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Abstract—Developing, for example, a simple booking web
service with modern tools can be a matter of a few weeks work.
Testing such a system should not need to take more time than
that. Automatically generating tests from specified properties
of the system using the tool QuickCheck provides professional
developers with the required test efficiency. But how good is the
quality of these automatically generated tests? Do they cover
the cases that one would have written in manual tests? The
quality depends on the specified properties and data generators
and so far there has not been an objective way to evaluate the
quality of these QuickCheck generators. In this paper we present
a method to assess the quality of QuickCheck test data generators
by formulating requirements on them. Using this method we
can give feedback to developers of such data generators in an
early stage. The method supports developers in improving data
generators, which may lead to an increase of the effectiveness in
testing while maintaining the same efficiency.

I. INTRODUCTION

THIS paper provides a solution to a problem originating

from the use of property-based testing of a simple, but

realistic web service developed and used by a telecommunica-

tion company. Property-based testing [1] is a technique with

which one describes properties of a software system using

QuickCheck. QuickCheck has many implementations, for ex-

ample [2], [3]. The general methodology is that one writes

properties of the software under test, from which QuickCheck

automatically generates test cases to validate these specified

properties.

It has been shown that property-based testing increases ef-

ficiency and effectiveness of software testing [4]. Prowess [5],

a recent EU STREP project, addresses the challenge to reduce

time spent on testing, whilst increasing software quality, in

order to quickly launch new, or enhancements of existing, web

services and internet applications. In this paper we do not

evaluate property-based testing, but focus on one particular

challenge in using this technique. The use of property-based

testing requires the definition of data generators that control

QuickCheck’s random data generation. There are many ways

to define such data generators, and it requires some skills

and experience to define a data generator with good data

distribution. We explore how we can help developers to

measure the quality of their data generators.

A danger in using QuickCheck is that we no longer see

the generated test data. In fact, we would not want to see it,

because QuickCheck can generate many test cases. As a result,

Partially supported by the EU STREP project Prowess, grant 317820

we may be tricked into a false sense of security by a large

number of passing tests, but fail to notice that the distribution

is badly skewed. Even if we observe it by using QuickCheck’s

possibility to collect statistics on the test data, we would need

an expert to judge whether the provided data is good test data.

We address the manual interaction of judging test data by

capturing the expert knowledge in formal requirements. These

requirements are used to automatically assess the quality of

the test data generators. In this way, the generators can be

developed with limited involvement of experts.

A clear example of the problem of judging the quality of

data generators came to our attention when testing a web

service created by a telecommunication company. Telecommu-

nication systems often use special purpose hardware, which is

rather expensive to build. This raises a cost issue for testing

such systems; unlike commodity PCs, one cannot simply put

as many machines in a test lab as one would like to. Hardware

becomes a resource and more efficient use of this resource

lowers the total production cost. When sharing resources, one

needs a booking system. In our case, the interoperability

requirements were to fit the already in-house built continuous

integration and other test and deployment tools. Based on these

specific requirements and experience with purchasing this kind

of heavily integrated software in the past, this booking system

was decided to be build in-house by spending a few weeks of

effort. This resulted in a simple web service used by several

sites in the world described in more detail in Sect. III.

Unit level testing of this system was performed following

the existing literature [6], [7] and revealed that it is hard to

judge the quality of the generated test cases. One can be

mislead in believing that the system is well tested, although

the randomly generated test cases do not cover the interesting

test cases. We identified the need for assessing the quality of

the generated test cases. In Sect. V we describe how we can

express requirements on QuickCheck generators that we use

to assess the quality of the generated test data.

After successfully using our method in this proprietary

first application, we have evaluated the method in a different

context. We have used the method to asses the data generators

that we use to test our second application: the open source

scheduling web application Dudle[8]. In Sect. VI we describe

the requirements with which we validated the data generators

for testing Dudle.

Although this paper describes the application of our method

for two particular applications, the techniques we describe for
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formulating requirements on generated test cases are generally

applicable to many applications of this kind.

