLR increases

the code performance due to better cache utilization. There
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is a performance gap (for example for n = 120 for the

MMM STD), which DLR can overcome. The graph in Fig-

ure 4 shows the speedup over the version without the DLR.

We can conclude that the fastest code is the version with

DLR(i → j → k) for the MMM STD code. We can also

conclude that the average measured speedup is more than 20%

in the measured set for the MMM STD code.

For small matrices, a small slowdown was measured. While

the DLR can improve the cache hit rate, it has more overhead

due to more conditional loops. This effect becomes even more

important for the DLR on triple loops.

B. Cache miss rate evaluation

The cache utilization is enumerated according to the fol-

lowing definitions. Let us define ”relative number of cache

misses” as the ratio between the number of cache misses with

DLR and the number of cache misses without DLR.

The graphs on Figures 5 and 6 illustrate the number of cache

misses occurring during one execution of the MMM STD

pseudocode. We can conclude that

• the DLR effect depends on the value of the parameter n
and on the cache memory size (this observation proves

the results of the analytical model from Section IV-B)
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• except for few cases, the DLR transformation has a

positive impact on cache utilization.
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C. Evaluation of simplified RD model

1) Analytical cache model for MMM STD: To analyse

this algorithm, we omit accesses in array C at code line 7, be-

cause they are much less frequent. In this simplified model, the

algorithm contains the following types of memory accesses:

• If DLR(i → j) is applied, then memory operations with

A[i][k] are of type β and memory operations with B[k][j]
are of type α.

• If DLR(j → k) is applied, then memory operations with

A[i][k] are of type α and memory operations with B[k][j]
are of type δ.

2) Analytical cache model for SPMMM CSR: Analysis of

cache behaviour and DLR effects for this algorithm are beyond

the scope of the compiler due to its irregular memory pattern.

3) An example of evaluation of the cache analytical model:

We apply DLR(j → k) on the MMM STD pseudocode. In

this case as we stated above, memory operations with A[i][k]
are of type α and memory operations with B[k][j] are of

type δ.

Firstly, we must count how many iterations of the j-loop

can reside in the cache. From the types of memory operations

(Eq. (2)), we can derive that

SCMO(A[i][k]) = SD/BS, PDLR(A[i][k]) = 1.

SCMO(B[k][j]) = 1, PDLR(B[k][j]) = 1− SD/BS.

So, the number of iterations is (from cache parameters

in Eq. (1)

Niter =
DC S

BS(1 + SD/BS)
.

The number of cache misses saved by DLR(k, j) per one

iteration of the j-loop (Eq. (4)) is µsaved = Niter.
The total number of cache misses saved by DLR(j → k)

during one execution of the MMM STD pseudocode is

total µsaved = n2Niter.

For the given cache configuration, it gives the following

results:

• for L1 cache: Niter = 228.

• for L2 cache: Niter = 3640.
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Fig. 7. Comparison of the numbers of estimated and measured cache misses
(µsaved) saved by the DLR during the execution of MMM STD for L1
cache.

Comparisons of the numbers of estimated and measured

cache misses are shown in Figures 7 and 8.

4) Discussion of the precision of the simplified RD model:

Our analytical model is derived from the RD, which is

based on fully-associative cache memory assumption. This

assumption is the main source of errors in predictions. The

errors are higher for L2 caches due to their lower associativity.

D. Evaluation of combination of DLR and loop tiling

We have also measured the performance and cache utiliza-

tion for pseudocode MMM STD with loop tiling and effects

of the DLR transformation on this code. Graphs on Figures 9

and 10 illustrate the fact that loop tiling can greatly improve

the cache utilization. On the other hand, the tiling factor must

be chosen very carefully, because the number of cache misses

grows quickly with the distance of the tiling factor from the
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optimal value. When the DLR is applied, the growth is more

smooth, so the code is less sensitive to the tiling factor value.

Hence, the DLR technique is useful in cases when it is hard

to predict a good value for the tiling factor.
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Fig. 9. The L1 miss rate for MMM STD code with loop tiling (for n=1024)
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E. Evaluation of the DLR for the SPMMM CSR code

The SPMMM CSR code is a simple example of an irreg-

ular code. For the testing purposes, we always generate five

sparse matrices with random locations of nonzero elements

with given properties (order of matrix, number of nonzero

elements or density). The average value of these five measure-

ments were taken as a result. In this code, the memory access

pattern is hard to predict on the compiler level and loop tiling

is excluded. Thus the DLR is usable and the application of this

technique can save reasonably large number of cache misses

(see Figures 11,12, and 13).

VII. AUTOMATIC COMPILER SUPPORT OF THE DLR

The DLR transformation brings new possibilities to opti-

mize nested loops.
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A. A proposed algorithm of automatic compiler support of the

DLR

Let L1...b represent a hierarchy of immediately nested loops

(L1 is the outermost loop, Lb is the innermost loop). The

control variable for the loop Li is denoted by Ci. We propose

the following function that returns a list of loop numbers

that can profit from the DLR application and that can be

implemented into compiler to support the DLR application

automatically.

1: procedure DLR APPLICATION(in b,L, C)

2: res = [];
3: for i← 1, b− 1 do ⊲ here we consider application of

DLR(Ci → Ci+1)

4: if this DLR application is possible then

5: compute µsaved from the proposed cache

model;

6: compute overhead of this DLR application;

7: if this DLR application pays-off then

8: add i to the res ;

9: return res ;
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If this function returns empty list, then DLR does not pay-

off for any loop in L. In other case, it returns a list (res) of

loop number x such that the DLR should be applied to Lx,

i.e., DLR(Cx → Cx+1) to increase the code performance.

B. Discussion of applicability of the DLR inside compilers

The function in Section VII-A is very general. The real

incorporation of the DLR into existing compilers (like GCC

or LLVM) must address more issues:

• Where can be the DLR applied? The DLR can be applied

on the nested reversible loops. This condition can be

easily checked by the compiler.

• Where should be DLR applied? The DLR should be

applied on a pair or triple of loops that causes its max-

imal effect (mentioned in Section III-C). This compiler

decision is very similar as for loop tiling.

• Has DLR significant effect? Yes. In most cases, higher

speedups are achieved by loop unrolling or loop tiling.

But the DLR can be combined with these techniques (see

Section VI-D) and also the DLR can be applied on some

codes where loop tiling could not (for example sparse

matrix operations).

VIII. CONCLUSIONS

We have described a new code transformation technique,

the dynamic loop reversal, whose goal is to improve temporal

locality. This transformation seems to be very useful for codes

with nested loops. We have demonstrated significant perfor-

mance gains for two basic algorithms from linear algebra.

We have also developed a probabilistic analytical model for

this transformation and compared the numbers of measured

cache misses and the numbers of cache misses estimated by

the model. The inaccuracies of the model are due to some

simplifying assumptions.

This work is to contribute to the development of more

efficient compiler techniques.
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