II. QUICKCHECK

QuickCheck [2] is a tool that tests universally quantified

properties, instead of single test cases. QuickCheck generates

random test cases from each property, tests whether the

property is true in that case, and reports test cases for which

the property fails. QuickCheck also “shrinks” failing test cases

automatically, by searching for similar, but smaller test cases

that fail as well. The result of shrinking is a “minimal”1 failing

test case, which often makes the root cause of the problem easy

to find.

The original Haskell QuickCheck has inspired a number of

different versions for a wide range of programming languages

such as C++ [9], Java [10], or ML [11]. The work in this

paper is based on the use of QuviQ QuickCheck. QuviQ

QuickCheck2 [3] is a commercial application that includes

many advanced features, such as model-based testing using

a state machine model [12]. State machine models are tested

using a QuickCheck library, which invokes call-backs sup-

plied by the user to generate and test random, well-formed

sequences of API calls to the software under test.

An example of a QuickCheck property is shown below.

This property is used to test a timeline datatype. A timeline

is considered an ordered list of intervals and an interval is

an ordered pair of dates. The property uses data generators

for an interval (interval()) and for a timeline (timeline()).

The software under test provides a function add that, given an

interval and a timeline, should add this interval to the timeline,

provided the interval does not overlap with an already existing

interval. After successfully adding the interval, it should be a

member of the newly created timeline.

prop_add() ->

?FORALL({I, T},

{interval(), timeline()},

begin

case catch add(I, T) of

{’EXIT’, {overlap,_}} ->

is_overlap(I, T);

NewT ->

member(I, NewT)

end

end).

The functions is_overlap and member are provided by the

software under test as well.

At a unit testing level, one could express a number of such

general properties for API functions. This would already be

effective in finding a number of defects, but the problem

is that it is hard to know when one has provided enough

properties to cover the implementation. This problem has

been addressed in literature [6] for datatypes. Based on this

approach, the solution for the timeline example would be:

create a model implementation, a generator for a timeline

1In the sense that it cannot shrink to a failing test with the shrinking
algorithm used.

2We use QuickCheck from here on to denote this version

in which all possible constructors are used in the generation,

and one property per operation. This solution, however, does

not address the problem of generating data with a good

distribution.

Let us consider how to write data generators for an interval

and a timeline, which are used in the property above. A

simple way to construct a timeline would be to generate a

random number of intervals and put those in a timeline. If an

interval consists of two completely random dates, the first less

or equal to the second, then the size of the interval may be

huge and the possibility to get overlapping dates in a timeline

increases quickly. In this case, generating a timeline becomes

problematic, since it must not contain overlapping intervals.

We therefore should put the generation of intervals and dates

under control and steer it in the right direction. For example,

if we only randomly pick the first date and then add a random

(small) number of days to this date to generate an interval,

then we may end up with timelines that contain far more

intervals. But the possibility of negative testing, i.e., testing

that overlapping intervals are rejected, decreases.

Using QuickCheck, one needs to control the randomness in

the generators. The problem we address in this paper is not

to come up with different generators that are better or worse

for certain kind of testing, the problem is to know whether

the generated test cases provide a good coverage of the things

you want to test.

III. APPLICATION 1: BOOKING WEB SERVICE

The booking web service is a tool used internally within

a testing organisation at a telecommunication company to

manage and enable efficient sharing of hardware equipment.

Specialised hardware in the telecommunication industry is

usually associated with profound costs, and efficient sharing

of those resources is fundamental to achieve a cost-effective

environment. It is also becoming more commonplace to config-

ure larger networks of nodes. Those are setups that take longer

time to install and configure, and re-using them between teams

saves a considerable amount of time for testers.

The web service serves two main use cases with different

needs: manual use of the test equipment and automatic use

of the test equipment. In the first use case, engineers want

to search the labs for hardware that they need for their tests.

When they find what they need, they reserve the hardware for

some days or a couple of weeks. Engineers can return to the

service for additional information or to extend their bookings.

The second use case is a fully automatic use of the test

equipment during the continuous integration process. Every

time a new software package is delivered, a few different sets

of suites are run, organised as short, medium, and long term,

each suite defined to run on a specific network setup. Every

time this activity starts, the web service will be queried for

available hardware of the proposed topology. Any network that

contains this topology is accepted, and that network will be

configured to disconnect the unwanted hardware. All networks

not containing the proposed topology will not be considered.

If there are no networks available that satisfy the request, then
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continuous integration will pause for some time and retry again

some time later.

The web service is built in Erlang [13], based on a Mnesia

database, and a YAWS front-end [14]. At the core of the

application it uses a timeline data structure to manage book-

ings. This data structure represents a calendar in which certain

intervals are blocked (the days that equipment is booked).

Keeping an efficient regression suite is important. Imple-

menting a small booking system is a relatively small task

compared to implementing other telecommunication software.

It took less than five weeks to implement the first version of the

functionality. However, as the system evolved over time, as is

common in industry, it had to be adapted to new and changing

requirements many times over. The first implementation, for

example, was used with a single lab only, having users all at

the same location. The system today has evolved and users can

now be found in a handful of locations around the world. The

software has had to retain its integrity over several adaptations

like this.

Even though these small scale tools are not business critical,

the consequences for an organisation can still be severe when

they malfunction. In the case of the booking web service, it

would have only modest effects on the engineers since their

sole use of it is to find and book new equipment. The already

booked nodes will not be affected, and thus tests can be carried

on as normal. However, the global usage puts stress on the

availability, and small errors at any time will most likely create

annoyances or delays for someone, somewhere.

The effects are more severe for the automatic testing since

it is continuously dependent on up to date information of

hardware availability. It was decided that it should not occupy

any resources when not running because the total number

of hardware that would idle between runs would have an

unacceptable impact on the lab size.

The web service shows a small and limited, but practical

example of a software entity ubiquitously found in industry.

These kind of systems are not business critical in themselves,

but their cumulative effect on the business process as a

whole is. Testing them sufficiently to ensure their quality will

therefore be important to keep the bigger machinery running

smoothly.

IV. TESTING DATATYPES

The booking web application consists of a number of

components, of which the implementation of the timeline

datatype is central. This datatype is used to store, compare

and remove time intervals for bookings. Since testing datatypes

with QuickCheck is well documented [6], [7], we just need to

follow the methodology described: create a generator using the

constructors of the data type, create a model implementation

of the datatype, and write one property for each operation on

the datatype.

The timeline datatype represents a calendar in which certain

intervals are blocked (the days that equipment is booked).

A timeline can be constructed and manipulated using the

following functions:

new create an empty timeline,

add add an interval to a timeline,

delete delete a specific interval from a timeline,

after_ remove all intervals before a certain date from the

timeline; used to prune old bookings,

tail remove the first interval of a timeline.

According to [6] we should use all these operations in the

timeline generator.

In addition to these operations, we also define functions

to compare timelines, extract elements from a timeline, such

as an particular interval, and to check whether two intervals

overlap:

equals check whether two timelines are equal,

empty check whether a timeline is empty, i.e., does

not contain any interval,

member check whether a particular interval is already

in the timeline,

overlap check whether a given interval overlaps with

any of the intervals in the timeline,

valid check whether the intervals in a timeline are

chronologically ordered and do not overlap,

get_overlap return the first interval in the timeline that

overlaps with a given interval,

head return the first interval in a timeline,

nth return the n
th interval in a timeline,

overlap check whether two given intervals overlap.

Following the method mentioned earlier, we now need to

create a generator for timeline data structures, and a model

of a timeline that can be constructed with corresponding

operations. We can then define a QuickCheck property for

each operation, which applies the operation to a timeline and

the corresponding operation to a model of that timeline, and

validates if the resulting timeline conforms to the resulting

model. For example, we define the following property for the

add operation:

prop_add() ->

?FORALL(

{I, SymT}, {interval(), timeline()},

begin

T = eval(SymT),

case catch add(I, T) of

{’EXIT’, {overlap, _}} ->

is_overlap(I, model(T));

NewT ->

equals(model(NewT),

model_add(I, model(T)))

end

end).

A random interval I and a timeline SymT are generated by

the generators interval() and timeline() respectively. The

timeline generator generates a symbolic timeline, that is, a

value generated by this generator is a list of symbolic calls

to constructor operations. Symbolic values allow us to inspect

how an actual value is constructed. Whenever we need the

actual value, we evaluate the symbolic value using the eval

function. We also want to perform negative tests and check

if a proper error message is produced. When an exception is
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raised, we validate if it is raised for the right for the right

reason, in this case if the generated interval overlaps with the

generated timeline. If no exception is raised, the model of

the newly obtained timeline should be equal to the model of

the generated timeline to which we add the interval via the

corresponding model operation.

The model and properties are easy to come up with fol-

lowing the aforementioned method, but the tricky parts are

the generators for intervals and timelines. Decimal numbers

[6] and ordered sets [7] can be generated from a simple

recursive generator or grammar description, since there is little

dependency between values generated in different recursive

calls. However, in our case we have an invariant on the gener-

ated timeline, namely that intervals should be non-overlapping.

This makes the data generation severely more difficult. The

first contribution of this paper is a method to evaluate the data

distribution for datatype generators that need to meet some

requirements. The second contribution is a timeline generator

that performs well with this evaluation.

A. Interval generator

We want to test the timeline functions on random input

and need data generators for the arguments of those functions.

Many functions take an interval as argument. We represent

an interval as a pair of two triples: year, month and day.

A naive approach would be to construct an interval using

two (ordered) random generated dates. Using QuickCheck one

would generate such a triple with the choose generator and use

the ?SUCHTHAT macro to filter dates that the Erlang calendar

module rejects as valid date.

ymd() ->

{choose(2012, 2013),

choose(1, 12),

choose(1, 31)}.

date() ->

?SUCHTHAT(Date, ymd(),

calendar:valid_date(Date)).

A tuple of two such dates, however, does not provide good

test data. We want the test data to typically be a few days,

preferably around week, and containing month and year tran-

sitions. For example, 2012-12-28 to 2013-1-1 would make for

a nice test case. We should create a generator that chooses

such intervals with reasonable likelihood. As noted before, an

interval generator that picks the date purely randomly would

create intervals that are very large. Limiting the year to be

either 2012 or 2013 reduces the number of extremely large

intervals, but at the same time, choosing more than 4 non-

overlapping random intervals in that domain is unlikely to

happen with the uniform distribution of choose. We therefore

steer the generation to make it more likely to select intervals

that we are interested in by adding a few days to the date and

discard dates that therewith become invalid.

interval() ->

?LET(D1, date(),

?LET(D2, larger_date(D1),

{D1, D2})).

larger_date({Y, M, D}) ->

?SUCHTHAT(

frequency(

[{9, ?LET(Days, nat(),

shift({Y, M, D}, Days))},

{1, Date, date()}])

Date > {Y, M, D}).

After picking the first random date, the second date is con-

structed by adding an arbitrary number of days to the date.

Alternatively, in 10 percent of the cases we also allow a

completely random date as second alternative, provided it is

larger than the first date.

This is one attempt to get a good distribution of intervals

in a timeline. The question is, how good? And are there any

obvious cases that we do not test with such a distribution or

cases that are unlikely to be generated in a run of hundred

tests?

V. TESTING GENERATOR REQUIREMENTS

We would like to be able to assess the quality of a test

data, in order to convince ourselves that a generator is good

enough. To assess the quality of a test data we propose to

define requirements on values produced by such a generator.

A requirement for a generator is a property that should hold for

a certain percentage of the generated tests. So, we can specify

that a minimum (or maximum) number of generated test

values should adhere to a given property. We have extended

QuickCheck with the possibility to define such requirements

on generators in a convenient way. For example, a requirement

on a generator for natural numbers between 1 and 10, may be

that it should generate a 1 within say 12 tests. We can express

such a requirement as follows:

req_has_one() ->

Gen = eqc_gen:choose(1, 10),

?REQ_EXISTS(1, Gen, 12).

The req_has_one function returns a QuickCheck property that

we can test, just as any other ‘normal’ property, with the

quickcheck function:

1> eqc:quickcheck(req_has_one()).

OK, passed

true

Not surprisingly the generator meets this requirement. In

case a generator meets a requirement, QuickCheck prints an

acknowledgement and returns the value true.

A slightly larger example is the following requirement:

req_half_is_larger_than_five() ->

Gen = eqc_gen:choose(1, 10),

?REQ_MIN(X, Gen, X >= 5, 50.0, 100).

This requirement demands from the generator that at least 50%

of the generated values are equal or larger than 5. Running

quickcheck on this requirement results in the following out-

put:

2> eqc:quickcheck(req_half_is_larger_than_five()).

Failed! Only 46 percent meets the condition.
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[6,4,1,9,2,8,9,1,6,2,7,2,10,9,3,9,8,5,6,1,2,

...

2,4,3,2,5,3,10,2,8,2,5,5,9,4,1,9,2,10,8,5,8]

false

QuickCheck reports that the generator choose(1, 10) did

not meet the req_half_is_larger_than_five() requirement.

It shows the generated test data, which can be regarded as

a counterexample, and the percentage of the data that did

meet the requirement. Since the choose generator has a linear

distribution, it is possible that we generate 50 numbers that

are smaller than 5. The counterexample allows us to inspect

the generated data. Using this information we can improve the

generator, or, if we are satisfied with the data distribution, we

could weaken the requirement.

We offer the following macros to construct requirements on

QuickCheck test data generators:

?REQ_EXISTS(X, Gen, N),

check if a generator Gen will at least generate a value

equal to X within N number of tests,

?REQ_EXISTS_FOR(X, Gen, P, N),

check if a value for which predicate P (that takes a

value as argument and returns a Boolean value) holds,

is generated within N tests,

?REQ_BETWEEN(X, Gen, P, Min, Max, N),

check if the percentage of the values for which P holds

lies between Min| and \erlang|Max,

?REQ_MIN(X, Gen, P, Min, N),

same as ?REQ_BETWEEN but only with a lower bound,

?REQ_MAX(X, Gen, P, Max, N),

same as ?REQ_BETWEEN but only with an upper bound,

?REQ(X, Gen, P, C, N),

the above requirement macros are expressed in terms

of this is general macro, which generalises the con-

dition check (which takes an percentage as argument

and returns a Boolean value).

The last argument, which specifies the number of tests, of all

macros can be left out. If the number of test is not specified we

use the default of a hundred tests. We can check individual

requirements with the quickcheck function. In addition, we

provide a function, named req_module, which checks all

requirements defined in a module. The name of a requirement

needs to be prefixed with req_.
QuickCheck already offers the possibility to measure the

probabilities of different kinds of test data. This can be done

by instrumenting a QuickCheck property to collect statistics

during testing. For example, we might instrument a property

as follows, to measure how often a one is generated by the

choose(1,10) generator:

prop_has_one() ->

?FORALL(N, eqc_gen:choose(1,10),

collect(N == 1, N < 11)).

The effect of the line collect(N == 1, ...) is to collect the

value of N in each test, and after testing is complete, to display

the distribution of the values collected. In this case, testing the

instrumented property yields:

3> eqc:quickcheck(prop_has_one()).

................................................

OK, passed 100 tests

89% false

11% true

true

The collected statistics show that N was 1 in 11% of the

generated tests. This is already valuable information. However,

we cannot use the collected data to give a judgement, nor can

we let the property succeed or fail based on these statistics.

As a consequence, an expert must (re)examine the result in

order to check if a generator meets its requirements. Using

the requirement macros defined above, we can. Note that the

requirement functionality is not meant to replace the statistics

collection functionality. Both are useful in their own right.

Interval generator: Let us now return to our running

example. Using the above macros we can introduce some

requirements on the interval generator, which we introduced

in the previous section. For example, we can state that an

arbitrarily generated list of intervals should consist of non-

overlapping intervals in 75% of the cases:

req_non_overlap() ->

?REQ_MIN(Is, eqc_gen:list(interval()),

non_overlapping_pair(Is),

75.0).

The non_overlapping_pair function checks whether or not

there is an overlap between one of the elements of Is with

any of the other elements. When we check the requirement

for the generator of intervals with two arbitrary dates (first

smaller than the second), we get a requirement success rate of

around 30%, thus in 70% of the generated lists of intervals, the

lists contains overlapping intervals. Moreover, when we only

generate lists containing five intervals, we seem to be unable to

create any of these without an overlapping interval. However,

for the smarter generator for intervals described above, we

come close to a success rate of 80%.

A. Timeline generator

The problem of bad data distribution gets even more obvious

if we follow the generator construction explained in literature,

where we build a data structure by using the constructors

defined by the datatype.

timeline() ->

?SIZED(Size, well_defined(timeline(Size))).

timeline(0) ->

{call, ?API, new, []};

timeline(N) ->

?LAZY(oneof(

[timeline(0),

{call, ?API, add, [interval(),

timeline(N-1)]},

{call, ?API, tail, [timeline(N-1)]},

{call, ?API, delete, [interval(),

timeline(N-1)]}

])).
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This generator creates an arbitrary timeline by recursively

adding and deleting intervals from a previously defined time-

line. We do this symbolically, which means that we build a data

structure containing the calls to the API instead of calling the

API directly. But this timeline generator does a very poor job.

By deleting an arbitrary interval from the timeline it is most

often the case that this interval is not present in this timeline.

The software under test will in such case raise an exception.

Exceptions are handled in the function well_defined, which

takes a generator as input, and recomputes it if exceptions are

raised under evaluation. When sampling this data generator,

about 70% of all values created is the empty timeline, followed

by timelines with one or at most two intervals in it. That does

not make for good test data.
Lets improve the timeline generator. However, before

doing so, we want to formulate requirements on the timeline

generator we are trying to construct. A requirement that 2%

of the test cases should have a symbolic timeline that after

evaluation contains more than 10 intervals would be specified

as follows:

req_length() ->

?REQ_MIN(SymT, timeline(),

length(eval(SymT)) > 10, 2.0).

A requirement that any set of generated values should have

at least one timeline with an interval that spans over a year

border is specified as follows:

req_year_span() ->

?REQ_EXISTS_FOR(SymT, timeline(),

lists:any(fun({{Y1, _, _}, {Y2, _, _}}) ->

Y1 < Y2

end, eval(SymT))).

Similarly, a requirement that checks if an interval is present

that spans over a month, is defined as follows:

req_month_span() ->

?REQ_EXISTS_FOR(SymT, timeline(),

[1 || {{_, M1, _}, {_, M2, _}} <- eval(SymT),

M1 < M2] =/= []).

We have specified additional requirements on the timeline

generator, but we omit the definition.
The symbolic representation of calls helps us to define

requirements on the construction of timelines. Since the data

generator has a structure in which we save which calls we

apply instead of the final result, we can express a requirement

that 10% of the generates timelines should have been build

with both a delete and a tail in its construction. With those

requirements and the above generator for timelines, we get the

following result:

4> eqc_requirements:req_module(booking_eqc).

Failed! After 1 tests.

Requirement req_length failed:

only 0.00% meets the condition.

Failed! After 1 tests.

Requirement req_consecutive failed:

only 0.00% meets the condition.

Failed! After 1 tests.

Requirement req_mix1 failed:

only 0.00% meets the condition.

Failed! After 1 tests.

Requirement req_year_span failed:

only 0.00% meets the condition.

OK, passed 1 tests

false

The failure rate is 100% for all but the requirement that we

should have an interval over the month border. This means

that none of the generated values fulfils any of the other

requirements.

By selecting existing intervals from the earlier generated

timeline and only taking the tail from a timeline that contains

at least one interval we can do much better. The improved

generator is defined as follows:

timeline() ->

?SIZED(Size, well_defined(timeline(Size))).

timeline(0) ->

{call, ?API, new, []};

timeline(N) ->

?LAZY(

?LETSHRINK(

[SymT],

[well_defined(timeline(N-1))],

begin

T = eval(SymT),

frequency(

[{50,{call, ?API, add, [interval(),SymT]}},

{1, {call, ?API, after_, [date(),SymT]}}]

++

[{5, {call, ?API, tail, [SymT]}}

|| T =/= []]

++

[{5, {call, ?API, delete,

[elements(T), SymT]}} || T =/= []])

end)).

This generator performs much better and passes all require-

ments with good margins.

Specifying requirements provides the developers the tools

needed to ensure that data generators meet the expectations on

test cases that they would use in manually written unit tests.

In a similar way as deciding which unit tests one should write,

we now decide which particular data distributions provide

valuable test data. After that, we specify one property per

operation and check the result against a model. In this way,

we do get the complete testing as described in literature plus

an additional quality assurance on the generated test data. In

practice, this has helped us to motivate the designers of the

generators to realise the short-comings of early versions of the

generators and to improve them iteratively.

VI. APPLICATION 2: DUDLE

Dudle is an open source web service, which can be used

to schedule a meeting or poll people for an opinion. It is a

relatively small web service with a simple and well defined

interface. In case of a schedule, users can vote for one or more

time slots, and in case of a poll, users can choose several
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options. Dudle has functionality for creating, deleting, editing

a schedule or a poll. Participants can be invited via Dudle to

take part in a schedule or a poll. And finally, the administrator

of a schedule or poll can review the status in order to see which

alternatives are preferred by the participants. Dudle is written

in the programming language Ruby and can be deployed using

a web server, such as Apache, via a common gateway interface

(CGI).
We have tested the Dudle web service with QuickCheck,

using the abstract state machine functionality. We maintain

a model of the Dudle system while executing test commands,

which are mapped to CGI-calls, and checking pre- and postcon-

ditions. We have developed a number of test data generators

for this test, such as generators for a poll name, or a time slot.

In this section we focus on a test data generator for a user

name. We started out with a textbook case of a generator for

random user names:

name() ->

?SUCHTHAT(

Name,

eqc_gen:non_empty(eqc_gen:list(eqc_gen:char())),

not lists:member($\r, Name)).

We have constructed this generator in terms off standard

QuickCheck generators. The name() generator produces a non-

empty list of characters. We use the ?SUCHTHAT macro to

exclude user names containing carriage returns. To ensure

that we pick equal names now and again we do not use this

generator directly, but we use it to create a pool of names from

which we choose.
We had to improve the user name generator, such that it

generates more realistic user names. Dudle was not always

able to handle peculiar user names, for example names con-

taining newlines and spaces. We do not blame Dudle for this,

instead, we blame our slightly naive generator. The improved

version of the user name generator is defined as follows (where

Erlang’s notation for a character is preceded by a dollar sign):

name2() ->

Gen = frequency([{100, choose($a, $z)},

{25, choose($A, $Z)},

{25, choose($0, $9)},

{5, $ },

{1, $-}, {1, $_}]),

?LET(Name,

eqc_gen:non_empty(eqc_gen:list(Gen)),

string:strip(Name)).

This generator also produces a non-empty list of characters,

but the characters are selected more carefully. Instead of

choosing random characters we now choose alpha-numeric

characters and occasionally a slightly unusual character, such

as a space or a dash.
We have used the above generator in testing Dudle and

are quite satisfied with it. But does it actually produce the

user names that we expect? That is, does it meet our implicit

requirements? Lets find out and make these requirements

explicit, and specify them using the macros from Sect. V.
We had the following implicit requirements in mind when

we defined the user name generator:

1) at least 10% of the generated user names should contain

an unusual characters, such as a dash,

2) we should not generate names with more than four

spaces,

3) a quarter of the generated user names should be longer

than 8 characters,

4) we want to generate user names containing both upper

and lower case characters.

These implicit requirements can be translated to formal re-

quirement using the requirement macros as follows:

req_unusual() ->

Intersect =

fun(Xs, Ys) ->

[X || X <- Xs, lists:member(X, Ys)]

end,

?REQ_MIN(Name, name2(),

length(Intersect(Name, "-_ ")) > 0,

10.0).

req_spaces() ->

Spaces =

fun(Xs) ->

lists:filter(fun(X) -> X == 32 end, Xs)

end,

?REQ_EXISTS_FOR(Name, name2(),

length(Spaces(Name)) < 4).

req_name_length() ->

?REQ_MIN(Name, name2(),

length(Name) > 8, 25.0).

req_upper_lower_case() ->

IsUpper =

fun(X) ->

X >= $A andalso X =< $Z

end,

IsLower =

fun(X) ->

X >= $a andalso X =< $z

end,

HasUpperAndLower =

fun(Xs) ->

length([X || X <- Xs, IsUpper(X)]) > 0

andalso

length([X || X <- Xs, IsLower(X)]) > 0

end,

?REQ_EXISTS_FOR(Name, name2(),

HasUpperAndLower(Name)).

We have defined these requirements in the Dudle test module

named dudle_eqc. We use the req_module function to test

all requirements defined in the Dudle test module, which

generates the following output:

5> eqc_requirements:req_module(dudle_eqc).

OK, passed 1 tests

Failed! After 1 tests.

Requirement req_unusual failed:

only 7.00% meets the condition.

OK, passed 1 tests

Failed! After 1 tests.

Requirement req_name_length failed:

only 8.00% meets the condition.

false
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These results show that the name2 generator does not meet

two of the four requirements, namely req_unusual and req¬

_name_length. The latter suggests that the length of the

generated user names are too short. This may explain why

the requirement req_unusual fails as well, since the unusual

characters have a low probability of being generated. We adapt

the user name generator such that it generates longer names:

name3() ->

Gen = frequency([{100, choose($a, $z)},

{25, choose($A, $Z)},

{25, choose($0, $9)},

{5, $ },

{1, $-}, {1, $_}]),

?LET(Name,

eqc_gen:non_empty(eqc_gen:longlist(Gen)),

string:strip(Name)).

longlist(Gen) ->

?SIZED(Size,

resize(Size*2, list(resize(Size, Gen)))).

Most of the generator is left as is, but we have replaced the

standard list generator with our own longlist generator.

The longlist generator produces lists that are double the

size of lists generated by the list generator. Lets check the

requirements again:

6> eqc_requirements:req_module(dudle_eqc).

OK, passed 1 tests

OK, passed 1 tests

OK, passed 1 tests

OK, passed 1 tests

true

The name3 generator meets all the requirements. This example

shows that testing requirements supports the development of

good test data generators. Not only does testing requirements

have added value for validating large complex generators, but

also for simple straightforward generators, such as the user

name generator. It is all too easy to overlook something, such

as generating list of the proper length.

VII. CONCLUSIONS

From experience, strengthened by a scientific experi-

ment [15], we know that it is difficult to write test cases that

cover a good set of input data, both positive and negative data.

Random generation of data makes testing immune to specific

choices, but also introduces the possibility to generate data

that does not cover border cases or specific inputs.
When QuickCheck data generators get more complicated

to write and their distributions harder to grasp, one can get

a false sense of trust by seeing many test cases pass. The

actual generated data can be collected by built-in QuickCheck

functions and printed as side-effect of testing. However, only

presenting the data requires either domain experts to asses the

statistics or forces engineers to subjectively judge whether the

collected values are satisfactory.
In this article we contribute by showing how one can express

and verify requirements on generators to convince oneself that

the performed testing is sufficient. Interaction with domain

experts is needed at the beginning of the test design, when the

requirements on test data are stated. With data from testing

two different web services, we have shown that with a naive

approach to random data generation, we can easily produce

test cases without the required quality. We have shown how we

can make the quality requirements explicit and automatically

verifiable. And finally, we have shown how to control the

randomness so that the test cases we produce are of the

required quality.

Mutation testing is a different way of judging the quality

of a test suite. This is based upon introducing errors in the

software under test and trying to find them by running the test

suite. Mutation testing is a fundamentally different technique

and requires code instrumentation with good mutants. It is

further research how these techniques complement each other.

With the techniques presented in this paper, domain and test

experts are able to write requirements to ensure that the tests

they perform are of high quality. It allows for a high degree

of automation by minimal intervention of domain experts and

automatic feedback on the quality of the generated data.

REFERENCES

[1] J. Derrick, N. Walkinshaw, T. Arts, C. B. Earle, F. Cesarini, L.-Å.
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